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Abstract

The study of the genotype-phenotype map has been approached in many ways and

from many different disciplines. A large amount of knowledge has been produced

in the field of molecular evolution as well as in development and differentiation.

Nevertheless, a better understanding of the relation between the molecular level

and the complexity of organisms is still far from being successful.

This thesis reviews some of the results on the topic and addresses questions

about neutrality, plasticity and evolution in models of interacting RNA molecules

as well as regulatory networks in simple cells.

We found some resemblances between lower level systems and more complex

layers. Neutrality may well be a result of the sequence to structure map in

molecules, while plasticity is more probable achieved only when more than one

layer lies between genotype and phenotype.

The instability of molecular systems against parasites and in general deleteri-

ous mutations is amazingly replaced by a robustness and self regulation in higher

order maps that forces to focus on modular organizations and not stoichiometric

regulated systems.
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Zusammenfassung

Die Beziehungen zwischen Genotyp und Phänotyp sind in unterschiedlichen

Fachrichtungen auf viele verschiedene Arten untersucht und charakterisiert wor-

den. Besonders in den Bereichen der molekularen Evolution, der Entwicklungsbi-

ologie und der zellulären Differenzierung hat es in den letzten Jahrzehnten viele

erfolgversprechende Ansätze und grosse Fortschritte gegeben. Dennoch ist man

auch in diesen Feldern noch weit davon entfernt, die komplizierten Beziehungen

zwischen den molekularen Vorgängen und den daraus entstehenden komplexen

Organismen genauer zu verstehen.

Die vorliegende Arbeit beschäftigt sich mit einigen Ergebnissen in diesen Ge-

bieten und verfolgt Fragestellungen bezüglich Neutralität, Plastizität und Evo-

lution in Modellen interagierender RNA Moleküle sowie auch genregulatorischer

Netzwerke in einfachen Zellen.

Wir fanden einige grundlegende Ähnlichkeiten zwischen einfachen und kom-

plexer organisierten Systemen. Während Neutralität eine Folge der Beziehungen

zwischen Molekülsequenz und -struktur zu sein scheint, erfordert Plastizität meist

mehr als eine Ebene zwischen Genotyp und Phänotyp.

Überraschender Weise wird die Anfälligkeit molekularer Systeme für Parasiten

und für schädliche Mutationen im Allgemeinen bei Systemen mit mehreren Ebe-

nen durch eine immanente Stabilität und Selbstregulation ersetzt,weshalb man

sie eher als modular organisiert, denn als stoichiometrisch reguliert betrachten

kann.
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1 Introduction

There is without any doubt, a relation between genotype and phenotype in living

organisms. The carrier of information and its expression into a living being are

linked by an extense chain of events which involve molecular reactions and spacial,

temporal and hierarchical organizations. From the level of stoichiometric related

molecules to the cells of even the simplest organisms, there are several levels

of increasing complexity each of them linked with the others by feedback loops

and/or spacial vecinity.

How these reactions emerged in the first place? How could the information be

stored and inherited within simple molecular systems? When are the different

levels created and how was it possible to control their interactions?

Many of this questions have been partly answered from several disciplines ranging

from dynamical systems applied to molecular evolution, to the detailed study of

development and cell differentiation. In this dissertation we review some of the

main aspects of the genotype-phenotype map developed so far. We focus on

three levels of complexity: the molecular level, without any spacial information;

a spatially organized molecular system with the hypercycle at its core; and, a

simplified cell with a basic genome and a gene regulation network.

We stress the importance of neutrality in any gentype-phenotype map capable

of evolution. The search for fitter phenotypes is only possible, in a non-trivial

fitness landscape, when mutations with no effect in the phenotype exist. This

requirement is even more important when there are interactions among species,

or in other words, coevolving species.

Studying isolated populations is a first approach to this complicated task, never-

theless, the environment and the rest of the coevolving species drastically change

the way evolution occurs. We use different ways of defining interactions among

molecules and with the environment. In the molecular level, for example, we use

the cofolding of a pair of RNA sequences or a fixed topology in a structures target

set.

The last approach we take in this dissertation on studying genotype-phenotype

maps is centered in the formation and evolution of gene regulatory networks.

In recent times, the importance and influence of RNA as an extra regulatory

layer in the developmental process has been strongly emphasized. We simulate
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a population of cells with a simple genome decoded into proteins which regulate

each other’s transcription. The main task of this model is to understand the

effect of a changing environment in the evolution of a genome regulated by a very

simple network.

In the first chapter we introduce general aspects of the genotype-phenotype map.

Topics as neutrality, plasticity, evolvability, gene transcription and regulation

are presented. The second chapter addresses some aspects of molecular and

population dynamics, as well as two models of molecular evolution and their

implications. The third chapter presents a spatial model of the hypercycle with

fold and cofold as different genotype to phenotype maps. In the fourth chapter we

introduce CelloS, a model of simple cells with a genome and regulatory network

which is intended to investigate on the emergence and evolution of gene regulatory

networks. Work from sections 3, 4 and 5 has been published in (Stephan-Otto

Attolini and Stadler, 2005), (Stephan-Otto Attolini et al., 2005) and (Stephan-

Otto Attolini and Stadler, 2004) respectively. Finally we present conclusions and

further work in these directions.
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2 A review on Genotype-Phenotype maps

2.1 Genotype-Phenotype-fitness maps

In any living organism, phenotype refers to the physical, organizational and be-

havioral expression during its lifetime. Genotype refers to a heritable repository of

information that instructs the production of molecules whose interactions, in con-

junction with the environment, generate and maintain the phenotype (Fontana

and Schuster, 1998). The process by which the phenotype is decoded from its

genotype is poorly understood due of the complexity of interactions and control

mechanisms in several distinct levels. To investigate general features of this map

is one of the most demanding tasks in theoretical biology. One approach widely

developed (e.g. (Schuster, 2002)) is the analysis of mathematical models directed

both to the study of evolutionary processes and to the reproduction of existing

living systems.

In order to attain this, any comprehensive theory of evolution must handle the

phenotype as an integral part of the model. Genotype-phenotype maps should

be introduced in a formal mathematical way in response to this requirement.

Mathematical functions will assign one phenotype to each genotype in the geno-

type space; the inverse may not be true, having many-to-one maps where one

phenotype may be produced by many genotypes.

This unique assignment of phenotypes to genotypes, however, is an approxima-

tion of real biological systems. Phenotypes are not exclusively determined by

genotypes, since environmental factors and epigenetic effects are also relevant.

In order to complete evolutionary dynamics, the fitness relevant properties must

be extracted from the phenotype. There are many different ways to assign a

fitness value to a given genotype. One class of models use direct random or

nonrandom model assignments of fitness values to genotypes (Tarazona, 1992),

while a second and more realistic way of doing this is to use a two-step relation

with the phenotypes as intermediate states.

Both of these steps can be expressed in mathematical terms. The first one as

a function f , from the genotype G to the phenotype P , G
f
−→ P , which if the

environmental effects E are taken into account, or two genomes combined to

create a single phenotype, takes the form: G × E
f
−→ P and G1 × G2

f
−→ P . And
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the second one P
g
−→ F as a function g from the phenotype to the fitness value F

(usually the set of real numbers but where many variations are possible) which

may consist of the aptitude of a single individual in a given environment, or of

the complex set of interactions between several species coevolving in the same

scenario each one with a given fitness which is modified by the interactions. It

is also possible to take into account environmental changes by means of time

dependent mappings.

Phenotype
Space

Genotype
Space

Fitness

Figure 1: The genotype-phenotype map followed by the assignment of fitness values to pheno-

types. Both maps may result to be many-to-one functions.

Regardless of the large variety of genotype-phenotype maps and the correspond-

ing fitness functions, some regularities might be encountered in all kinds. If there

are generic features in this mappings, the main goal of the study depends on the

success to find a suitable model and an experimental system to which it applies

and where further generalizations are possible.

It has been proposed (Kauffman, 1993) that genotype-phenotype-fitness maps

must be highly non-linear. One reason to believe this is that linear systems

would stop evolving when local peaks are found since small perturbations in linear

systems are reflected also as small changes in phenotype. It is also clear that

linear systems are less able to react to changing conditions, therefore fluctuating

environments would lead in most cases to the extinction of entire populations

(Bak, 1996).

A common way of studying this characteristics is through the modeling of evolving

populations. The importance of this method resides in the fact that selection

does not act on genes but on organisms. “Organisms are the ones that make the
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struggling out there. If organisms could be described as the additive accumulation

of what their genes are, then you could say that organisms are representing their

genes, but they’re not.” (Brockman, 1995). Interactions among gene products

result in emergent characteristics which are only possible when all the elements

are present and the control mechanisms are acting on them. The result is high

non-linearity from the individual genes to the final outcome. Only through this

interactions is the organism realized. There is no decomposition of the living

system in independent gene products, therefore, reduction of the process to the

understanding of low-level entities alone is not possible (Gould, 2002). These

features are invisible until the process reaches the next level of organization and

emergent properties appear.

The high non-linearity of these maps is at the same time cause of the interesting

behavior we observe and a reason for the difficulty to understand the processes

behind them. As Bak says in (Bak, 1996):

...we may be dealing with highly non linear systems in which there is

no simple way (or no way at all) to predict emergent behavior.

Even when there are cases, usually in the small scales, that are better understood,

we cannot extrapolate from the microscopic scale (which could work under the

laws of Darwinian evolution) to the macroscopic scale (which present extinctions

and punctuated evolution that is impossible to predict from the microevolution-

ary theory). In (Simpson, 1944), Simpson argues in this direction that

Geneticists can explain what happens to a population in controlled

conditions and short time scales but not over large periods and fluc-

tuating environments.

When regarding the problem as a system of entire populations, isolated sub-

populations may present not-representative fractions of the genes in the entire

populations. Therefore, evolutionary dynamics may lead to the displaying of all

alternative alleles for a gene by chance or random drift.

Another way of approaching the problem is through the study of precise map-

pings from a given genotype to the corresponding phenotype. Development is the

process through which the phenotype is created. From the genetic information

to the actual organism, many regulatory steps, influenced by the environment,
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are realized to give rise to the final shape of the phenotype. Nevertheless, plas-

ticity may bring further changes in this phenotype by reacting to changes in the

environment and activating translation and transcription of the genome. This is

one of the most important characteristics of living cells: its capacity to receive

impulses from the environment and react to them. Simple systems, as those at

the molecular level, can fairly express this kind of behavior, while higher organi-

zations, like those found in living organisms are not only capable but forced to

develop this skill in order to survive. With the present knowledge and tools it is

naive to try to follow all the steps in the development of the information carrier

to the end product given the large amount of components involved and the even

larger number of interactions among them. Various attempts of simplified models

are at present being studied and computational tools have gained an important

place in the pursue of this task ((Stephan-Otto Attolini et al., 2005), (Marée and

Hogeweg, 2002), (Reil, 2000), (Stanley and Miikkulainen, 2003)).

2.2 Characteristics of the genotype-phenotype map

2.2.1 Neutrality

Neutrality is the property of a map to allow mutations in the genotype without

changing the correspondent phenotype. Mutations of this type give rise to neutral

networks, that is, sets of all possible genotypes which have the same phenotype

as image under the map (Schuster, 1997). These networks can be connected

through neutral neighbors, i.e. genotypes which differ by applying one time the

mutational operator. The number of connected components and qualities of the

net depend on the properties of the map (Reidys et al., 1997).

According to the neutral theory of evolution developed by Kimura, a large portion

of all mutations is neutral and only a small fraction is actually beneficial (Kimura,

1983). This results in redundant maps where many genotypes code for identical

phenotypes, i.e. many-to-one maps. “Selectively neutral genetic variations” may

be responsible for most part of the evolution by random drift.
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Figure 2: Optimization in sequence stape through adaptive walks of populations. Adaptive

walks allow to choose the next step arbitrarily from all directions of where fitness is (locally) non

decreasing. Populations can bridge over narrow valleys with widths of a few point mutations.

In absence of neutrality (upper part), they are unable to span larger distances and thus will

approach only the next major fitness peak. Populations on rugged landscapes with extended

neutral networks evolve by a combination of adaptive walks and random drift at constant fitness

along the network (lower part). Eventually populations reach the global maximum of the fitness

landscape (if it exists at all).
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Making use of a combination of graph theory and exhaustive folding in the case of

evolution of RNA molecules, Schuster shows in (Schuster, 1997) that the sequence

space is highly connected and neutral networks are randomly distributed along

this space. It is of crucial importance for optimizing fitness in molecular evolution

to have random drift in zones of equal fitness values (Schuster, 1986). This can

be seen in Fig. 2, where random walks are able to find the global maximum

only in the presence of neutrality (Schuster, 1986). Random walks which which

found a local peak, will end there because no fitter genotype is in the mutational

neiborhood. With the existence of neutral plateaus, it is possible to cross valeys

and find better phenotypes around the neutral network of the corresponding

genotype. A detailed description of neutrality in the mapping from RNA to

secondary structures is presented in Section 3.2.

In the evolution of ribozymes in vitro, many mutations are allowed which do

not have an impact in fitness (Wright and Joyce, 1997). This indicates that in

adaptive evolution, the majority of point mutations are neutral (van Nimwegen

et al., 1999). Nimwegen showed also that the population moves in a neutral net-

work towards highly connected regions, where neutrality is high and phenotypes

are more robust against mutations. This implies that selection acts not only on

phenotypes, but also on the evolvability of the genotype (van Nimwegen et al.,

1999).

The benefit of neutrality is the increase of possibilities for a search algorithm to

find a superior phenotype without getting trapped in a local optimum (Ebner

et al., 2001b). There are two basic properties which help in the search for im-

provement: since the population is allowed to move inside the neutral networks

without changing the phenotype, the individuals are spread along the network

whenever a local optimum is found. In case the fitness landscape changes gener-

ating better optima, the population has more possibilities to find these genotypes

in small radios around any of the particular individuals. It is also important to

notice that even when neutral mutations leave the phenotype of an isolated indi-

vidual unchanged, it is possible that interactions among species will be modified

because of a neutral mutation. This could be the case of interacting molecules,

when the structure of the molecule is thought as the phenotype (Stephan-Otto

Attolini and Stadler, 2005), or of prey-predator relations or mating activities

among the same species.
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Figure 3: Schematic representation of neu-

tral networks in sequences space. Colors

code for individual networks, the circles

show some regions where mutations will

take sequences from one network to a dif-

ferent one.

Another characteristic of these maps is the possibility of random drift in se-

quence space. This allows the population to explore larger areas of the genotype

space. However, if this map would be completely random, there would be no

forces acting on the population to push it towards zones of larger evolvability.

Ebner et al (Ebner et al., 2001a) have shown that highly redundant mappings

increase evolvability, defined as the ability of random variations to sometimes

produce improvement in a population of coevolving species. It is clear then, that

characteristics such as evolvability depend strongly in the neutrality of a map.

Other research approaches exploring the effects of redundancy include the work of

Barnett (Barnett, 1997), who introduced redundancy into kauffman’s NK fitness

landscapes and analyzed population dynamics on these static fitness landscapes.

It is crucial to note that not all mappings have the right type of redundancy.

Redundancy without extensive and highly interwined neutral networks simply

slow the rate of finding adaptive mutations because of the random drift and the

difficult accessibility from one neutral net to the other (Ebner et al., 2001b).

The most important global characterization of neutral networks is its average

fraction of neutral neighbors, usually called the degree of neutrality. Neglecting

the influence of the distribution of neutral sequences over sequence space, the

degree of neutrality will increase with size of the pre-image. Generic properties

of neutral networks (Reidys et al., 1997) are derived by means of a random graph

model.
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2.2.2 Phenotypic plasticity

Phenotypic plasticity is any change in an organism’s characteristics in response

to an environmental signal. These responses are stimulated by signals from the

environment, having as a result the change in protein production, physiological

activity, growth or behavior. Whatever the type of impulse and response, signals

must be internally processed at the level of cells. As an hypothesis of how this

works, Schlichting and Smith in (Schlichting and Smith, 2002) propose that these

changes are produced by different regimes of gene expression, no matter in which

level the response occurs.

Metamorphosis is a differentiation event which is usually triggered by an exter-

nal event but mediated and realized by a change in the internal behavior. Many

traits may be involved in a single event, thus coordination among these is nec-

essary in order to obtain the right response (Ballare et al., 1997). It may also

occur that metamorphosis is activated by a threshold in a single impulse from

the environment. Once the crucial level is surpassed, the rest of the activity is

mediated via concomitant changes in gene expression and the interaction between

their products.

It is clear that phenotypic plasticity is selected in response to a variable envi-

ronment (Schlichting and Smith, 2002). A phenotype with the possibility to

transform in the fittest option every time a change in the conditions occur, will

be favored among those who stay with the same shape or behavior.

Survival of a whole population can be assured by a high plasticity of their individ-

uals or by a high variation among the genotypes of the population (Lloyd, 1984).

If many individuals exist which are not optimal in all conditions, but can adapt

to any change in the environment that may occur, this increases the probability

of the survival of at least a part of the whole. This of course brings selection to a

different level, one acting in the totality of genotypes in the population, and the

other in the capacity of a single individual to adapt in a life time.

If an individual presents high plasticity, genotypic variation is kept hidden from

selection, since external conditions wont lead to the organism’s death. Thanks

to this, further improvements can be achieved by accumulating mutations which

are at first not under the pressure of selection.

Plasticity is a characteristic of the genotype-phenotype map which is selected
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from other variants as a fitter option among the rest (Waddington, 1953). Nev-

ertheless, development events responding to external or internal conditions must

anyway be controlled by the genetic network and the correspondent interactions

among products. This means that, the result of any change in phenotype re-

sulting from impulses in the organisms reflects the intrinsic relation between the

genotype-phenotype map and the environment. It is meaningless to study the

relationship between genotype and phenotype without the environmental context

(Schlichting and Pigliucci, 1998).

The mechanisms which promote plasticity are very abundant at the molecular-

genetic level, due to the large plurality that exists in molecular reactions. Thou-

sands of genes are interconnected between each other through their products and

the reactions amongst them. Environmental signals also affect the way genes are

expressed, having information traveling through several layers in both directions.

The complexity of these systems is possible only because of the flexibility and

multiplicity of the processes involved. Plasticity allows the organisms to explore

the possible control mechanisms and find the best without reducing the already

attained fitness.

As a direct consequence of all this, any theory looking for evolutionary algorithms

should provide the system with enough plurality and a way to control and drive

the process of selection (e.g. via canalization).

2.2.3 Evolvability and variability

The evolvability of a system (or organism) depends crucially on the genotype-

phenotype map. Evolvability is understood as the capacity of the system to vary.

The existence of possible adaptive mutations is originated by the mutational

operator as well as the relation between genome and phenotype (Wagner and

Altenberg, 1996).

It is important to point out that not every genetic system with its correspondent

genotype-phenotype map is able to produce beneficial mutations. Therefore, it

is valid to ask how an evolvable genome appeared in the first place and how

does a map like this evolves (Wagner and Altenberg, 1996). The hypothesis of

Wagner and Altenberg is that the map itself is under genetic control as well as

the outcome and the resulting phenotype.
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Two concepts must be defined in this framework. Variation of the phenotype is

the actual difference between phenotypes, usually reflected among populations or

species. Variation in the genome is produced primary by errors in the copying

process. Depending on the genotype-phenotype map, these changes may not

be expressed as variation in the phenotype. Neutrality is partly responsible for

this as well as interactions between organisms and environmental factors shaping

the phenotype. Variability, on the other hand, is the intrinsic capacity of the

phenotype to change, belonging to the group of “dispositional” characteristics

(Goodman, 1955). It is more difficult to measure variability than variation since

the first implies a process while the second is a fixed characteristic for a given

population.

The genotype-phenotype map constraints the possible outcomes from the varia-

tion in the genome. If fitness is understood as reproduction rate, then the fittest

individuals are those more variated. This implies that a perturbation wont bring

down the whole construct achieved by evolution (Kingman, 1978). In mathemati-

cal terms, this can be rephrased as a dynamical system having a stable attractor.

The question here is how is the process of mutation and selection capable of

escaping these stable peaks. Strong causality is the characteristic of a system

by which small changes in the parameters are reflected as small changes in the

system performance (Rechenberg, 1994).

The rate by which fitter adaptations are produced depends on the genetic muta-

tion rate and the correlation with their possibility of generating fitter offspring.

Bentley and Kumar present in (Bentley and Kumar, 1999) a clasification of the

main types of evolutionary algorithms used to model embriogenies (i.e. the pro-

cess by which the body is growth from the genotype): the genetic algorithm, evo-

lutionary programming, evolutionary strategies and genetic programming. Ac-

cording to them, an embriogeny must have an “indirect correspondance between

alleles and phenotypic effects” and “polygeny”, i.e. phenotypic traits being pro-

duced by multiple genes acting in combination (Bentley and Kumar, 1999), in

order to be evolvable and able to find fitter phenotypes. Such a system would

provide with a reduction of the search space, more complex solutions in solu-

tion space and adaptation among other benefits (Bentley, 1996). The problem

is to design such embriogenies, which in nature are defined by the interactions

of genes, their products and the environment. Embriogenies can be classified
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as external, explicit and implicit, depending on how is the phenotype treated

with respect of the genotype and whether this interaction can evolve or is fixed

thoughout the process. All this clases have benefits and drawbacks, from the

impossibility of evolve complex phenotypes to the capacity of doing it fast and

with short genomes. A review of this study can be found in (Bentley and Ku-

mar, 1999). One of the main conclusions in that contribution is the much better

performance of embriogenies which are implicit, with non-fixed and many-to-one

genotype-phenotype maps.

2.3 Fitness landscapes

Fitness landscapes were first introduced by Wright in 1931 (Wright, 1931), with

the idea of assigning fitness values to every possible genome in a population and

studying the characteristics of the resulting configuration. A landscape can be

thought of as a kind of “potential function” underlying the dynamics of evolu-

tionary optimization. Implicit in this idea is both a fitness function that assigns

a fitness value to every possible genotype (or organism), and the arrangement of

the set of genotypes in some kind of abstract space that describes how easily or

frequently one genotype is reached from another one (Stadler, 2002b).

The space of RNA or DNA sequences is a metric space, i.e. a distance can

be uniquely defined for every pair of sequences and this assignment fulfills all

requirements of a metric (Hocking and Young, 1988). On the other hand, the

space of phenotypes is usually much more complex and in nature never metric.

Relation among phenotypes is important because of the different “accesibilities”

between them.

A good case study is the RNA sequence to secondary structure map. If the sec-

ondary structure of a molecule is taken as its phenotype, then this space lacks

a metric and exhibits an unfamiliar topological structure responsible for clas-

sic evolutionary patterns such as punctuation and irreversibility (Stadler et al.,

2001a). Studies in RNA shape space forces to abandon the notion of a vector

space and to replace it by less intuitive structures based in neiborhoods and not

in distances. The appropiate topological formal structure for the set of RNA

secondary structures is a pretopology (Stadler et al., 2001a), this being a result

of requiring the genotype-phenotype map to be continues everywhere. Once this
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pretopologies are assigned to the phenotype space, evolutionary trajectories can

be tested for continuity. Punctuation is one example of discontinuos transitions

between two different phenotypes.

Figure 4: Fitness landscape of a two di-

mensional space into the real numbers.

Level curves are the equivalent of neutral

networks: movements inside them do not

produce changes in phenotype.

In combinatorial optimization the fitness function is usually referred to as the

cost function, and a move-set allows to inter-convert the elements of the search

space. The application of evolutionary models to combinatorial optimization

problems has lead to the design of so-called evolutionary algorithms such as

Genetic Algorithms, Evolution Strategies, and Genetic Programming (Koza,

1994).

In this dissertation, the genotype space is always the set of RNA sequences of

same length; the move-set consists of point mutations which are introduced in the

copying process and several genotype-phenotype maps are studied as well as the

way fitness is assigned to individuals. A detailed description of the characteristics

of these maps is presented in the next chapter.

The intuitive notion of ruggedness is closely related to the difficulty of optimizing

(or adapting) on a given landscape. It depends obviously on both the fitness

function and the geometry of the search space, which is induced by the search

process (Stadler, 2002c). Understanding the geometric features of landscapes

is of crucial importance when studying evolutionary processes and the capacity

of a given population under a certain phenotype-genotype map to attain fitter

phenotypes. Characteristics as mountain massifs, valleys, basins, peaks, plains

and ridges in multidimensional combinatorial objects may look quite different

from our 3D experience and oftentimes require a mathematical description in
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terms of algebraic combinatorics rather than calculus (Stadler, 2002b).

Landscapes can also be studied from a dynamical point of view, focusing on the

features of a dynamical system, for instance an evolving population, that uses the

landscape as its substrate. The challenge for a theory of landscapes is therefore

to link these two points of views, for instance by determining how geometric

properties influence the dynamical behavior.

It is worth mentioning that even when evolution is often view as a climbing

process in fitness landscapes, evolution is not about an increase in complexity

or a race towards a predefined goal (Brockman, 1995). The pathways followed

by evolving populations may not be the most advantageous but the most easily

reachable.

2.4 Regulatory networks

The picture long time accepted of one gene - one trait in genotype-phenotype

maps has been dramatically changed thanks in part to the discovery of the very

complex and interconnected networks between gene products. The regulation of

gene expression is one of the most complex and fascinating problems in biology

(Reil, 2000). The importance of regulatory networks in gene expression was

noticed when the Human Genome Project released the results on the number

of genes found in organisms considered “complex”. The number of genes on

D. melanogaster is not significantly smaller than those in human or C. elegans.

It is then easy to imply that the complexity of higher eukaryote is not due to

an increase on the number of genes but rather to the complexification of the

regulating networks (Geard and Wiles, 2003).

However, complexity in networks can be easily pushed towards chaos if the con-

nectivity is increased (Kauffman, 1993), and the number of necessary regulatory

genes required scales quadratically with the number of genes regulated (Croft

et al., 2003). Regarding this explosion, Mattick proposes that an extra layer of

controling RNA molecules in complex organisms, is the one that makes possi-

ble to escape this problem (Mattick, 2005). The issue of non-coding RNAs is

disscused in the following paragraphs.

With the technological advances providing information about the decoding of

the genome, the challenge lies in integrating this vast amount of information in
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order to extract principles and paradigms that might help us understand gene

regulation on a level above the molecular.

Traditionally, a gene has been defined, depending on the field of study, as: an

inheritable phenotype, despite of how the information and variation is encoded; or

from the biochemical perspective, as a protein-coding region with some associated

regulatory regions. Nevertheless, the evidence of ncRNAs being important for

developmental and regulatory processes without encoding proteins has reshaped

the concept of gene as a “transcription unit” (Okazaki et al., 2002) or a “complete

chromosomal segment responsible for making a functional product” (Snyder and

Gerstein, 2003). Even this definition could be erroneous if alternate promoters are

taken into account with their corresponding splicing and polyadenylation signals.

In order to simplify the study of gene regulation, we stay with a more conservative

definition of gene with the characteristics described bellow. Gene expression is the

process of reading and interpreting a given stretch of DNA to make a functioning

protein. In principle, control of gene expression can take place at any of the

intermediate stages:

• 1) transcription

• 2) RNA processing

• 3) mRNA transport

• 4) mRNA degradation, and

• 5) protein activity.

In practice, however, transcriptional control constitutes the most important level

of gene regulation. A typical eukaryotic gene is structured as depicted in Fig. 5.

Its most important components are the coding region (coding for the protein),

the promoter (at which RNA polymerase docks to read the coding sequence -

a process called transcription), and various regulatory sequences. The regula-

tory sequences serve as binding sites for gene regulatory proteins (transcription

factors), whose presence on the DNA affects the rate of transcription initiation.

These sequences can be located not only adjacent to the promoter, but also far

upstream - and even downstream - of it. As proteins, transcription factors are

themselves subject to the gene regulatory processes outlined above. It follows
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Figure 5: Simplified eukaryotic gene. Regulatory regions can be found far up or downstream

from the coding region. Regulatory proteins may travel to other zones of the genome to interact

with different genes.

that gene expression control systems typically take the form of networks of tran-

scription factors that regulate each other Fig. 6.

DNA

mRNA

Regulatory
proteins

Structural
proteins

Figure 6: Architecure of decoding of regulatory proteins and structural proteins acording to a

simplified model of gene regulation.

The first model of gene regulation was proposed by Jacob and Monod in 1961

(Jacob and Monod, 1961). The operon model consists of two classes of genes,

the “structural” class, which encode the proteins that play some function in the

metabolism of the cell; and, the “regulatory” class encoding for proteins which

regulate the rate of transcription of other genes as transcription factors (TFs).

In bacteria, operons have been recognized and their interactions and function

studied (Jacob and Monod, 1961). One example of an operon in Escherichia

colli is the lac operon (Fig. 7), which controls the metabolism of lactose in the

cell. It consists of three structural genes which are transcribed as long as the

repressor is not bound to the operator. The repressor is encoded by a gene called

I and it is located just upstream of the promoter. In the presence of lactose,

the repressor binds to it leaving the operator and causing the transcription of

the structural genes. This mechanism is often complicated by corepressors and
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other interactions, but the main idea is captured by the structural/regulatory

characterization of the operon model.

Figure 7: The lac operon in Escherichia colli. Regulatory and structural proteins encoded in

the genome.

Davidson’s studies on the see urchin development process propose a different

way of approaching the relation between genes and their regulation. According

to (Davidson et al., 2003), the nodes of a regulatory network should be seen as

a gene encoding a transcription factor or signaling component together with a

regulatory module controlling the expression of the same gene.

Large gene networks are increasingly thought of as being built from smaller sub-

network modules. It is thus important to understand the structure and dynamics

of small functional building blocks (François and Hakim, 2004).

Networks can be induced to switch between different states, oscillate or simply

rest in a fixed state. This behavior depends on the quantitative and qualitative

interactions between its components. Important examples in biology are found

to switch between two stable states triggered by external influences (Widder,

2003).
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To attain this behavior, repression described by simple Michaelis-Menten kinetics

is not sufficient to produce a working switch. The high-order Hill functions are

required with, for instance, protein dimers or higher multimers interacting with

DNA. When considering an existing gene regulatory network or the design of a

new one, it would be useful to know whether a bistable switch can be made only

out of two mutually repressing transcription factors or whether other interaction

networks, less easily conceived, could serve the same purpose, perhaps even in a

better and more robust way (Cherry and Adler, 2000).

In (François and Hakim, 2004), François and Hakim present an algorithm capable

of creating a variety of small networks which behave in a prescribed manner. The

design of the different networks is found via an evolutionary algorithm, while

the only imposition is the search for bistable switches and oscillating networks.

An important result from this study is the crucial use of posttranscriptional

interactions, in fact, the behavior of the networks could not be understood from

the transcriptional interactions alone (François and Hakim, 2004). It is also of

great importance the diversity of topologies found by the algorithm. Simple

architectures were already proposed for this kind of behavior, nevertheless, in

some cases the result of the simulations reflected more stability and robustness

than in the simple predefined networks.

Another remark on regulation regards the importance of RNA as a principal

player in this process. Large amount of DNA which was before thought as

“junk” DNA has been recently found to contain noncoding regions transcribed

into RNAs, same that if damaged produces problems in development. This sug-

gests that the specific content of this “junk” DNA is significant (Mattick, 1994).

One important example of RNA regulation are the Riboswitches. Riboswitches

are structure that form in mRNA and regulate gene expresion in bacteria (Vit-

reschak et al., 2004). Riboswitches has been shown to regulate several metabolic

pathways involved in the biosynthesis of vitamins, amino acids and purines (Vit-

reschak et al., 2004). The basic mechanism of regulation consists on two alter-

native secondary structures for a given sequence. One of these configurations is

stabilized by a ligand, and a hairpin is formed which terminates transcription or

binds directly to the ribosom-binding site thus inhibiting translation. In the dere-

pressing condition, the riboswitch is not bound by the ligand, and an alternative

srtucture folds which does not repress transcription. Riboswitches are of great
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importance because of the diversity of organisms in which can be found. The

most diverse distribution is that of THI -elements which are foudn in eubacteria,

archaea and eukaryotes. This feature and the diversity of molecular mechanisms

of regulation suggest that riboswitches are one of the oldest regulatory systems

(Vitreschak et al., 2004).

This is specially notorious in procaryote genomes, around 97-98 percent of

the transcribed human genome is non-protein-coding RNA (ncRNA) (Mattick,

2001). Many of the microRNAs, a special sort of short ncRNAs, have been found

in “intergenic” regions that were not considered as being transcribed (Lau et al.,

2001). The ncRNA molecules although not translated, play an important role in

regulation (Ambros, 2000).One of the characteristics that make ncRNAs impor-

tant is the evidence of being developmentally regulated, i.e. they are expressed

differently according to the gender, tissue or cell on which they are found. For

example, four of the seven major transcripts found in the bithoraxabdominalAB

region do not code for proteins but are regulated and the alteration of the DNA

that encodes them results in phenotypic consequences (Mattick, 2003).

A large quantity of RNA is transcribed from the genome, and only a small fraction

of this mRNA is translated into proteins. Since noncoding regions and introns are

characteristic from higher order organisms, it has been proposed that regulatory

RNA may be at the base of the regulation processes and a necessary character-

istic for complexity and diversity as found in eukaryote (Mattick, 1994). Some

of the phenomena involving RNA include: co-suppression, transcriptional and

post-trasncriptional gene silencing, and dsRNA-targeted mRNA destruction, in

plants, or transcriptional silencing via DNA methilation (Sharp, 2001). RNA

has also the property of binding to some proteins thought to be transcription

factors, which have high affinity for RNA and other structures that contain RNA

(Mattick, 2003). Direct functions of ncRNA have only recently been studied,

nevertheless, some of them have been predicted as for example chromatin mod-

ification and epigenetic memory, transcription initiation or alternative splicing.

Of course one of the main tasks attributed to ncRNAs is the constitution of

an extensive but (yet) unrecognized regulatory network within higher organisms

(Mattick, 2003).

It is worth noticing that these networks’ functionallity relies not only on the

connections made via the different transcription factors and regulatory sites, but
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also by a very well defined spatial and chronological succession of regulatory states

which give rise to shape and cell specification during the organism’s development

((Davidson, 2001), (Davidson et al., 2003)).

In order to study the evolution, characteristics and behavior of regulatory net-

works two approaches can be distinguished: a generative approach, which tries

to infer principles and rules from theoretical and computational models that are

constructed with no particular model system in mind; and, an analytic approach,

in which a particular, known, gene regulation system is modeled. It is clear that

most of the studies lay somewhere between these two categories (Reil, 2000).

2.5 Looking for answers in the origins

Complexity of the living organisms we know nowadays makes it too difficult to

understand the main features of genotype-phenotype maps. Therefore, answers

to this question may be found in the studies of origin of life and the theories

around them.

It is clear from what is known from molecular evolution, genetics, gene regulation

and development, that the step from molecular systems to living beings is one

of the most striking and intellectually demanding questions in biology. Linking

these two levels and defining the moment where life can be called that, has been

approached from many points of view, ranging from the origins of life to the

search of a simplified cell which is fully understood (Rasmussen et al., 2004).

The studies of molecular evolution set the scenario for one of the most accepted

theories on the origins of life. The RNA World hypothesis (Gilbert, 1986; Geste-

land and Atkins, 1993) proposes a self-contained biochemical system preceding

the origin of modern cellular life-forms, in which RNA molecules act both as ge-

netic material and as enzymes (Orgel, 1998). The possibility of an RNA World

depends on the capability of the RNA molecules to catalyze the chemical reactions

necessary to replicate RNAs (Bartel and Unrau, 1999). This scenario is supported

both by the wide range of catalytic activities that can be realized by relatively

small ribozymes (Illangasekare and Yarus, 1999; Johnston et al., 2001; Joyce,

2002; Lee et al., 2000; Unrau and Bartel, 1998), and by the usage of RNA cataly-

sis at crucial points in modern cells (Jeffares et al., 1998; Doudna and Cech, 2002;

Moore and Steitz, 2002). Plausible ribozyme catalyzed pathways for a late-stage
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ribo-organism are discussed in (Joyce, 2002), the role and evolution of co-enzymes

in a putative RNA world is explored in (Jadhav and Yarus, 2002). While the

template-induced synthesis of oligonucleotides from smaller oligonucleotide pre-

cursors was successfully demonstrated in the laboratory (von Kiedrowski, 1986;

von Kiedrowski et al., 1989; Sievers and von Kiedrowski, 1994; Wlotzka and

McCaskill, 1997), it seems impossible to replicate longer sequences without an

enzyme (Orgel, 1998). Approaches to engineering a ribozyme-replicase have been

very promising (James and Ellington, 1999; Johnston et al., 2001; Paul and Joyce,

2003). These experiments show that self-replication is most likely within the cat-

alytic repertoire of nucleic acids (McGinness and Joyce, 2003). So far, however,

they have not resulted in an RNA ribozyme that can catalyze its own replication

with an efficiency that could have sustained a genetic system on the early Earth.

A central issue in models of prebiotic evolution is the integration of informa-

tion that is necessary to bridge the gap between a simple system of replicating

molecules and the complexity of a modern cell (Eigen and Schuster, 1979; Kauff-

man, 1993). The template length is limited by the accuracy of the replication

mechanism, which is necessarily error-prone due to mutations (Eigen, 1971). In

principle the error threshold can be circumvented by evolving more accurate repli-

cases that could be encoded by longer sequences (Scheuring et al., 2003; Poole

et al., 1999; Szabó et al., 2002). Such a bootstrapping mechanism, however, re-

quires a functional replicase-ribozyme to start with. By comparison with known

ribozymes such a molecule would probably be about 100nt long, while the current

limit for non-catalyzed replication is less than 20nt.

An alternative mechanism that allows the accumulation of heritable information

is the cooperation of self-replicators, introduced in the Hypercycle model (Eigen

and Schuster, 1979). It was soon noticed, however, that hypercycles and simi-

lar models are vulnerable to various kinds of parasites in homogeneous solution

(Maynard Smith, 1979; Bresch et al., 1980). Not surprisingly, the number of

coupled replicators increases only very slowly in models of self-replicators with

mutation (May and Nowak, 1994; Happel and Stadler, 1998).

The shape of the fitness function, and more generally the accessibility of mutants

from a given population, crucially influences the dynamics of evolution (Schuster

et al., 1994; Fontana and Schuster, 1998; Stadler et al., 2001a). In the case of

RNA it has been demonstrated that the genotype-phenotype map is dominated
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by so-called neutral networks that percolate through sequence space, thereby

allowing efficient exploration by means of neutral drift confined to the neutral

networks (Schuster et al., 1994; Huynen et al., 1996; Huynen, 1996). More of the

characteristics of this specific system are presented in the next chapter. Recently,

it was shown that a similar mechanism allows population of autocatalytic self-

replicators to explore sequence space in a diffusion-like manner (Stadler, 2002a).

Simple finite population models of hypercycles have been considered e.g. in (An-

drade et al., 1991). For larger, not necessarily hypercyclic, networks destabiliza-

tion in homogeneous solution has been observed as a consequence of stochastic

fluctuations (Nuño and Tarazona, 1994). The only study of sequence evolution

of a hypercycle based on an explicit genotype-phenotype map can be found in

(Forst, 2000), which concentrates in short cycles in a homogeneous medium.

2.6 On coevolving species

General characteristics of genotype-phenotype maps can be expressed by means

of the behavior of populations under mutation and selection. Even when there

is not a complete theory of fitness landscapes, a few remarks can be done by

observing those already studied. One main difference among these studies is

whether interactions among coevolving species are taken into account.

In almost any system with a non trivial landscape, species will only aspire to find

local maxima. Whenever a part of a population sits on a maximum, the only

possibility to move with smooth searching algorithms is to places of smaller fitness

values. An equilibrium between many local maxima in a cohabited habitat would

be the best option (Bak, 1996). At the same time, changing fitness landscapes

due to interactions between species may allow changes in phenotype that would

otherwise imply a reduction in fitness and therefore impossible to find in classic

Darwinian evolution. Once a fitness peak is found in a certain configuration of the

interactions network, a change in these conditions may reduce the fitness value at

this peak, creating new ones which will be reachable via mutations and natural

selection. This way, evolution is further impulsed by a changing environment

consisting of both climate or geographical characteristics and interacting species.

It is clear then, that a more realistic and broad concept of the genotype-

phenotype-fitness map would be one taking into account cooperativity and strug-
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gle between species, as well as influence from the environment in the population.

The fitness value assigned to an individual becomes then relative to those prop-

erties of other organisms that may influence the behavior of a single one.

Wills points out in (Wills, 2001) that if the process of autocatalysis involves more

than one component, it is difficult to delineate where is the information carried.

Moreover, in this case fitness cannot be assigned to an individual but to a set of

interacting components (Wills, 2001).

The importance of interactions among species is remarked by Bak in (Bak, 1996)

saying that: “In the absence of interaction between species, evolution would come

to an abrupt halt, or never get started in the first place”. Kauffman also makes the

point with the concept of “interacting dancing fitness landscapes” (Kauffman,

1993) referring to interacting/coevolving species. Further studies of Kaufman

in this direction showed that a highly interconnected system falls easily into a

chaotic state, where species do not have the time to reach fitness peaks before

the landscape changes again. There is no real evolution in this case since any

improvement is lost before optimization is permitted (Kauffman, 1993).

2.7 Self-organization

Living systems are the paramount examples of organized complexity. From the

genetic expression and regulation, to the neural networks of the nervous system,

self-organization is at the core of these systems (Kauffman, 1993). Many ques-

tions arise about the origin of such systems and the evolution which took place in

order to generate them. It is important to ask whether all systems are suitable to

accumulate beneficial mutations, and if selection is capable of bringing systems

to this regime.

In order to answer these questions, Kauffman writes in (Kauffman, 1993):

The task must be to include self-organizing properties in a broad-

ened framework, asking what the effects of selection and drift will

be when operating on systems which have their own rich and robust

self-ordered properties. [...] It seems preeminently likely that what

we observe reflects the interactions of selection processes and the un-

derlying properties of the system acted upon.
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Dynamical systems are the main tool for studying self organization. Different

kinds of attractors constitute the possible alternatives for the long time behavior

of the variables. Between oscillating and random behaviors, strange attractors

may arise, which are sensitive to initial conditions, meaning any two arbitrarily

close points will, after a sufficient period, become as far apart as desired in the

attractor. Attractors are usually low dimensional even when exhibit in high

dimensional spaces and are found in chaotic systems.

When studying the interaction between species, one well known model is that

of boolean networks: sets of species are represented as graphs and joined by

edges whenever two species interact. In general terms, three states are visited by

boolean networks: the ordered, the complex and the chaotic regimes. Ordered

networks exhibit percolation of frozen regions to the whole space, while chaotic

ones are the opposite, presenting only islands of frozen behavior. The complex

regime, the most interesting for living systems, lays just in between these two,

presenting percolation of the frozen region together with isolated unfrozen regions.

“Adaptive evolution achieves the kind of complex systems which are able to adapt

[...]. These are those which live at the edge of chaos.” (Kauffman, 1993). Thus,

ecology must be situated exactly in the critical state separating both cases, the

frozen one and the chaotic one. That is, at the phase transition.

Although this theory could give important information about the evolution and

creation of life, it is far away from being a comprehensive and complete theory

of the origin of life. Vast research must still be done in order to define and

understand what the “edge of chaos” is and what are the characteristics that

make this systems so complex and interesting.

In the case of gene regulatory networks, it is important that the right degree of

connectedness is reached in order to have a system which is stable and flexible at

the same time, allowing the organisms to adapt to and resist the changes in the

environment.
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3 Molecular Evolution

3.1 Population dynamics

Population genetics became the mathematical basis of the synthetic theory and

is still seen by many biologists as the current frame for understanding evolution.

It is based on the study of gene frequencies and their change over time due to

natural selection ((Crow and Kimura, 1970), (Wright, 1931), (Lewontin, 1974)).

Population genetics saw a major extension by Motoo Kimura (Kimura, 1955)

who introduced the idea of neutrality. This theory was further impulsed by results

from comparative sequence analysis (King and Jukes, 1969) which showed that

within epochs of phenotypic stasis, the changes in genotypes occur at rates which

are as high as, if not higher than, those recorded during adaptive periods.

There are two main problems with this view of population genetics. The first is

the fact that mutation is considered as some external event, which is not part

of the regularly considered dynamics. The second has to do with the phenotype

represented only by its fitness values and sometimes mutation rates which are

assigned as parameters to the corresponding genotype.

As a response to this problems, Eigen published his work on self-organization

of macromolecules in 1971 (Eigen, 1971), where replication and mutation are

seen as parallel chemical reactions and evolution is visualized as a process in an

abstract space of genotypes, called sequence space. In his studies, every RNA or

DNA sequence is a point in sequence space and the Hamming distance induces a

metric in this space. The temporal development of the distribution of genotypes

in populations is described by the selection-mutation equation:

dξ

dt
= ξ̇ = ξ(Qiiai − Φ(t)) +

∑

j=1,j 6=i

Qijajξj ; i = 1, ...n (1)

Where ξi(t) are the frequencies of individual genotypes Ii at time t, Φ(t)

takes care of the normalization of the frequencies and the square matrix Q =

Qij ; i, j = 1, ...n contains replication accuracies in the diagonal terms and muta-

tion probabilities from species i to species j in Qij .

At sufficiently accurate replication, that means low enough mutation rates, popu-

lations modeled by eq. 1 approach stationary mutant distributions, called quasi-
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species, which are centered around a most frequent genotype, the master se-

quence.

At rates above the threshold value, populations do not approach stationary states

but drift randomly through sequence space and genetic information is lost. Evolu-

tion is confined to mutation rates between a lower and an upper limit: The lower

limit is given by the maximal accuracy of the replication machinery and the up-

per limit is set by the maximal sustainable fraction of error copies determined by

the error threshold (Eigen, 1971).

Fitness relevant properties of phenotypes in this model appear only as parameters

of genotypes in the differential equations, for example ai and Qij in eq. 1.

3.2 About RNA Secondary Structures

3.2.1 RNA Secondary Structures and Their Prediction

As with all biomolecules, the function of RNAs is intimately connected to their

structure. While successful predictions of RNA tertiary structure remain excep-

tional feats, RNA secondary structures can be predicted with reasonable accuracy,

and have proved to be a biologically useful coarsegrained representation of the

tertiary structure.

A secondary structure of a given RNA sequence is the list of (Watson-Crick and

wobble) base pairs satisfying two constraints:

(i) each nucleotide takes part in at most one base pair, and

(ii) base pairs do not cross, i.e., there are no knots or pseudo-knots.

The restriction to knot-free structures is necessary for efficient computation by

means of dynamic programming algorithms ((Hofacker et al., 1994), (Hofacker

et al., 2002), (Wuchty et al., 1999)) . The memory and CPU requirements of

these algorithms scale with sequence length n as O(n2) and O(n3), respectively,

making structure prediction feasible even for large RNAs of about 10000 nu-

cleotides, such as the genomes of RNA viruses (Witwer et al., 2001). There are

two implementations of variants of these dynamic programming algorithms: the

mfold package by Michal Zuker, and the the Vienna RNA Package. The latter

is freely available from http://www.tbi.univie.ac.at/ and is used throughout this
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Figure 8: Schematic representation of the stages of RNA folding into the tertiary (three dimen-

sional) structure.

work.

These thermodynamic folding algorithms are based on an energy model that

considers additive contributions from stacked base pairs and various types of

loops, see e.g. (Mathews et al., 1999). Two widely used methods for determining

such nucleic acid thermodynamic parameters are absorbency melting curves and

microcalorimetry, see (SantaLucia Jr. and Turner, 1997) for a review.

3.2.2 Neutral Networks in Sequence Space

A more detailed analysis of functional classes of RNAs shows that their structures

are very well conserved while at the same time there may be little similarity at

the sequence level, indicating that the structure has actual importance for the

function of the molecule.

In the RNA case, the genotype-phenotype map can be approximated by the fold-

ing process of the molecule, where the sequence of nucleotides is interpreted as

“genotype” and the minimum free energy structure (mfe) as “phenotype”, see

e.g. (Schuster, 2001) for a review. There is ample evidence for redundancy in
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genotype-phenotype maps in the sense that many genotypes cannot be distin-

guished by an evolutionarily relevant coarse grained notion of phenotypes which,

in turn, give rise to fitness values that cannot be faithfully separated through

selection.

Regarding the folding algorithms as a map f that assigns a structure s = f(x) to

each sequence x we can phrase our question more precisely: We need to know how

the set of sequences f−1(s) that folds into a given structure s is embedded in the

sequence space (where the genotypes are interpreted as nodes and all Hamming

distance one neighbors are connected by an edge). The subgraphs of the sequence

space that are defined by the sets f−1(s) are called neutral networks.

Theory predicts a phase transition like change in the appearance of neutral net-

works with increasing degree of neutrality at a critical value depending on the

size of the genetic alphabet. If the fraction of neutral neighbors is less than this

threshold, the network consists of many isolated parts with one dominating giant

component. On the other case, the network is generically connected. The critical

value is the connectivity threshold. This property of neutral networks reminds of

percolation phenomena known from different areas of physics, although the high

symmetry of sequence space, with all points being equivalent, introduces a dif-

ference in the two concepts. A series of computational studies ((Fontana et al.,

1993), (Schuster et al., 1994)) has in the last decade drawn a rather detailed

picture of the genotype-phenotype map of RNA.

• (i) More sequences than structures. For sequence spaces of chain

lengths n > 10 there are orders of magnitude more sequences than struc-

tures and hence, the map is many-to-one.

• (ii) Few common and many rare structures. Relatively few common

structures are opposed by a relatively large number of rare structures, some

of which are formed by a single sequence only (“relatively” means here that

the number of both common and rare structures increases exponentially

with n, but the exponent for the common structures is smaller than that

for the rare ones).

• (iii) Shape space covering. The distribution of neutral genotypes is

approximately random in sequence space. As a result it is possible to define

a spherical ball, with a diameter being much smaller than the diameter n
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of sequence space, which on the average contains at least one sequence that

folds into every common structure.

• (iv) Existence and connectivity of neutral networks. Neutral net-

works of common structures are connected except in cases with specific

non-random distributions of the alphabet A, C, G, U. Neutral networks for

the RNA-folding map show a percolation-like behavior.

Shape space covering, item (iii) above, is a consequence of the high susceptibility

of RNA secondary structures towards randomly placed point mutations. Com-

puter simulations ((Fontana et al., 1993), (Schuster et al., 1994)) showed that

a small number of point mutations is very likely to cause large changes in the

secondary structures: mutations in 10 percent of the sequence positions already

lead almost surely to unrelated structures if the mutated positions are chosen

randomly.

The set of nodes of the neutral network is embedded in a compatible set C(s)

which includes all sequences that can form the structure s as suboptimal or

minimum free energy conformation. Sequences at the intersection between the

compatible sets of two neutral networks in the same sequence space, C(s0) and

C(s1), are of actual interest because these sequences can simultaneously carry

properties of the different RNA folds.

It is known ((Reidys et al., 1997)) that each two sets of compatible sequences

with respect to the pair of secondary structures have a nonempty intersection. It

turns out that the intersection is of particular relevance for transitions of finite

populations optimizing fitness (Forst et al., 1995a) since individual sequences

folding into the intersection may take the population to structures of increased

fitness.

A very good example for this, show sequences which have been evolved to exhibit

catalytic activities of two different ribozymes at the same time (Schultes and

Bartel, 2000). As was mentioned before, the intersection theorem ((Reidys et al.,

1997)) states that for all pairs of structures s0 and s1 the intersection C(s0) ∩

C(s1) is always non-empty. In other words, for each arbitrarily chosen pair of

structures there will be at least one sequence that can form both as minimum free

energy or suboptimal configuration. If s0 and s1 are both common structures,

bistable molecules that have equal preference for both structures are easy to
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design ((Flamm et al., 2000), (Höbartner and Micura, 2003)).

A particularly interesting experimental case is described in (Schultes and Bartel,

2000). At least, the features (i), (ii), and (iv) of the neutral networks of RNA

seem to hold for the more complicated protein spaces as well, see e.g. (Keefe

and Szostak, 2001) for experimental data. The impact of these features on evo-

lutionary dynamics is reflected in the fact that a population explores sequence

space in a diffusion-like manner along the neutral network of a viable structure.

Fast diffusion together with perpetual innovation makes these landscapes ideal

for evolutionary adaptation (Fontana and Schuster, 1998) and sets the stage for

the evolutionary biotechnology of RNA.

3.3 Properties of the gen-phen map in the RNA model

Due to the fast computation of the secondary structure of an RNA sequence, this

map has been largely studied and some of its properties have been formulated in

general evolutionary terms.

The energy landscape of a sequence is the RNA analogue of Waddington’s devel-

opmental or epigenetic landscape. (Waddington, 1957). Sequences folding into

the same mfe shape can differ profoundly in their energy landscapes. In this lim-

ited sense, the RNA model is capable of mimicking an “evolution of development”

(Fontana, 2002). The analogy breaks down when the mechanisms of development

themselves evolve. Evolvability and variability, for example, are characteristics

also encoded in the genome and regulate the process of development. These

features can change along time and evolve depending on external and internal

conditions.

Plasticity in the framework of RNA folding may be understood in two different

ways: the so called norm of reaction (Scheiner, 1993) refers to persistent phe-

notypic transformation due to changes in the environment; on the other hand,

intrinsic plasticity is induced by molecular energy fluctuations at non-zero tem-

perature. The first definition is reflected as transitions between mfe shapes as the

free energy landscape is deformed by temperature, while plasticity understood as

intrinsic phenotypic variance refers to transitions between different shapes on a

fixed free energy landscape (Fontana, 2002).

As already mentioned, a neutral mutation is a nucleotide substitution that pre-
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serves the mfe shape (but it may affect everything else, such as free energy, plastic

repertoire and kinetic folding landscape). The neutrality of a sequence is the frac-

tion of neutral (one-error) neighbors. Neutrality is here defined with respect to

mfe shape, not fitness. Fitness is a function from phenotypes to numbers and if

phenotype is defined as mfe shape, then neutrality extends to fitness as well. If

phenotype and fitness are defined in terms of the plastic repertoire of a sequence,

sequences that share the same mfe shape are taken as neutral, even when their

plastic repertoires (and fitness) differ.

Epistasis means that the phenotypic consequences of a mutation at gene i depend

on the genetic background provided by the remaining genotype. This dependency

is mediated by networks of interactions among gene products. The same concept

applies to RNA, when substituting “gene” with “sequence position” (Fontana,

2002). The transparency (but also the limitation) of the RNA genotype pheno-

type model derives from the identity of epigenetic and epistatic interactions, since

phenotype is defined directly in terms of interactions among sequence positions.

A mutation changes the base pairing possibilities of a sequence and hence the

network of epistatic interactions. The mfe shape shown at the top left of Fig. 9

remains the same if C is substituted by G at the position labeled x. Yet, whether

x is C or G determines which mfe shape is obtained as a result of mutating po-

sition y from U to C. More subtly, the neutral substitution from C to G at x

alters the number and identity of neutral positions.

The tendency of a sequence to adopt a different shape upon mutation (variabil-

ity) is a prerequisite for its capacity to evolve in response to selective pressures

(evolvability). In this sense, variability underlies evolvability. Variability (quan-

tified as the number of nonneutral neighbors) is sequence dependent. Variability

can therefore evolve. Canalization (Waddington, 1942) is a biological concept

related to robustness in physics and engineering aimed at quantifying a system’s

resilience to perturbation. Biologists distinguish between environmental and ge-

netic canalization, depending on the nature of the perturbation. In our highly

simplified RNA context, genetic canalization is phenotypic robustness to muta-

tion and environmental canalization is phenotypic robustness to environmental

change or noise. Neutrality, as defined here, is basically a measure of genetic

canalization, while plasticity is the converse of environmental canalization.
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Figure 9: Epistasis in RNA folding. A first mutation in the position labeled by x has no impact

on the secondary structure. Nevertheless, once this mutation is introduced, a second mutation

in position y changes dramatically the shape of the structure.

3.3.1 Plastogenetic congruence and neutral confinement in RNA

Plastogenetic congruence is the direct relation of plastic accessibility and genetic

accessibility. Ancel and Fontana [ (Ancel and Fontana, 2000)], showed for the

RNA sequence to secondary structure map that the set of shapes compatible

with a given sequence is strongly correlated with the mfe structures of the one

mutation neighbors of the sequence.

There are at least three reasons to confirm this fact. First, the frecuency of

a structure in the one-mutation neighbors of a sequence is much higher if the

same structure is present in the plastic repertoire than if it is not. Also, the

minimum free energy structure of a sequence is present at high frequency in its

one-mutation neighbors. And, structures in the plastic repertoire of a sequence

with energy close to that of the mfe, are present as mfe in a neighborhood of

on average 5 point mutations from the original sequence [ (Ancel and Fontana,
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2000)].

From this assumption it is clear that any suboptimal structure with non-

neglectible probability will be realized in the one-mutation neighborhood of the

sequence. This could represent an evolutionary advantage, as long as the new

mfe has a better fitness. Nevertheless, by linking the reduction of plasticity to

the reduction of genetic variability, plastogenetic congruence strongly affects evo-

lution. If neutrality is reflected as robustness against mutations and platicity as

robustness against thermodinamical perturbations, then genetic canalization is

a direct consequence of environmental canalyzation. Plasticity is costly because

many subotpimal structures mean less time in each of them, no matter which

one has higher fitness. Natural selection then reduces plasticity and therefore

evolvability, in the sense that the set of shapes attainable in the close veicinity

of a sequence will be decreased. If the probability of finding new advatageous

shapes depend on the neutrality of a sequence and this in turn on its platicity,

then evolution will be eventually halted and the population “neutrally confined”

[ (Ancel and Fontana, 2000)].

3.4 About cofolding and its properties

In recent studies, simple models of strongly interacting RNA molecules have

been studied in which selection for a common resource is replaced by frequency-

dependent fitness terms. In these models, each RNA species depends on the

presence of specific catalysts. A prime example of this class of models is the hy-

percycle model of interacting replicators (Eigen and Schuster, 1979). While such

a system has not (yet?) been realized experimentally, there has been substantial

progress in constructing RNA replicase ribozymes. We refer to (McGinness and

Joyce, 2003) for a description of the state of the art. It is thus worthwhile to

study the evolutionary properties of such models.

In (Stadler, 2002a), the diffusion (in sequence space) of a population of interacting

replicators is studied, where the replication rates depend only on the sequence

similarity of the parent molecules. A model of hypercycles with interactions

depending on the secondary structures of the individual RNAs is described in

(Forst, 2000) and late in more detail in (Stephan-Otto Attolini and Stadler, 2004).

In the latter contribution we emphasize the importance of the neutrality of the
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genotype-phenotype map in order to maintain the hypercycle and at the same

time have diffusion in sequence space.

In previous work, the basic assumption was that the action of each RNA molecule

is determined by its own secondary structure. For example, the replication rate

of sequence x under the influence of sequence y as catalyst is axy = a(f(x), f(y)),

i.e, a function of the (ground state) secondary structure of both molecules.

The common secondary structure f(x ◦ y) of two RNA molecules can be com-

puted using a simple extension of the usual dynamic programming algorithms for

computing RNA secondary structures, see e.g. (Hofacker et al., 1994; Dimitrov

and Zuker, 2004). The basic idea is to compute the secondary structure of the

concatenated RNA sequences x + +y (or y + +x), where the “loop” that con-

tains the split between x and y does not contribute to the folding energy. We

use the program RNAcofold implemented in the Vienna RNA Package (Hofacker

et al., 1994; Hofacker, 2003). Figure 10 shows the secondary structures of two

molecules and the combined structure with intermolecular base-pairs computed

with RNAcofold. If the ground structure is unique then f(x ◦ y) = f(y ◦ x), oth-

erwise the structures will in general be different since the backtracking routine

implemented in RNAcofold yield one of the group state structure in a determin-

istic way.

Figure 10: Individual folding of two se-

quences followed by the combined struc-

ture found by RNAcofold.

The concept of two sequences interacting to form a single secondary structure

could be generalized to many sequences. In Fig. 11, we show the difference

between folding one, two or three sequences together. Starting with a closed

sequence, single fold is obtained by making one cut. The graph represents the
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bases as dots and the pairing with edges between them. If one more cut is made

to the original sequence, the case of cofold with two sequences is obtained. It is

clear that the order on which the sequences are ordered makes no difference as

to the structure found. The requirement of avoiding pseudo-knots in secondary

structures is transformed into non-crossing edges in this representation. As the

third cut is made, the ordering of the sequences takes importance, as different

structures could be found depending on it. In our example, one ordering will

result in the crossing of edges (pseudo-knot) and thus in a forbiden configuration.

The combinatorial possibilities explode as the number of sequences to fold is

augmented.

Figure 11: Relation between the folding of one, two or three sequences. The ordering of the

sequences is important if more than two are cofolded, the possible structures grow as the number

of sequences is increased.
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3.4.1 Measuring neutrality in Cofold

In the next section we present a model where we explore the situation where

the rate of replication of a molecule’s replication catalyzed by another molecule

is a function of the structure of the interaction complex of the two secondary

structures, i.e. axy = a(f(x ◦ y)). To this end, we study in detail the statistical

properties of the RNA co-folding map f : (x, y) 7→ f(x ◦ y) which assigns to each

pair of RNA sequences the secondary structure of their thermodynamically most

stable co-folding.

Figure 12: One sequence folding with two more. If one sequence is required to interact with

two more, neutrality is defined by those mutations which preserve both structures after the

mutation. In this case one of the structures is modified and so the mutation is not considered

as neutral.

In the following we will study two different versions of defining neutrality in a

cofold map:

1. We say that a mutant x′ of x is neutral when f(x′ ◦ y) = f(x ◦ y) for

a given partner sequence y. This scenario corresponds to RNA switches

or RNAs that bind to target molecules in a specific way, e.g. microRNAs

(Rehmsmeier et al., 2004).

2. We say that a mutant x′ of x is neutral when f(y ◦ x′) = f(y ◦ x) and
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f(x′ ◦ z) = f(x ◦ z). This scenario corresponds e.g. to an RNA hypercycle:

the mutant x′ simultaneously must be a template (and hence retain the

structure of its complex with the catalyst z), and a catalyst (and hence be

able to replicate the template y) (See Fig. 12).
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Figure 13: Distribution of distances from the original structures to the new complexes after

point mutations. (a) Point mutations. Data extracted from 600000 sequences of length 100.

Fraction of neutral mutations: λ̄ = 0.32. (b) Compensatory mutations: 1000 sequences of

length n = 100 cofolded with a fixed one of length also n = 100. On average there are 66

possible compensatory mutations, out of which λc = 0.35 are neutral.

Two mutation operators are used in this model. First, we introduce point muta-

tions, i.e. the change of a single base in the RNA sequence. The second, called

“compensatory mutation”, consists in the replacement of a base pair by any other

of the Watson-Crick or wobble base pairs. The two bases involved are supposed

to change simultaneously.

In the first case studied here, i.e., cofolding of the mutating sequence with a

fixed partner, we consider both point and compensatory mutations. In order to

obtain accurate statistics we compute all point mutations and all compensatory

mutations using samples of 600000 and 1000 sequences, respectively. We use

the symmetric difference of the set of base pairs as a measure for the structural

distance of two RNA secondary structures.

This first case is similar to folding the concatenated sequence f(x + +y) instead
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of the co-folding complex f(x ◦ y), the only difference being the energy contribu-

tion from the “exterior loop” that contains the split between the two sequences.

Indeed, we observe neutral mutation rates λ̄ similar to those reported in (Gruener

et al., 1996) for an individual RNA sequence.

The second case, where a sequence is mutated and cofolded with two different

partners is more important e.g. in the context of models of prebiotic evolution,

where a single sequence has to satisfy at least two different constraints: it have

to be a recognizable template and it has to perform its catalytic function in two

different contexts. In this case we sample in the following way. We randomly

generate three different RNA sequences of the same length, x, y, and z. and

compute f(x ◦ y) and f(x ◦ z). We then mutate x and recompute both cofolding

structures and determine the distance form the original structures. In this case a

compensatory mutation must be compensatory with respect to both f(x ◦ y) and

f(x ◦ z), i.e., only base pairs shared by both cofolding structures are candidates

for compensatory mutations.

We sampled approximately 300,000 point mutations for chain length n = 50,

about 570,000 of length n = 100, and 450,000 of length n = 200. Furthermore

3000 triplets were constructed and compensatory mutations introduced for each

of the three chain lengths.

In addition to estimating the fraction of neutral mutations, we also estimated the

length of neutral paths (Schuster et al., 1994). A neutral path L is defined as

follows. Starting from a sequence x0 a sequence of RNA sequences {xi|i = 1, . . .}

is constructed such that (i) f(xi) = f(x0), i.e., the structures do not change

along the path, (ii) xi is a point mutant or compensatory mutant of xi−1 and

(iii) the Hamming distance from the starting point x0 strictly increases with each

step. The path terminates after at most n steps when no mutant can be found.

The Hamming distance between x0 and the last point in the path is the length

L of the neutral path. Here we constructed 1200 neutral path for sequences of

length n = 100. In the case of one sequence cofolding with two other sequences,

the algorithm is basically the same except that compensatory mutations must be

possible in both structures and only neutral mutations for both are accepted into

the path.
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Figure 14: Distribution of distance to the original structure after point mutations for different

sequence lengths. a)300,000 sequences of length 50. For point mutations, fraction of neutral

mutations: 0.185. b)568,000 sequences of length 100. For point mutations, fraction of neutral

mutations: 0.186. c)Length 200, 445,000 sequences tested. Fraction of neutral mutations: 0.18.

3.4.2 Results

The behavior of RNAcofold when taking into account only two sequences is very

similar to that of RNAfold for a single RNA sequence of the same length (Hofacker

et al., 1994). The fraction of neutral point mutations is almost a third of the total.

One difference from single fold is that almost no point mutations change all base

pairs of the structure.



3.4 About cofolding and its properties 41

0 20 40 60 80 100

Distance to original structure

0.0001

0.001

0.01

0.1

1

Fr
eq

ue
nc

y

Max. dist. from new structures
Min. dist. from new structures

0 50 100 150 200

Distance to original structure

0.0001

0.001

0.01

0.1

1

Fr
eq

ue
nc

y

Max. dist. from new structures
Min. dist. from new structures

(a) (b)

Figure 15: Distribution of distance to the original structure after compensatory mutations for

different sequence lengths. a)3500 sequences of length 50 were used. b) 3000 sequences of

length 100 were used. On average, we found only 15 possible compensatory mutations for both

structures at the same time. Of these, only 0.15 resulted to be neutral.

In the case of compensatory mutations, the situation is different, since we allow

mutations only in one of the two sequences, so that inter-molecular base pairs can

only change from GU to AU or CG to UG. Therefore, two thirds of the pos-

sible compensatory mutations are not allowed anymore and neutrality is hardly

affected by compensatory mutations: Only 35 percent of the remaining mutations

are neutral. From (Schuster, 2001) we know that in order to change from one

connected component to some other inside the neutral network, compensatory

mutations may be needed. This is important from the evolutionary point of view

since a fitter structure may be accessible from a particular connected component

of the neutral network.

In the case of more than a single structural constraint, however, the situation

becomes difficult. As shown in Fig 15b, the degree of neutrality is drastically

decreased both for point mutations and for compensatory mutations. This fact

is of crucial importance for models where cofold defines the interactions between

RNA molecules.

Fig. 14 shows that neutral mutations occurring simultaneously for both cofolding

structures are only about 18 percent of all possible mutations, i.e., less than two

thirds of those that are present in single fold.
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Figure 16: Length of neutral paths for different sequence lenghts. a) Length of neutral paths

for 1200 sequences of length 100 cofolded with only one fixed sequence. b) Length of neutral

paths for 1200 sequences of length 100 when cofolding with two fixed sequences.

Neutral mutations Length of path

Single fold 0.33 100

Cofold with one sequence 0.32 75

Cofold with two sequences 0.18 40

Table 1: Summary of results. Fraction of neutral mutations for sequences of length 100 and

typical path length for each case.

It is known that for single folding sequences, it is possible to exchange almost all

nucleotides without leaving the neutral network (Hofacker et al., 1994; Gruener

et al., 1996). In the case we study, the length of neutral paths when cofolding one

sequence with one that remains fixed, is shorter than in single RNA fold. Since

there are intramolecular base pairs, for some of these it would be impossible to

find neutral mutations and therefore some bases will never change without leaving

the neutral network. In Fig. 16a we show the results for 1200 sequences of length

n = 100 cofolding with fixed sequences of the same length.

The length of the path when cofolding one sequence with two different interacting

RNAs is much shorter than in the previous case and, of course, than in the case

of folding an isolated RNA. Indeed, there are no paths along which all nucleotides

of x could be replaced, Fig. 16b.
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An overview of the results obtained in this study can be seen in Table 1. It is

clear that whenever three sequences are involved, neutrality is largely lowered.

For the purposes of modeling interactions of molecules via cofold, we can conclude

that diffusion in such a model, will be much more difficult than in the case where

single folding sequences are used.

3.5 Two models of molecular evolution

The replicator equation mentioned at the beginning of this chapter deals with the

production of one molecule by self-replication or mutation of a different kind into

the first one. The probability of mutation is usually modeled in pure mathemat-

ical terms, which means there is no relation to the actual chemical rates. In this

general formulation, the equations do not take into account the possibility of one

molecule’s replication being catalyzed by another one. It is of crucial importance

for the study of living systems to address this question since the mechanism of

catalysis is the main process of molecular interaction in living organisms.

In this direction, the second order replication equation,

dxk

dt
= ẋk = xk

(

n
∑

j=1

akjxj −
∑

i,j

aijxixj

)

; i = 1, ...n (2)

proposes a closed system, both in the number of species involved and the constant

total concentration. This equation has been target of many studies, ranging from

population genetics, mathematical ecology and economics to some applications

in physics. The fact that no new species are included in the system, decreases the

power of this equations when addressing questions of evolution and emergence of

new features.

Happel and Stadler proposed a modified model in (Happel and Stadler, 1998)

where random generated rates where used for the catalysis between species. The

interaction matrix was filled with random numbers and the equations integrated

for a certain period. Mutants were introduced as a modified species, changing

its interactions with the rest of the system by small perturbations. It was found

that overall fitness increases in a strong but non-monotonous way.

In a similar way, we present a model which considers catalyzed replication of RNA
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molecules and its evolution via mutation and selection. Since most of the models

so far take into account fitness values measured only in terms of single molecules’

properties but do not take care of the interaction between molecules, we make

use of the fast prediction algorithm for concatenated sequences, RNACofold, in

the Vienna RNA Package to simulate interacting molecules.

3.5.1 Model One: Fold, many targets

The model works basically with an evolving population whose dynamics are sim-

ulated with equation (2).

In our implementation, the replicator equation is used to model a system of

interacting species where the individual replicators are implemented as RNA

sequences. The equation used for all the simulations is

ẋk = xk

∑

i

akixi −
∑

i

∑

j

aijxixj (3)

Where xk denotes concentration of species k and M = (aij) is the interaction

matrix representing catalysis in the off-diagonal terms and self-replication rates

in the diagonal.

As a variation from the model from Happel and Stadler, the rates here depend

on the RNA sequence, both for auto-replication and catalysis.

We define interactions between species depending on a set of fixed targets. To-

gether with the structures, the interactions among them are also fixed. The folded

structure of single molecules are intended to evolve towards this configuration.

Since cycles are at the core of the molecular interactions in all living beings, we

define a very simple 3-members cycle as target set as seen in figure 17.

During the simulation, each sequence is folded into its secondary structure using

the RNAFold algorithm from the Vienna RNA Package, and then compared to all

targets via different distances: the hamming, base-pair or structure distance all of

them computed using the structure’s dot-bracket representation. The hamming

distance is the comparison of each entry of the strings. The base-pair distance

counts how many base-pairs should be open or closed to convert one structure

into another; and, the structure distance cyclically searches for a good match
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between the structures comparing the hamming distances.

G
U

GA
UGGAU

U
AG

G
A U G U C C A C

A
C
C
U
U
UGCUCCGUAA

G A U
A G U G C G C

A G U
U

C C G
A
A
C

UUAC
AC

GGCGCGC
GGUU

A
C

G
U

GA
UGGAU

U
AG

G
A U G U C C A C

A
C
C

U
C

UG
C
U
C C G

U
A

A
G

A U A
G U G C G C

A G U
U

C C G
A
A
C

UUAC
AC

GGCGCGC
G

GUUAC

G C C C
A
A A A C

G C
G C G C C C C

C A A
A

AGGGGCCCAAAGGGC
C

AA
GGGC

UUU
U
U

A

Figure 17: Target structures and topology of the target set. Sequences folding close to one of

these targets will behave following the cyclic topology outlined in the figure.

The given molecule is then assigned to the “group” of the closest target, this

class defines the interactions of species belonging to this group and those of

other groups. Groups can be thought as “phenotypes” which are assigned to

the sequences and only modulated by the distance to the correspondent target.

This distance defines how good a sequence self-replicates and also how high its

catalytic activity is.

The replication rates aij are calculated as a function of the distance between the

folded structures and the predefined target structures and the topology defined

by the target cycle. The weights for the interaction between species i and j are

calculated as aij = exp(γ · 1
d(Si,Ti)+d(Sj ,Tj)

) ·φ, where Si is the secondary structure

of species i, d(Si, Ti) the distance between Si and the target structure Ti given

that species i belongs to the group of Ti and species j to that of Tj. γ and δ are

tunable parameters.

In order to generate evolution in the system, point mutations are allowed with

certain rate and introduced into the system creating new structures. Depending

on the mutation rate µ, a random sequence is chosen from all species in the

system and mutated in a single base. A small percentage of the original species’

concentration is given to the new one. Each generation, the interaction matrix is

filled with the rates of the new species, and the equation integrated. Species are

removed from the system whenever their concentration drops below a threshold

level.
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3.5.2 Results of model One

Targets are approached in a step-wise manner, as seen in other models (Schuster

et al., 1994) (Fig. 22).
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Figure 18: a) Distance to targets for each group. Colors code for different groups, the target

is approached in a step-wise manner. b) Number of species for each group. After a period of

selection, only few molecular species are left in the system.

When the hamming distance is used, jumping from one group to the other is

easy because this metric takes into account only geometric properties and no

evolutionary characteristics. Structures that are far away from each other from an

evolutionary point of view, may be very close according to the hamming distance.

On the other hand, base-pair distance encapsulates the structures in a region were

it is difficult to move from one structure to the other, since the opening or closing

of a single base-pair implies two point mutations in many cases. The structure

distance is somewhere between these two, allowing the sequences to move more

freely from one target to the other.

As already mentioned, the folding map generates neutral nets within the sequence

space. This is reflected in the fact that once inside a neutral network, more se-

quences are found which maintain the same structure, and therefore the same

interactions with other molecules. This implies an explosion in the population,

due to the incorporation of individual species belonging to the same group. Neu-

trality comes also from the way phenotype is defined. Different structures may
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belong to the same group, even if they are not identical. As long as they are closer

to the same target, their function in the system will be the same. Therefore, not

only mutations leaving the structure unchanged are neutral, but also those lead-

ing to a structure which belongs to the same group. This can be seen in Fig. 19,

where the increase of species in a group is accompanied by the improvement of

the group’s fitness.

In this sense, we could say that the system shows a kind of “canalization”, mean-

ing that once a good phenotype is found, molecules will try to keep it and no

more changes in phenotype will occur. In order to change a sequence from one

group to another, a mutation must occur such that the sequence is shifted to

the neutral network of a structure closer to an other group’s target shape. This

means that only sequences in the border of the neutral network which are one

point mutation away from the other neutral network can jump from one group

to the other. This way, the sequence space is divided in the interior or “canal-

ization” region of each group, and the border, where real phenotypic changes in

the sense defined here are possible.
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Figure 19: a) Distance to the targets. At each time step only one group dominates the system.

Better structures are found until a new species from the next group appears and replicates

faster due to better catalysis. b) Number of species of each group. After increasing one of the

groups, the population falls due to catalysis of the next species in the cycle. Arrows point to

the moment when a species from other group is found killing all the existent species.

In some simulation runs, one or two of the targets were found, while the others
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would stay in a close but not perfect structure. Since catalytic rates depend on

the distances to the targets, once a group has found the goal, the correspond-

ing catalyzed species will profit from that, not being forced anymore to become

themselves perfect self-replicators.

3.5.3 Model Two: Cofold

There are cases where interactions among molecules depend on already folded

structures, nevertheless, it is also possible that molecules start to interact before

the mfe structure is completely folded. The second model we present, takes

this possibility into account and computes the interaction among molecules as a

combined folding process which in most of the cases differs from the independent

secondary structures of each molecule thanks to the creation of intermolecular

base pairs.

To define the values of the matrix M in eq. 3, we use the structure of the co-

folding complex of two species based on the thermodynamic rules of RNA folding.

For each pair of molecular species i and j, their sequences are concatenated and

the secondary structure of the resulting sequence is calculated. The replication

rates aij are then calculated as a function of the distance between the co-folding

complex and a prescribed target structure: aij = exp(γ · 1
d(Sij ,T )

) · φ, where Sij is

the cofolded secondary structure of species i and j, d(Sij, T ) the distance between

Sij and the target structure T and γ and δ tunable parameters.

When concatenating the sequences, the first one is always taken as the replicator

while the second acts as catalyst. Since usually the order of the concatenation is

not important because of the circularity of the cofold map, this is not an arbitrary

setting.

The rest of the implementation follows the same algorithm as in the previous

model.

Simulations of this model give information about the number of species in each

generation and their concentration, distance of each pair’s structure to the target

as well as the average distance and fitness of the system. Weighted graphs defined

by the interactions between species are studied in order to get an overall view of

the system’s behavior and self-organization.
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3.5.4 Results of model Two

The dynamical behavior depends strongly on the parameters of the system and

ranges from the survival of only one single dominating species in each generation

to the creation of intricate networks. In the latter case the fitness increases

in a stepwise manner as the system approaches the target transition state and

maintains, in almost every generation, a number of species greater than a certain

lower bound.
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Figure 20: Concentration of molecular species. Few species dominate the system after the first

period of selection. The system then reaches a stable state and no further improvement is

possible.

Few simulations actually approach the target, and none actually finds it. In fig.

20 the concentrations of all species are plotted. It is clear that most of the time

only one or two species take all the space available (total concentration of the

system is normalized), and mutated species survive only when they represent

a large improvement in auto-replication or are well catalyzed by others. The

number of species is depicted in fig. 21 (a), while fig. 21 (b) shows the evolution

of the overall fitness of the system. Fig. 21 (c) shows the survival of a fitter

variant until another species is found, possibly catalyzed by the old one, killing

almost all the rest of the population.

In many cases the model falls in a fixed configuration: existing species are trapped

in a fixed point, their concentrations become stable and new species are accepted

in the network only if their interactions are stronger than those already exis-

tent. Moreover, a new mutation will be accepted only if the rates by which it is

catalyzed are good, no matter if it is a good catalyst for the rest of the species.
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Figure 21: a) Number of species. Variants from the fittest species are added to the system as

long as their catalysis is not larger than the self-replication of the principal species. b) After

improving the fitness of the system in the first steps, a period of stasis is found. c) Coexistence

of more than one species is impossible due to the good self-replication rate of the fittest variant.

It is replaced at the end by a better self-replicator.

The system is easily trapped in local minimum because of the high number of

interactions between species as well as the low neutrality of the co-folding map.

Species are unable to search sequence space due to the strong interactions they

must maintain in order to survive and to keep the network working. The fact

that only one target structure is approached, reduces strongly the possibilities

for different sequences, since they must act both as catalysts and replicators at

the same time. In most of the cases, sequences folding with themselves to a
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structure close to the target will be the ones accepted, since mutations may leave

the structure unchanged thus creating catalytic interaction between the old and

new species.

Once a network is created, which consists most of the time of old species catalyz-

ing the replication of new ones and being good self-replicators, the only possibility

for the system to increase the overall fitness is to find a sequence which improves

the catalytic rates with most of the species in both directions, meaning that it is

not only catalyzed but returns to the system some of the help it is taking from

other species.

It was found that the minimum distance to the target reached by the system,

depends extremely on the sequences taken as initial conditions. To show this,

structures formed after a large number of generations are used in a subsequent

simulation as target structures. Even when changing other initial conditions or

the random numbers used in the program, the system approaches the target much

faster than in the first case.
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Figure 22: a) Network graph. Black lines code for catalysis in both directions while red lines

are interactions in the direction of the arrow. The first figure shows one species being catalyzed

by all others, and catalizing the first one of the graph. b) Parasite graph. The new species

added to the system (No. 10), acts as a parasite reducing the population dramatically in the

next time step.

Comparison between this model and the one with single folded species, makes
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clear that interaction between species changes completely the way how evolution

to a fixed target occurs. Survival of one species depends not only on its self-

replication rate, but in the way it is catalyzed by the others. It may happen too

that one species is catalyzed by all the rest (Fig. 22), making its concentration

grow very fast. This species will then take all the available resources and kill the

rest of the species. This kind of parasites can destroy the whole net loosing the

possible improvements attained so far (Fig. 23).
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Figure 23: a) Parasite invasion. A parasite invades the system around timestep 8100 and kills

almost all species leading to the decrease of overall fitness. b) Population decline. Population

decreases due to parasite invasion.
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4 Hypercyles

4.1 An answer to the hypercycle’s parasites

Boerlijst and Hogeweg (Boerlijst and Hogeweg, 1991) and, later, Streissler

(Streissler, 1992) (in a PDE setting) and Cronhjort and Blomberg (Cronhjort

and Blomberg, 1994) showed that the problem of parasite invasion can be alle-

viated by considering spatially organized systems. Most theoretical studies have

demonstrated that some kind of spatial structure is indispensable for the per-

sistence and/or the parasite resistance of any feasible replicator system, see e.g.

(Tereshko, 1999; Altmeyer and McCaskill, 2001; Zintzaras et al., 2002), although

a chemical kinetics with product inhibition can have a similar effect in some

parameter ranges (Stadler et al., 2000, 2001b).

In our model we use a two dimensional lattice where molecules diffuse, replicate

and catalyze. Making use of the genotype-phenotype map given by the folding of

an RNA sequence, we study the evolution of the system towards a fixed target;

the diffusion and diversity of the population; and, the resistance to parasites

derived from the spacial organization and the different fitness values given by the

molecules’ structure.

In thi section, we combine the macroscopic modeling of the spatio-temporal pop-

ulation dynamics of self-replicators with the microscopic modeling of the motion

of populations of replicators in sequence space. To this end, replicating polymers

are explicitly represented by their sequence in a CA-like universe. All reaction

rates are derived from the (secondary) structures of the molecules which can be

computed directly from their sequences. The parameters of the population dy-

namics are therefore not external ingredients of the simulation but intrinsic in

the model itself (Schuster, 1998). In addition to demonstrating that we recover

the typical dynamical features of simpler models of hypercyclic systems, we focus

here on the dynamics in sequence space and show that Kimura’s model of neu-

tral evolution is applicable at least when time-scales are considered that are much

larger than the oscillations of species in the population dynamics of a hypercycle.



4.2 The hypercycle and RNA fold 54

4.2 The hypercycle and RNA fold

We consider a stochastic version of a second order replicator equation (Schuster

and Sigmund, 1983) with mutation, i.e., a replication mechanism of the form

x + y −→ x + y + z (4)

The symbol x represents the sequence of a template RNA molecule that, with

the aid of the replicase ribozyme y, is copied to produce an RNA sequence z,

which can be the same as the template, x = x, in the case of correct copying, or a

mutant z 6= x. In addition we consider a slow uncatalyzed replication mechanism

of the form x −→ x + z.

Each RNA sequence is interpreted as a self-replicator that also has the ability to

catalyze the replication of other RNAs. Catalytic activities and replication rates

are dependent on the molecules’ secondary structure1. Secondary structures of

RNA molecules can be computed efficiently by means of a dynamic programming

approach (Zuker and Sankoff, 1984) based on empirical parameters (Mathews

et al., 1999). We use the Vienna RNA Package (Hofacker et al., 1994; Hofacker,

2003) for this purpose. The optimal reaction rates are realized by the “perfect”

target-hypercycle in Fig. 24. It is known that self-organization providing resis-

tance to parasites is possible only in cycles of 6 or more members, while cycles

of 3-5 members are quickly destroyed (Hogeweg and Takeuchi, 2003). Therefore

we choose an 8 members hypercycle for our model.

The interaction topology of our target set is a hypercycle with 8 members T1

through T8. The target structures Tk were picked at random. In order to in-

vestigate resistance against parasites, we consider selfish parasites and short-cut

parasites besides the ordinary members of the hypercycle. To do this, one more

target-structure is chosen randomly and the corresponding reactions are defined

depending on the nature of the parasite (Fig. 25). All rates for parasite sequences

are computed in the same way as for the target-set members. Indeed, technically,

the parasites are treated as additional target-structures.

For each sequence x in a population P we compute its secondary structure S(x)

using the Vienna RNA Package (Hofacker et al., 1994). Then we determine its

1A secondary structure S is a special type of contact structure, represented by a list of base

pairs [i, j] with i < j on a sequence x, such that for any two base pairs [i, j] and [k, l] with i ≤ k

holds: (i) i = k if and only if j = l, and (ii) k < j implies i < k < l < j.
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Figure 24: The target set is a hypercycle with 8 members. All sequences have length n = 56.

Figure 25: Topology of the target set for selfish and short-cut parasites.

structure distance D(Tk,S(x)) to the target shapes Tk. For simplicity we define

D(X ,Y) as the number of base-pairs that X and Y do not share. Finally, we

assign S(x) to the hypercycle-member h that minimizes the distance D(Tk,S(x)).

We write P
h for this sub-population of sequences whose structure is closest to the
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target shape Th.

Once the group h has been determined for every sequence the replication-decay-

catalysis process in simulated as outlined in (Boerlijst and Hogeweg, 1991),

Fig. 26:

Decay: Sequence x has a decay probability that depends linearly on the

distance to the target structure:

δx = 1 + D(Tk,S(x))

Replication: Sequence x has a probability to self-replicate without the help of

a catalyst that depends inversely on the distance to the target structure:

αx ∼ 1
1+D(Tk,S(x))

Catalyzed Replication: When a self-replicator has neighbors that correspond

to their catalysts in the direction of the reaction, the probability (rate) of

catalysis is largely improved. As well as self-replication rates depends on fitness,

also the performance of catalysts is defined by their distance to the target. The

similar a phenotype is to the corresponding target, the better its rate as catalyst

will be. The total replication rate is therefore

ρx =
1

1 + D(Tk,S(x))
+

∑

y catalyzes x

C

1 + D(Ty,S(y))
(5)

where C = 8000 is the relative rate of catalyzed versus uncatalyzed replication.
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Figure 26: Rules of replication. For each of the neighbors (•) of the empty cell (marked by

a bold outline) the replication rate ρz is computed taking into account their neighbors in the

direction of the replication (◦) as potential catalysts. The neighbor with the largest values of

ρz invades the empty position. In this example, for the chosen replicator, only three of its

neighbors are catalysts according to the hypercycle topology.

From the way rates are computed follows that parasites and members of the
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hypercycle may have equal replication and catalysis rates, depending on their

sequence and the distance of the folded structure to the targets.

Mutations occur as errors during replication. As in Eigen’s quasispecies model

(Eigen, 1971) we assume a uniform per-nucleotide rate p of incorporating an

erroneous letter. These point mutations of the parental sequence x have a high

probability of changing the secondary structure. Since these structural changes

may be large (Schuster et al., 1994) we have significant probability that a mutant

sequence will belong to either a different class of hypercycle members or to one

of the parasite classes.

The population P of replicators is spread out on a 2-dimensional grid with periodic

boundary conditions, typically consisting of 200 × 200 cells. In this respect our

simulation resembles those described in (Boerlijst and Hogeweg, 1991; Cronhjort

and Blomberg, 1994). Each cell can be empty or occupied by a RNA single

sequence. Diffusion is modeled using the Toffoli-Margolus scheme (Toffoli and

Margolus, 1987). The number of diffusion steps within each simulation time

unit ranges from 0.01 (meaning that we wait 100 simulation steps between each

diffusion step) and 20.

Simulations are initialized by randomly placing 200 to 1000 initial sequences on

the grid. The sequence in an occupied cell dies with a rate proportional to δx.

For every empty cell we compute the replication rates ρz for all its neighboring

cells, assuming that the replication of z is catalyzed only by those neighbors that

correspond to the preceding class in the hypercycle topology, Fig. 26. According

to the model presented in (Boerlijst and Hogeweg, 1991), we consider possible

catalysts only in the direction of the replication. The sequence with the largest

values of ρz invades the empty cell. Cells are chosen for update in random order

until every occupied cell has been updated.

Several variables are measured throughout the simulations: the number Nk = |Pk|

of individuals per group, the average distance D̄ to target over the whole system

and over each group, the diversity θk between individuals in a class of replicators

and number Yk of different sequences belonging to target class k. The diversity

of a group is computed as proposed in (Stadler, 2002a)

θk =
1

Nk(Nk − 1)

∑

x 6=y∈Pk

dH(x, y) (6)

where dH(x, y) is the Hamming distance of the sequences x and y. In (Stadler,
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2002a) it is shown that replicators with interactions tend to minimize diversity

until they end in a quasispecies-like distribution.

4.3 Results

4.3.1 Spatial Pattern Formation

We first consider a universe without parasites, i.e., all sequences are assigned to

one of the structures of the hypercycle-members. As in (Boerlijst and Hogeweg,

1991) we observe spiral waves when every member of the cycle has a minimum

concentration, Fig 27. In almost every run with two diffusion steps for simulation

time unit, a first period of disorder is followed by the birth of a spiral which

contains sequences of every group, ordered depending on the topology of the

targets. It is important to notice that without a minimum fitness, individuals of

that group would die before they could get any help to replicate, so that evolved

enough sequences of every group must be present in order to the spatial patterns

to emerge. Once the spiral is formed, the sequences continue approaching the

target but in a much slower pace, in fact, in some simulations we observed an

oscillatory behavior of the fitness average depending on the number of sequences

present in the system at any given moment. If the ratio of replication to diffusion

steps is increased, we observe multiple smaller spirals. For very small spatial

diffusion constants, however, a significant part of the lattice remains empty, and

the system usually dies out due to fluctuations.

Some groups could reach the target, while others may stay away without breaking

the dynamics. In the case where one group will get to the target while the others

had a poor fitness, however, the system sometimes collapses to the survival of

only the single fittest species. This is only possible when the group which is

catalyzed by this “master species” is not present in the system: since the rate

of catalysis depends also on the fitness, so that the “follower” will increase its

concentration at the expense of the “master species”.

When all members of the cycle are present with a minimum concentration and

fitness, a change of behavior occurs and oscillations in the number Nk of sequences

per group is observed, see Fig. 28. The amplitude of this waves depends on

the ratio between self-replication and catalyzed replication rates and the spatial

diffusion parameter. If this ratio is too large, the abundance of sequences of one
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Figure 27: Spirals formed after 3000 generations in an evolution experiment started with 300

random sequences in the absence of parasites.

Simulation parameters: grid size L × L = 200 × 200, sequence length n = 56, mutation rate

p = 3.5×10−4, 2 diffusion steps between replication steps. Simulation parameters are the same

in all figure unless explicitly stated otherwise.

group will lead to a very fast growth of the next group in the hypercycle, giving

almost no space for other members to replicate. Only one or two groups fill the

entire lattice at any given point in time, making it more difficult or impossible to

create the spirals. Also, when spatial diffusion is low, many smalls spirals appear

making the amplitude of the oscillations lower.

When a selfish parasite is introduced, a first period is observed where members

of the hypercycle, as well as the parasite, appear and disappear from the system

without much order. For some time both parasite and hypercycle can coexist,

but it ends in the parasite being expelled from the system and the spirals arise.

Of course, mutations from regular sequences may jump to the parasite group,

implying that the parasite has members almost all the time without being harmful

for the system. These parasitic sequences typically are eradicated before they can

evolve towards high replication rates. The spirals in this case are not as regular
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Figure 28: Evolution towards the target hypercycle. After a transient period of disorder, the

concentrations Yk of the individual member-classes of the hypercycle (different colors) exhibit

regular oscillations.

as those without parasite, nevertheless they are stable and can coexist with an

invading parasite.

The case of the short-cut parasite is quite similar. The system is stable against

this kind of parasite and only a few times the runs ended with the shorter cycle

formed in this topology. In the majority of the simulations, however, the parasite

was expelled from system after some time (Fig. 29 (a)). The reason for this

increased resistance appears to lie in the the genotype-phenotype map derived

from the RNA folding algorithm. The fact that fitness depends on the secondary

structure allows the hypercycle to evolve towards a stronger configuration while

the parasite is left behind: from the fitness plot (Fig. 29 (b)) one can see how for

some period the parasite evolves more or less the same way as the other members

of the hypercycle. Nevertheless, every time the parasite is expelled from the

system, it looses the fitness it could have won before, becoming a much weaker

species. It is clear that stability of the hypercycle is due not only to the spatial

configuration but also to the advantage of its members in an evolutionary way.
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Figure 29: Evolution of the mean fitness of the individual classes (different colors). After a

period of disorder, the parasite (orange curve in the upper part of the plot) is unable to re-

invade the system. It dies out before it can reach sequences that are near-optimal parasites

(distance 0 to target).

4.3.2 Population Structure

Diversity depends strongly on the initial conditions, in particular on the number

of sequences first introduced to the system and the spatial diffusion rate. To make

replicators evolve towards the targets, it is important to keep a high selectivity

among them, this in turn can make it harder for the system to reach the desired

organization. Starting with less than 100 sequences leads, almost in almost every

case, to the death of all species or the survival of only one. If selection is lowered

it is possible to start with one sequence but evolution towards the targets will be

slower. In most cases, if the spatial diffusion is kept fixed, starting with 200 or

300 sequences allows the system to survive even with higher selection rates. In

this case, diversity falls very quickly to almost zero and is maintained very low

until the end of the simulation, see Fig. 30(a). This is due to the fact that only
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Figure 30: Diversity of the system with different initial conditions. Simulation parameters for

both plots are the same except for the number of initial sequences in the lattice. For figure (a)

300 sequences were used while in figure (b) 800 individuals started the simulation. It can be

seen that when the number of species at the beginning is high enough, diversity is kept high

until the end.

a few sequences will be fit enough to survive at the beginning. After this first

selection step, only mutations from the surviving species will produce variation.

When the number of initial sequences is increased, there is a higher probability

that good structures will be found, even with totally different sequences. There-

fore, diversity is high at the beginning and is maintained by the system, oscillating

depending on the number of species per group, Fig. 30(b). We believe that this is

due to the interactions and catalyzed replications: selection on a single member

becomes less important when its replication is improved by the others. Even a

fast dying sequence can stay in the lattice because of its even faster catalyzed

replication.
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Figure 31: Distribution of sequences in each class of hypercycle members. Only a few sequences

are present with almost all the individuals of the group while the rest of sequences are repre-

sented by only one individual. Figures/Hyper (a) and (b) show the distribution of two different

members in the same simulation.

A quasispecies-like behavior is observed if diversity is low. The distribution of

the number of individuals with the same sequence is centered around a “master

sequence” in each class of hypercycle-members; a large fraction of the populations

consists of individuals that occur only in a single copy. These “explorers” of the

sequence space are lost and replaced by others within a few generations, Fig. 31.

4.3.3 Drift and Diffusion in Sequence Space

The profile of the class k of the hypercycle at time t is defined as the 4 × n

vector pk(t) whose components are the frequencies of the 4 types of nucleotides

at each of the n sequence positions (Stadler, 2002a). The overall movement of

the population in sequence space can be quantified in terms of the correlation

function

g(τ) =
1

T2 − T1 + 1

T2
∑

t=T1

‖p(t + τ) − p(t)‖2 (7)
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Figure 32: Displacement of the profile and diffusion constant D vs mutation rate. (a) The

Displacement of the profile with time, g(τ), is shown in gray for individual sub-populations P
k.

The average of g(τ) over all sub-populations is displayed as bold black line. (b) The slope of

g(τ) defines the diffusion constant in sequence space. As expected, there is a linear dependence

between diffusion constant D and single digit mutation frequency d. The data are averaged

over 16 different runs and all species.

computed for suitable intervals of measurement [T1, T2]. The mobility of the

population in sequence space is conveniently quantified in terms of the diffusion

constant D which is defined as the slope of g(τ), i.e. as the slope of the linear

approximation of g(τ).

As expected from simulations both of RNA based quasispecies (Huynen et al.,

1996) and from a simple model of interacting molecular replicators (Stadler,

2002a) we observe a linear dependence of the diffusion constant on the per-site

mutation rate p, see Fig. 32b. We should expect that small differences in the

diffusion constants of different sub-populations should exist since the diffusion

constant should depend on the fraction ν of mutations that do not change the

secondary structure. It is known that ν depends on the secondary structure in

question (Huynen et al., 1996). We have not been able to detect significant dif-

ference in the diffusion constants of individual sub-populations (data not shown)

since the effects are small and would require much more extensive simulations in

order to obtain sufficiently accurate estimates of D for each species separately.



4.3 Results 65
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Figure 33: Different size and number of spirals due to the change of spatial diffusion. Same

parameters as previous simulations except for: a) Spatial diffusion: 0.1 (1 diffusion step every

ten replication events). b) Spatial diffusion: 20 (diffusion steps between two replications)

Diversity and diffusion in sequence space depend on the relative strength of spatial

diffusion. As can be seen in Fig. 34(a), reducing the number of diffusion steps

between two replication events leads to an increase of diversity. Very small values

for this parameter, however, kills the system because molecules take too long to

find the correspondent catalysts. A phase transition was found between the

regimes of slow and fast spatial diffusion. For small numbers, the population

breaks into several spirals, so that individual evolution of these subgroups is

possible. Instead of having a single nucleus from where all the molecules arise,

many replication basins are created in the center of each spiral. Figure 33 shows

the pattern formation for two different values of the spacial diffusion. In figure 33

(a), many more spirals are formed than in fig 27 and figure 33 is an intermediate

case. As a consequence of the independent evolution of subpopulations, the

diversity of the entire population increases approximately linearly with time.

The rate of this increase is used to distinguish the regimes of low and fast spatial

diffusion. For slow enough rates, this slope vanishes. After a large number of

generations, diversity finally saturates. A similar behavior is observed in diffusion.

Since the population splits in many subpopulations when spatial diffusion rates

are low, exploration of sequence space is increased. The face transition mentioned

above can be seen also in Fig. 34(b).
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Figure 34: Change of diversity with time and diffusion in sequence space with changing spatial

diffusion. Spatial diffusion is measured as the ratio of diffusion steps to replication events

in the simulation. “D[Diversity]/dt” is the slope of the linear approximation of individual

diversity curves averaged over several species and simulations. For both Figures 600 sequences

were introduced in a lattice of size L × L = 200 × 200 and the mutation rate was fixed to

p = 3.5 × 10−4.

4.4 Hypercycle with RNACofold and the implications of

low neutrality

In this model we use the same equations and procedures as in the previous one,

being the only difference the way we define the interaction rates among molecules.

For the exact form of the equations and reactions, please refer to the last section,

eq. 4 and the corresponding text.

Coevolution at the molecular level is a predecessor regulating networks in living

systems. In this approach we use the secondary structure of a molecule to define

its self-replication rate, we combine two molecules to define the catalyzed repli-

cation rate, making the genotype-phenotype map depend on the interaction and

not only on the single molecule.

It is known that environmental changes greatly influence the development of

organisms from the genetic information into the phenotypic expression. In
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Figure 35: List of targets. If the distance between the complex formed by sequences x and y

and some of the targets T1 is less than a threshold f , then x will catalyze the replication of y.

our model we translate this characteristic into the interaction with neighbor-

ing molecules. Mutations in any of them may extremely change the behavior

of the system by affecting the resulting phenotype of the pair, i.e. the cofolded

structure of the concatenated sequence.

Each RNA sequence is interpreted as a self-replicator that also has the ability to

catalyze the replication of other RNAs. Catalytic activities and replication rates

are dependent on the inter-molecular complex formed by each pair of sequences.

This complex is represented by the secondary structure formed by both sequences.

Secondary structures of pairs of RNA molecules can be computed efficiently by

means of a dynamic programming approach (Zuker and Sankoff, 1984) based on

empirical parameters (Mathews et al., 1999). We use the RNAcofold program

from the Vienna RNA Package (Hofacker et al., 1994; Hofacker, 2003) for this

purpose. The optimal reaction rates are realized by the “perfect” target set in

Fig. 35. Our target set is a list of 8 secondary structures T1 through T8. The

target structures Tk were picked at random and were chosen in a way that it is

possible to close a cycle if the right sequences are cofolded. Nevertheless, the

targets should be regarded as a list of possible reactions, and not as a predefined

hypercyclic system.

Again, we look for emergence of spatial patterns and the evolution of the popu-

lation in sequence space.

For each sequence x in the population P we compute the complex formed with

every other sequence y, S(x, y), using the Vienna RNA Package (Hofacker et al.,

1994). Then we determine its structure distance D(Tk,S(x, y)) to the target

shapes Tk. For simplicity we define D(X ,Y) as the number of base-pairs that X
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and Y do not share. Finally, we assign S(x, y) to the target set member h that

minimizes the distance D(Tk,S(x, y)) given that this distance is below a certain

threshold f . This way, the catalytic activity between sequences x and y depends

on the cofolded structure they form and so any mutation in any of the structures

may change the relation they keep. Since the cofold algorithm used to predict

these structures may be sensitive to the order of the sequences, we determine that

the first sequence will act as catalyst and the second as the replicating molecule.

The replication-decay-catalysis process is simulated in the same way as the case

described in the last section.

Mutations occur as errors during replication. Given the low neutrality of the co-

folded map, as seen in the second chapter of this dissertation, structural changes

due to mutations may be large (Schuster et al., 1994) and thus there is a signifi-

cant probability that a mutant sequence will change its old relation to the other

sequences by changing the cofolded structure.

The sequence in an occupied cell dies with a rate proportional to the distance of

the cofolded structure with itself and, as in the previous model, replication rates

are computed according with the set of reactions in Fig. 35.

Several variables are measured throughout the simulations: the number of inter-

actions belonging to the class of the different targets, the diversity θk between

individuals and number Yk of different sequences belonging to target class k.

In order to study the behavior of the hypercycle under these conditions, we start

with an equal number of sequences of each kind necessary to close the cycle

defined by the target set. The color assigned to each sequence will remain the

same after mutations, meaning that parasites will be part of the same population

of the original sequence.

4.5 Results

4.5.1 Spatial Pattern Formation

As we said before we start the simulations with sequences folding exactly to

the targets in the list. It is then clear that patterns will form in the lattice

(Fig. 36) as those first shown in (Boerlijst and Hogeweg, 1991). After the spirals

are established, mutation is allowed. We study two main cases depending on the
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threshold f : the case when f = 0, which means that only exact hits to the targets

are taken as good complexes, and when f = 20 percent of the total length of the

targets, giving the opportunity of some mismatches in the cofolded structures.

In both cases the system is unstable and the spirals disappear very soon in the

simulations.

Figure 36: Spirals form in the lattice after few generations. Simulation parameters are: lattice

size L × L = 200 × 200 and mutation rate p = 3.5 × 10−4 and n = 56.

4.5.2 Instability of the Hypercycle

The reason for the instability in the first case, is the low neutrality of the

genotype-phenotype map derived from the cofolding of two sequences as pointed

out in the second chapter of this work. Only a small fraction of mutants will

conserve their old reactions (secondary structures) leading to a diminution of

catalyzed reactions. As can be seen in figure 37 (a), the number of reactions

corresponding to all targets drops to zero in a few hundred generations. Since the

sequences in the model are supposed to self replicate, after catalyzed reactions

are over, the species conserve their concentrations for some time, Fig. 37. It may

happen that new mutants react again by forming a complex in the target’s list

or that old reacting species find each other in the lattice, Fig. 37 (a).

In the second case, the system is invaded by short-cut parasites. The relaxed
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Figure 37: a) Drop of catalyzed reactions after the start of mutations at time 300. Color

codes for reactions between different species. b) Concentrations stay constant after the end of

catalyzed reactions.

requirement to interact with other sequences, favors the catalysis not only of

the usual species but also of others inside the hypercycle. Even when the rates

for these new interactions are usually lower than those existing before, the com-

bination between the loss of the reactions belonging to the hypercycle and the

appearance of the new ones, results in shorter cycles after some generations and

finally to the survival of only one or two species.

In Fig. 38 we show the emergence of short-cut parasites 900 generations after

mutation starts. The interaction matrix showed in the x − y plane is built by

counting the total number of interactions per generation. Each entry in the

matrix represents the interactions for the corresponding column and row groups.

In Fig. 38 (a) and (b) a 6-cycle can be seen. The x-axis codes for replicators

catalyzed by the y-axis. A cycle can be followed by taking a non-zero entry and

moving parallel to the x-axis until the diagonal is found. Then moving in the y

direction until a species is found and then again to the diagonal. By repeating

this process, it is clear how a 6-cycle emerges when short-cut parasites invade

the system. It is also clear that rows and columns for both species 1 and 2

are empty. After generation 1200 the cycle is established and reflected in the

oscillatory behavior of the concentrations (Fig. 38(a)).

Since the cycles are rapidly destroyed in the simulations, is it impossible to follow

the evolution of the species in sequences space. Unfortunately, the instability of
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Figure 38: a) Concentration of species against time. Mutations start at timestep 300. By

timestep 1200 a 6-cycle is established. b) Number of reactions in generation 1659. The inter-

action matrix is represented in the x-y plane.

the hypercycle against parasites in this case is not solved by placing the molecules

in a two dimensional space.



72

5 CelloS

5.1 From molecules to simple cells

In our non-trivial task to devise genotype-phenotype maps, many of the diffi-

culties stem from the complexity of even the simplest cells, which precludes a

representation of an entire cell at the molecular level. Spatial and temporal orga-

nization take a principal role in higher order organisms, thus making it impossible

to reproduce all the ascpects of the developemental process. On the other hand, at

present there are no established “intermediate-level” theories that would provide

consistent but simplified representations of cellular processes (energy metabolism,

biomass production, cell division, sensory responses, intracellular transport, gene

expression, etc.) which would help to understand common and basic characteris-

tics of these processes. One therefore has to resort either to simulations based on

a large number of ad hoc assumptions, or to the construction of minimal models

based on biophysical and biochemical principles.

As we have seen in previous sections, the process of RNA folding can be viewed as

a minimal model of a genotype-phenotype map. Here, the sequence of the RNA

molecule acts as the genotype (the sequence information is actually heritable in

in vitro selection (SELEX) experiments (Klug and Famulok, 1994)), while the

(secondary) structure of the molecule is interpreted as the phenotype (SELEX

experiments indeed often demonstrate a strong structure dependence of the se-

lected nucleic acids). As we showed before, detailed investigations of the RNA

model lead to the development of important concepts, such as neutral networks

percolating sequence space, the phenomenon of shape space covering, and the im-

portance of accessibility for phenotypic evolution (Schuster et al., 1994; Fontana

and Schuster, 1998). The structure of the genotype-phenotype map determines

the structure of the fitness landscape (Stadler, 1999) which in turn determines

the dynamics of an evolving population. The high degree of neutrality of the

RNA folding map, for example, explains punctuated equilibria in the absence

of external events (Forst et al., 1995b; Huynen et al., 1996), leads to a selec-

tion for robustness against mutations (van Nimwegen et al., 1999) and influences

evolvability (Ebner et al., 2001b).

Concepts such as epistasis and phenotypic plasticity easily translates into this

RNA folding metaphor (Fontana, 2002), however, important characteristics of
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the genotype-phenotype maps of biological organisms, do not have a counterpart

in this framework: While genotype and phenotype are embodied in the same

physical entity in the RNA model, there is a rather strict separation between

genomic information and functional molecules in all biological organisms. This

allows an organism to exist in different internal states (that depend on its indi-

vidual history) which may cope with environmental conditions in different ways.

Regulatory networks are at the core of the mechanism by which cells individually

adapt to changing conditions, see e.g. (François and Hakim, 2004; Deckard and

Sauro, 2004). The majority of the artificial gene regulation models used today

(Banzhaf, 2003; Eggenberg, 1997; Geard and Wiles, 2003; Reil, 1999) are based on

the well established “operon model” of gene expression (Jacob and Monod, 1961),

which divides the genes into two classes: (i) the transcription factors capable of

binding to the DNA thereby modulating the expression of downstream located

genes; and, (ii) structural proteins which perform some functions different from

the regulation of the gene expression. In the simplest case, regulatory networks

arise when transcription factors also enhance or inhibit the expression of other

transcription factors. (Note that such models still ignore crucial regulation mech-

anisms of real cells such as signal transduction networks and post-transcriptional

gene silencing.)

The CelloS model described in the following pages combines a simple compu-

tational cell model, the extended Potts model (see (Merks and Glazier, 2005)

and references therein), with an artificial genome and a minimal model of gene

expression (Reil, 1999). This combination allows us to study the coupling of the

environmental dynamics to the cell internal dynamics of gene expression within

the framework of an evolving cell population. It also aims to be a step further

in the direction of separating the genotype from the phenotype, contrary to the

rest of the models in this dissertation which regarded the phenotype as another

face of the same molecule or molecules representing the genotype.

The simlulations presented here are motivated by the cell differentiation of the

amoeba Naegleria gruberi, which is capable of changing cell shape, from a crawling

amoeba to an asymmetric elongated cell, and of growing flagella when nutrients

are scarce in order to move following a concentration gradient. It has been shown

(Fulton and Walsh, 1980) that all proteins necessary for the differentiation are

synthesized de novo, i.e., due to transcriptional regulation. The initiation of

morphological changes require the synthesis of sufficient amounts of proteins,
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i.e., a significant investment. The transformation is temporal and the organism

returns back to the amoeba state when nutrients are again available. N. gruberi

divides in the amoeba state only, while the flagellate state is much more mobile

and hence better suited to explore novel nutrient sources.

5.2 The model

The basic tool for our simulations is the Potts model with some extensions (Marée

and Hogeweg, 2002) on a two dimensional lattice. A cell C is a maximal connected

subset of the lattice such that all lattice points in C have the same type or “color”

u. Lattice points belonging to a single cell are only distinguished between border

and interior sites, i.e. cells are homogeneous. Cells interact with each other with

strength Juv at neighboring lattice points depending on their types u and v. This

interaction is defined as the energy increase provoked by a neighboring cell. A

special type 0 denotes empty lattice sites. Each cell is characterized by its energy

EC =
∑

i∈∂C

∑

j∈N(i)\C

Jui,uj
+ λ(vol(C) − V )2 (8)

where vol(C) is the volume of the cell, i.e., its number of lattices points, ∂C

its boundary, V is a user-defined target volume, N(i) is the set of neighbors of

i and λ is a compressibility parameter. The double sum runs over all lattice

edges that point from the boundary (surface) of the cell C to other cells or into

the environment. The environment contains nutrient spots distributed randomly

along the surface. These sources produce a concentration gradient described by

ci at lattice point i. Diameter of the sources and the amount of nutrient they

contain is variable, and only inside them cells are allowed to profit from the

nutrients.

Cell motion is implemented by a simple Metropolis Monte Carlo step in which

a cell attempts to modify its boundary at lattice point i ∈ ∂C by changing the

type of an adjacent site i′ to its own type, or by changing one of its boundary

sites to 0. The transition probability is

1 if ∆EC < H∂

exp−(∆EC+H∂

T
) if ∆EC ≥ H∂

(9)

where H∂ is the energy cost of deforming the cell’s boundary and T a temperature-

like parameter. In order for the cells to feel the gradient in the nutrient, the energy
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Figure 39: Genome of the Cellos model. Markers are localized along the genome to define the

start of a gene. The following 40 bases are taken as the “coding” region. The previous section

is the regulatory region for the corresponding gene.

change is reevaluated as

∆E∗
C = ∆EC − µ0(ci′ − ci) (10)

where µ0 describes the reactivity of the cell to changes in the nutrient concentra-

tion.

Note that cell motions are internally driven and hence consume energy rather than

the result of molecular Brownian motion. Our cells have a finite life expectancy

and require energy to stay alive. This is modeled by a “battery” that is used up

when enzymes are synthesized. When the “battery” is empty, the cell dies and

the corresponding lattice sites are reset to 0.

Each cell on the lattice contains an RNA sequence of length 200 which represents

its genome and contains the information necessary to decode the cell’s behav-

ior. This genome can encode two types of effector molecules (corresponding of

course to proteins in N. gruberi, but modeled as RNAs here for computational

convenience) and a simple regulation mechanism.

A short signal sequence (corresponding e.g. to the TATA box in real cells) marks

the beginning of a “coding region” on the genomic sequence. We use the signal

GC and define a gene to be the following 40 nucleotides (Fig. 39).

This subsequence is folded into its secondary structure using the RNAfold program

of the Vienna RNA Package (Hofacker, 2003). The structure is then compared

with two target shapes for the “motion effectors” and the “nutrient importers”,

which are kept fixed throughout the simulation. The closer target shape de-

termines the function of the gene, while the number of base pairing differences

measures the gene’s efficiency (Fig. 40).

In the current implementation we keep the gene regulation network fixed. In order
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Figure 40: Target Shapes. Two classes of functionally different RNAs are distinguished by

archetypic shapes: (a) motion effectors and (b) metabolic effectors that act as nutrient im-

porters.
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Figure 41: Gene Regulatory Network. The simple mutually repressing network. Products of

each type of gene repress the translation of the other type.

to implement the switching between the motion effectors and nutrient importers

we use the simple negative feedback system shown in Fig. 41. The differential

equations for this scheme are:

dGA

dt
= γA · k

1

1 + G3
B

− d · GA

dGB

dt
= γB · k

1

1 + G3
A

− d · GB

(11)

where GA and GB are the concentrations of the two types of gene products, γA

and γB are their efficiencies, and k and d fixed constants. A 4th order Runge-

Kutta method is used to numerically integrate these differential equations.
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Once the genome is decoded, the concentrations of the gene products are com-

puted. The cell is then able to feed depending on the available nutrient in the

environment provided it expresses nutrient importers, and to move if motion ef-

forts are expressed. The battery level B is decreased depending on the amount of

gene products that are produced and it is recharged if the cell is in a food source:

B′ = B − c0(GA + GB) + φ0GB (12)

The parameters c0 and φ0 describe the ratio of nutrients obtained from the envi-

ronment against the cost of producing the importers and motion effectors, respec-

tively. The mobility of the cell depends on the concentration of expressed motion

effectors which is reflected in a modified transition probability for changing the

cells boundary by replacing the constant µ0 with µ0 · GB. Therefore, equation

(10) reads as

∆E∗
C = ∆EC − µ0 · GB(ci′ − ci) (13)

In order to link the internal state of the cell to the environment, we give an

impulse to the concentration of nutrient importers every time the cell is touching

a food spot. This is done by increasing the importers concentration by a fixed

amount and then integrating the equations again. If the gene effectiveness are

in the correct range, the equations will react to this impulse and concentrations

will flip to the desired values, i.e. concentration of importers will surpass that of

movement effectors and stabilize in that state. On the other hand, an impulse is

given to the movement effectors whenever they are not touching a food source.

The amplitude of this impulse regulates how different the efficiencies can be in

order to obtain the switching of the effectors’ concentrations.

The products of metabolic genes play two different roles: first, they recharge

the battery of the cell; and second, they increase the cell’s target volume. Both

the battery and the target volume are increased proporcionally to the metabolic

effectors concentration.

Once a cell has doubled its normal size, it divides by fission copying its genome to

the new cell. This process is usually inaccurate, producing mutations in the new

RNA string. In this model every replication implies one random point mutation in

the genome. Even when this is the simplest way of mutating the genome (among

others as deletion, gene duplication or insertion, for example), non-linearity and

complexity arises from the characteristics of the genotype-phenotype map used.

Genes may be destroyed or created whenever a marker (TATA box) is deleted or
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formed. At the same time, if the “coding” region of a gene is touched, the non-

linearity of the folding map between sequence and secondary structure is reflected

in the overall phenotype of the cell. Total efficiency of the genes is obtained by

adding up individual gene efficiencies, therefore, efficiency may increase either by

optimizing the structure of existing genes or by creating new ones.

Food sources are depleted when cells feed from them. Once a source is empty, it

is replaced by a new one in a randomly chosen spot of the lattice. This way, cells

are forced to switch between the metabolic and movement states, reinforcing the

selection of only those capable of doing so.

Individual cells with very similar genomes belong to the same species. The defini-

tion of species in our model is similar to that proposed by Kenneth and Risto in

(Kenneth and Risto, 2002). Each gene in the population has a unique historical

number. Every time a mutation creates a new gene or changes the type of an old

one, this global variable is increased and assigned to the new gene. In order to

compare two genomes, we use a linear combination of the number of excess (T )

and disjoint (D) genes, and the average efficiency difference between common

genes (W ). If the result of

δ =
c1T

N
+

c2D

N
+ c3 · W (14)

is below a threshold value, the new cell is assigned to the same species as the

old one. Whenever a new species is created, a genome is set to represent the

whole species. Every time a new cell is born, its genes are compared to all

species’ genomes and included in the first one for which the distance is below the

threshold.

5.3 Results

5.3.1 Population size

Throughout all of our simulations, some parameters are kept fixed: we use a

lattice of 200 × 200 sites with periodic boundary conditions, Jx,0 = 11 for the

contact with an empty site, Jab = 37.5 for the contact between different cell types,

and Jaa = 35 for the contact with a cell of the same species. Furthermore T = 3,

H∂ = 0.8, µ0 = 5000, c0 = 0.4, V = 30, λ = 5.
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Figure 42: Snapshots of a run with three food sources. The evolution of the system is shown

at timesteps: 135, 495, 6000, 12225, 15030 and 19800.
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Figure 43: Only one source in the lattice. One source with finite energy is placed in the lattice.

Cells are able to feed only from this spot, thus making the population much smaller than in

the previous case. Snaps are from generations: 120, 300, 525, 1050, 2250 and 7500.
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Figure 42 shows the evolution of the system for a typical simulation run. This

images were created with three food sources available for the cells to eat. The

location of these is not visible for clarity purposes, nevertheless, it can be implied

from the accumulation of cells in certain places of the lattice.

Population size changes depending on the conditions. As cells feed from available

nutrients, their volume increases and more duplication events occur. Since cells

have a finite life span, population size cannot increase arbitrarily inside certain

range of parameters. The relation between the life time and the increase of volume

per generation is the factor regulating population size, together, of course, with

number of food spots.

Figure 43 shows a run with only one food spot. In this case a single food source

is moving around the lattice, maintaining the population size small and relatively

constant. In cases with more than one source, cells may or may not feed from all

of them. On the contrary, in order for the system to survive with this setting,

cells must be feeding from this single spot all the time. This is why variation in

the population size is smaller than in the previous case.

The population grows depending on the availability of nutrients. Every time a

food source is depleted, cells must migrate to the next one. This periods are

usually reflected in a diminution of the population and increase in the average

number of movement genes in it. The second panel in Fig. 44 shows the energy

of the sources and the change in the number of cells. Source energy staying at its

maximum means that there are no cells feeding from it. This is clearly related

with a decrease in the population size (Fig. 44).

5.3.2 Genome structure

We measure the impact of the external conditions in the genome by looking at

the number of metabolic and movement genes, their efficiencies and the effectors

expression inside and outside a food source.

The regulatory network we are using, imposes a well defined range in which gene

efficiency must lay in order to obtain the necessary switch between states. In

our simulations it is clear how these numbers are controlled by natural selection

when the genome is mutating randomly. In Fig. 45 it can be seen how after a

period of adjustment, the population falls in a regime where both efficiencies are
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Figure 44: Population and energy of the sources. The zoom in the bottom shows how population

grows only when cells are feeding from the sources.

inside a small interval which allows switching. Selection is also reflected in the

larger number of metabolic than movement genes. Even when the structure for

movement genes is more common than that of metabolic, fact that is reflected in

the start of all simulations with more genes of the first than the second, this is

soon reverted and stays like that througout most of the simulation (Fig. 45, 46).
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Figure 45: Efficiency of genes and population in a simulation with parameters: number of food

spots 3, mean life 500, volume increment per generation 0.07

Since genome size is fixed all along the simulation, the total number of genes

starts around the expected number of genes . Whenever a mutation occurs, it

is easier to hit the “coding” region of a gene (length 40 nb), than the start-

marker (2 nb), or than create a new starter. Therefore, mutations produce the

change between gene types in most of the cases. This is the reason why graphs

show very symmetric curves for gene number and gene efficiency (Fig. 45 or 49).

Nevertheless, environmental pressure and selection increases the number of total

genes in around 50 percent. The expected number of genes G is computed as

G =
Lgenome − (Ltata − Lgene)

(Ltata)A
(15)
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Figure 46: Above, gene number increases due to selection and environmental pressure. The

expected number of genes 9.875 (begining of the simulation), is increased up to 18 at the end

of the run. The difference among efficiencies is larger than in the second graph because of the

change of the impulse from the environment from 10 to 13. The third graph shows how gene

number is kept almost constant due to very low selection pressure. The 7 food spots in the

lattice give enough food to the cells to survive without increasing number or efficiency of their

genes. Same paremeters as in Fig. 45 except for impulse stength and spot number.
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Where Lgenome, Lgene and Ltata are the length of genome, gene and “TATA

box” repectively and A is the size of the alphabet. With the parameters in these

simulations, the expected number of genes is 9.875.

The right combination of gene efficiencies allows a switching in their products ex-

pression depending only in the presence or absence of food from the environment.

The numerical integration of the equations show how this switching is possible

when giving a strong enough impulse. This can be seen in Fig. 47. The difference

between the efficiencies of both kind of genes is controled by the strength of the

impulse. In figures 46(up and middle), the impulse was variated from 10 in the

first one to 13 in the second. This also gives the population more resistance to

variation in the environment.

If the amount of nutrients increases in the environment (i.e. by increasing the

number of food spots), the population size grows and the gene number stays very

close to the expected one. This is because the pressure to increase the efficiency

of genes is lower given that there is enough nutrients to survive(Fig. 46(up and

down)
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Figure 47: Concentrations of gene products. Numerical integration of the regulation network

equations. The efficiency of metabolic genes is 70 and of movement genes 50. An impulse (of

10 arbitrary units) is given to the concentrations every 1200 timesteps

Figure 48 shows the behavior for a single cell with the right number of genes. It

can be seen how whenever there is food present, nutrient importers are expressed

and movement effectors repressed.
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Figure 48: Switching of gene products expression depending on the presence/absence of nutri-

ents. Same parameters as in the previous figure.

In the special case when there is only one food spot of infinite life in the lattice,

cells that are in the spot are thrown out of it by the newborns. Even when there

is no need of traveling long distances, the fact that cells have to be constantly

coming back into the source makes the presence of movement genes indispensable.
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Figure 49: Gene number and efficiency for one food spot.

At the same time, since food is easily available, there is no need to increase the

efficiency of metabolic genes. Battery may be refilled slowly without killing the

cell since the time it spends outside the food source is usually very short. This
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can be seen in Fig. 49, where efficiencies and number of genes are still close one

to each other keeping a minumum number of movement genes.

5.3.3 Phylogenetics
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Figure 50: Phylogenetic tree for a run with three food spots. Nodes in the tree represent the

disappearance of a species, while saddles stand for the split of two of them. Time unit is 1000

simulation steps.

With our simple definition of species, the number of species depends directly on

the volume increase per generation. Phylogenetic trees can be recorded based on

the speciation events, see Fig. 50 for a characteristic example. The Darwinian

evolution is dominated by one or a few species at any given point in time. The

coexistence of distinct lineages over longer times is comparably rare. In some

runs one of the initial species survives until the end of the run, failing to find any

important improvement in phenotype via mutations. In the case where only one

food spot is present, the coexistence of more than one species is very rare.

When more than one spot are available, the population may split for a while, until

food sources disappear and put the species in direct competition for the same

nutrient source. The survival of one species usually depends on the efficiency

of the nutrient importers. Once species are capable of moving at enough speed,

those who feed faster replicate better and therefore oversize the other species.
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6 Conclusion and Outlook

6.1 Three approaches, one goal

The study presented in this dissertation on evolution of interacting molecules

differs from previous studies on molecular evolution ( (Eigen, 1971), (Schuster

and Sigmund, 1983)) in the way fitness is computed. Traditionally, fitness was

calculated from properties of individual species alone, here we take interactions

between one or more species into account.

As it was expected, we found that populations in well stirred environments are

prone to the invasion of parasites (Eigen and Schuster, 1979). This parasites

are produced by mutations of already existing species and are not introduced

from the exterior. This is important because in principle membranes or spacial

separation of the population would not be enough to protect the system against

invasions. From the results on the hypercycle in a two dimensional space, we

know that some spatial organizations can result in the expulsion of the parasites,

but this is not always the case. We will come to this point again in the next

paragraphs.

In all models presented in this dissertation, there was always the opposition of

fold-cofold as a first step in the genotype-phenotype map. On the molecular

level, the usage of the cofold map resulted in the impossibility of a network to

evolve towards a predefined target, given that the neutrality of the map assigning

fitness values is much lower than in the single molecule folding map. It was

also shown that with too few interactions, the population falls into a frozen

configuration when local maxima are found. Therefore the question arises, how

a stable and robust molecular reaction network can be constructed which admits

enough variation to change and evolve.

The fitness landscape in these models is continually changing, given that fitness

values for single species depend on the interactions with the rest. When per-

fect catalysts exist in the system, the fitness landscape of its catalyzed species

changes, taking them to zones where their own phenotype is not crucial anymore

but the interaction with the catalyst becomes the only important factor. At the

same time, reducing the pressure for these species, may reduce also their catalytic

activity, thus forcing the next species in the cycle to improve their self-replication



6.1 Three approaches, one goal 89

rates. This is a clear example of how changing fitness landscapes influence the

behavior of co-evolving species. The fitness of individual species loses impor-

tance, and the system must be explored as a combined set of species and their

interactions and evaluated as a whole.

In presence of epistasis, the variability of one trait depends on more than one gene,

thus making it more difficult to change the expression of the given trait (Wagner

and Altenberg, 1996). When using the cofold map, a “combined” genome is cre-

ated, which produces only one phenotype. We showed that the neutrality for such

a map is nearly as high as the one presented by the single molecule folding map.

Nevertheless, if a molecule is required to interact with more than one molecule,

the neutrality is radically lowered. This result has crucial implications for sys-

tems where molecules must carry out more than one function. The hypercycle is

a good example of such a system.

In chapter 3 we presented a model of an hypercyclic network that incorporates

strong interactions between species and hence a complicated population dynam-

ics, spatial organization, and an explicit representation in sequence space. Our

first main conclusion is that the behavior of such an integrated computer simu-

lation is consistent with earlier findings on both the population dynamics (such

as the existence of limit cycles) of hypercycles and on the effects of considering a

spatially extended system (such as the formation of spiral waves and resistance

against various types of parasites). The resistance of the system against short-cut

parasites in addition to “dead-end” parasites is a very important result since it

shows that spatially extended hypercycles are indeed evolutionarily very stable

systems as long as the fitness (i.e. replication rates) depends only on a single

molecule and not on the interactions among more than one molecule. This is

in sharp contrast to hypercycles in homogeneous solution (Eigen and Schuster,

1979; Bresch et al., 1980; Stadler and Happel, 1993; Stadler and Schuster, 1996).

Furthermore, we demonstrate here a mode of sequence evolution that is domi-

nated by drift and hence can be described in terms of Kimura’s Neutral theory

(Kimura, 1955, 1983). This does not mean, of course, that selection does not

play a role: the exclusion of parasites, the internal dynamics of the population,

as well as the sequence-evolution in the initial phase of the simulation are clearly

dominated by selection. It is important to point out that this kind of sequence

evolution is achieved thanks to the neutrality of RNAfold used as the genotype-
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phenotype map.

The main characteristics of the system are robust and differ only in small details

from one set of conditions to the other. We therefore conclude that the ability

of such an RNA based system to evolve towards a robust spatially extended

organization with diffusion in sequence space is intrinsic to autocatalytic self-

replicating molecules as soon as the sequence-structure relationship is dominated

by extensive neutral networks, as is the case for RNA.

In contrast to the case described above, the hypercycle with cofold as genotype-

phenotype map in not stable against any kind of parasites. In this implemen-

tation, interactions among molecules depend on the base pairing of the concate-

nated sequences, this being responsible for the main difference with the fold-

ing model: with cofold, the interaction between RNA strings occur before the

molecules fold into their secondary structures, while in the single molecule fold-

ing, the interactions are decided according to the already found minimum free

energy configuration of the individual sequences. This means that a mutation in

a single sequence is more probable to change its interactions with the rest, given

that the neutrality of the cofolding map is much lower than the neutrality of

the single molecule folding map. Research about kinetic properties of the folding

map is being pursued at the moment (Wolfinger et al., 2004), which is of great

importance to decide which of the maps is closer to the actual interaction among

RNA molecules.

This model results to be unstable against parasites because of the very low neu-

trality of the cofold map and the freedom given to the molecules to interact with

any other molecule in the system. In the first implementation, the topology of

the interactions was fixed to a cycle and parasites where explicitly introduced

into the program. The possibility of having more interactions created by the

cofolding of all sequences, changed dramatically the topology of the network.

Short-cut parasites where immediately produced and reactions belonging to the

original cycle were lost because of the low neutrality of the map. The connectiv-

ity of the network is the most important parameter to be controlled in order to

obtain interesting behaviors (Kauffman, 1993), in our model this value depends

on the cofolded structures and so it is difficult to control externally.

Another important characteristic for the study of the genotype-phenotype map

is the relation between the evolving species and its environment. In our first (and
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very simple) implementation of CelloS, we observe the response of the genome

to variable environmental conditions. After an initial phase of selection the num-

ber of genes stays approximately constant. The cells can then use their gene

regulatory network to cope with environmental changes. Population dynamics

also reflect the presence or absence of nutrients, together with an increase of the

number and/or the efficiency of movement genes. We found that, at least in our

simple environment, it is not important to have a large number of genes, but to

have the right amount of them depending on the environmental inputs and the

regulatory network modifying their products’ expression.

The genotype-phenotype map in this model can be clearly separated into three

levels: the first one is the folding of gene sequences into their secondary struc-

tures, assigning function and efficiency to each of them. The second part is the

interaction between the gene products which modify gene expression and thus

the resulting concentrations of functional proteins. The last level defines the be-

havior of the cell given the changes on protein expression and the influence of the

environment upon them. The interaction between these levels is still hard coded

in the model and is far away from being a realistic representation, nevertheless,

we consider this model a good tool to study different aspects of the genotype-

phenotype map. Neutrality exists in the map thanks to the use of RNAfold in

the characterization of genes; epistasis is a direct consequence of the regulatory

network used; plasticity is the main attribute of switching expression levels and

a changing environment forces the population to adapt and evolve towards a well

defined task.

6.2 Different levels of genotype-phenotype maps

The relation kept between the molecules conforming a cell and the cell itself is one

of belonging and bringing to being at the same time. It is an autopoietic system

(Maturana and Varela, 1980) in the sense that molecules need and are needed

by the rest of the construct in order to maintain and reproduce themselves. This

organization can be understood only when studied as a whole. Breaking the

machinery down to its primary components may give us some hint on how this

parts work, but will hardly tell us how or why they are organized the way they

are.
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One possible way of approaching this question is by defining and studying the

different levels forming a living organism. Much has been done on the level of

molecular interactions and on the much larger scale of tissue differentiation and

morphogenesis. In present time, big efforts are being done to reveal the intricate

networks of gene regulation. This level was unknown until recently, and will for

sure throw much information about the relation between the two levels mentioned

before.

These networks are in part responsible for giving a system more plasticity than it

is possible to achieve without. The first model presented here, in which there is

only the molecular level to represent genotype and phenotype, is constrained to

a reduced number of outcomes depending on the concentrations and structures

of the individual molecules. Moreover, once this structures are defined, there is

no change allowed until mutations are introduced. Although plasticity has been

compared to the repertoire of suboptimal structures in a molecule, this is far

from being a coordinated response to environmental changes, and more like a

forced effect. Neither the system nor the molecules have any active possibilities

to influence the repertoire of suboptimal structures.

There is one more level which can be defined in this hierarchy. Before a clear

separation between structures in an organism could be reached, an intermediate

state where the different components are stoichiometrically coupled is foreseeable.

The tight relation between molecular structure and its function must be at some

point relaxed in order to increase the possible outcomes of such a system. In-

creasing the number of molecules and the interactions among them is one way of

doing this, nevertheless, this is clearly not the way evolution shaped higher order

organisms. Stoichiometrically coupled systems, like minimal cells which combine

metabolism, container and genetic information ((Rasmussen et al., 2004)), must

have at some point branched into modular organizations which could specialize in

one side, and cooperate in the other, linking these different substructures through

feedback with molecules acting both as transmitters and receptors.

In this sense, the study of coevolving species occupies a principal role. Modular

or multi-species systems should be able to search the genotype space without

reducing the overall fitness of the organization. That is, not only individual

fitness must be evaluated, but most important, the behavior of the system as a

whole.
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6.3 Evolution on different levels

We know from Kauffman’s boolean networks that a system in a chaotic state

cannot remember the past ((Bak, 1996), (Kauffman, 1993)) because trajectories

are doomed to separate no matter how close the initial conditions are. This

makes evolution impossible and thus has a strong impact when studying molec-

ular networks. To simulate interactions there is always the question about how

to decide which molecules are to interact with others. Models of artificial chem-

istry ((Benkö et al., 2003)) have tried to solve this matter, nevertheless they are

still far from being a tool for evolutionary simulations. In the case we present

here, the cofold map resembles somehow the possible interactions between RNA

molecules. The result shows that if molecules are permitted to interact with many

other molecules, the connectivity of the network is too high and the networks falls

into a chaotic state. On the other side, if the interactions are too strict, most

mutations will result in the lost of links between molecular species, thus breaking

cycles that could have been beneficial to the network.

According to Kauffman (Kauffman, 1993), the connectivity of molecular networks

in living organisms must lay in the edge between the chaotic and frozen states.

From our models we could see that the parameters responsible for this connectiv-

ity value must be artificially tuned in order to get some interesting behavior. One

straightforward question to ask to these models is how could a system self-tune

this parameters in order to keep itself in the range needed for life to exist.

Going up in the level of organization, we proposed a system where regulation of

gene expression is studied. One important aspect to remark of this model is the

relation between the molecular activity of the gene products and the resulting

behavior of the cell as a whole. Fluctuations in molecular concentrations are

controlled by the regulatory network is acting upon them. At the same time,

impulses from the environment are being collected by the cell and transformed

into molecular signals which the network is able to detect. Once a network is

defined, all the reactions between molecules are controlled and therefore small

fluctuations in their concentrations are not important anymore for the overall

behavior. This interplay between the two levels may be responsible for controlling

and tuning the parameters defining the behavior at the molecular level. It is the

goal of many attempts nowadays ((Rasmussen et al., 2003), (Goldbeter, 2002),

among many others) to understand the coupling of these reactions with the overall
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function of the cell. Hopefully, the combination of new techniques together with

the knowledge accumulated so far will bring some answers to the striking question

of the origin and evolution of life.

6.4 Outlook

Many improvements to the CelloS model are currently being implemented. Since

the mechanism of the regulation of gene expression in the current implementation

can itself not be a target of evolution, we plan to add transcription factors as

a third class of gene products to the artificial genome. This will allow the cells

to find innovative regulatory strategies based on post transcriptional interaction.

A fruitful route will then be to study the mixing of regulatory strategies under

sexual reproduction of the cells.

The basic mechanism to decode the genome is based on the one used in the current

implementation. Genes are defined through a marker (TATAbox) (see Fig. 51).

In mediately before and after this marker, subsequences for regulatory and coding

regions are defined, respectively. In order to set the function of a given gene, the

coding sequence is folded into its secondary structure and compared to a set

of targets. Genes can belong to the movement, metabolic or regulation classes.

Reactions among monomers are allowed to create dimers. The probability for this

is computed with the energy of the cofolded structure of the monomers’ sequences.

Monomers and dimers are then able to bind to regulatory regions in order to up

or down regulate gene expression. This probability is computed again via the

cofolded structure of monomer sequence and regulatory sequence. We expect to

see different network topologies which exhibit a switching in protein expression as

in the case of the simple regulatory network used in the current implementation.

Currently Cellos implements only point mutation to evolve sequences. Adding

more sophisticated operations like gene duplication or horizontal gene transfer,

turns Cellos into a tool for generating test data for phylogenetic reconstruction

methods. Comparing the simulated evolutionary scenario with the reconstructed

one will allow to evaluate the performance of such methods. Cellos could also

be a good tool to study the way the genetic coding evolves in replicating systems

that have more than one level or organization (Wills, 2001).

Extending the set of mutation operators from point mutation to gene duplication
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Figure 51: Decoding of the regulatory network from the genome. Genes are located via a marker

or TATAbox. Coding and regulatory regions corresponding to this gene are taken immediately

after and before this marker, respectively. Monomers function is decided depending on the

secondary structure and the probability of dimerization according to the energy of the cofolded

structure. Binding probabilities are computed from monomers or dimers according to the

cofolded structure with the regulatory regions.

and horizontal gene transfer, turns Cellos into a tool for generating test data

for phylogenetic reconstruction methods. Comparing the simulated evolutionary

scenario with the reconstructed one will allow to evaluate the performance of

such methods.

The environmental dynamics can also be improved by switching to an artificial

chemistry like the Toy Chemistry Model (Benkö et al., 2003). This forces for an

additional decoding layer in the internal structure of the cells, which links our

representation of the nutrient importers to organic molecules in the environment.

Improvements of the CelloS model along these lines are under way.
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