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Abstract i

Abstract

Secondary structures of nucleic acids are a particularly interesting class of
contact structures. Many important RNA molecules,however contain pseudo-
knots, which are excluded explicitly by the definition of secondary structures.
We propose here a generalization of secondary structures that incorporates
“non-nested” pseudoknots. We also introduce a measure for the complexity
of more general contact structures in terms of the chromatic number of their
intersection graph. We show that RNA structures without nested pseudoknots
form a special class of planar graphs, the so called “bi-secondary structures”.
Upper bounds on their number are derived, showing that there are fewer dif-
ferent structures than sequences.

An energy function capable of dealing with bi-secondary structures was im-
plemented into a generalized kinetic folding algorithm. Sterical hindrances
involved in pseudoknot formation are taken into account with the help of two
simplifications: stacked regions are viewed as stiff rods and unpaired bases
are assumed to be very flexible. Three parameters are employed in the en-
ergy function to consider the sterical situation. The parameter adjustment
demands a rather heuristic approach. A variety of experimentally determined
bi-secondary structures were used as target structures in a series of folding
procedures with different parameters. For short range pseudoknots a suitable
parameter set was found.

Different parameter sets were used to study the mapping from sequences to
bi-secondary structures. Statistics of bi-secondary structure elements as well
as the frequency distribution of bi-secondary structures were computed. The
frequency distribution can be described by a generalized form of Zipf’s law,
which means that there are view common structures and many rare ones. Neu-
tral nets (neighboring sequences sharing the same structure) of bi-secondary
structures were compared with those calculated for pure secondary structures

and found to be less extended.
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Zusammenfassung

Sekundarstrukturen von Nukleinsauren bilden eine Klasse von Kontaktstruk-

turen die von groflem Interesse ist. Viele wichtige RNA Molekiile beinhal-

ten Pseudoknoten, welche aber durch die Definition von Sekundéarstruktur

explizit ausgeschlossen sind. Hier schlagen wir eine Verallgemeinerung von

Sekundarstrukturen vor, die nicht verschachtelte Pseudoknoten miteinschlief3t.

Die chromatische Zahl des Schnitt-Graphen von verallgemeinerten Kontakt-

strukturen wird als Maf} fiir deren Komplexitit eingefithrt. Wir zeigen, daf

RNA Strukturen ohne verschachtelte Pseudoknoten eine spezielle Klasse von

planaren Graphen bilden, die sogenannten Bisekundarstrukturen. Es wurden

obere Grenzen fiir deren Anzahl berechnet, die zeigen, dafl es weniger ver-

schiedene Strukturen als Sequenzen gibt.

Eine Energiefunktion fiir Bisekundarstrukturen wurde in einen einfachen kineti-
schen Faltalgorithmus implementiert. Die sterische Hemmung die bei Pseudo-

knoten Bildung entsteht, wurde mit Hilfe zweier Vereinfachungen beriicksichtigt:
Helices werden als steife Stabchen betrachtet wahrend angenommen wird,

dal ungepaarte Basen sehr flexibel sind. Drei Parameter werden in der En-

ergiefunktion benutzt um die rdumliche Situation zu beriicksichtigen. Die

Justierung der Parameter fordert eine mehr oder minder heuristische Vor-

gangsweise. Eine Reihe von experimentell ermittelten Bisekundarstrukturen

wurden als Zielstrukturen in unterschiedlichen Faltexperimenten mit verschiede-
nen Parametern verwendet. Fiir Pseudoknoten mit kurzer Reichweite wurde

ein geeignetes Parameter-Set gefunden.

Verschiedene Parameter-Sets wurden verwendet um die Abbildung von Sequen-

zen zu Bisekundarstrukturen zu untersuchen. Die Verteilung der Haufigkeit

von Bisekundarstrukturen sowie eine Statistik der Strukturelemente wurde

berechnet. Betrachtet man die Haufigkeit von Bisekundarstrukturen, findet

man eine sehr ungleichmafiige Verteilung die einige wenige sehr haufige dafiir

viele extrem seltene Strukturen aufweist. Die Verteilung kann gut durch

eine allgemeine Form des Zipf’schen Gesetzes beschrieben werden. Auch die

Statistik der Strukturelemente zeigt im wesentlichen das selbe Bild wie fiir
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Sekundérstrukturen. Neutrale Netze (benachbarte Sequenzen die die selbe
Struktur bilden) von Bisekundérstrukturen die mit jenen von Sekundérstrukturen

verglichen wurden, wiesen eine geringere Ausdehnung auf.
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1 Introduction

Presumably one of the most important problems and greatest challenges in
present day theoretical biochemistry is understanding the mechanism that
transforms sequences of biopolymers into spatial molecular structures. One
the one hand the sequence is the most easily accessible molecular biological
information, on the other hand the spatial structure is the key to describe the
molecule in its functional aspects.

A sequence is properly visualized as a string of symbols which together with the
environment determines the molecular architecture of the biopolymer. In case
of one particular class of biopolymers, the ribonucleic acid (RNA) molecules,
decoding of information (stored in the sequence) can be properly decomposed

into two steps.

e The formation of the secondary structure, i.e. the pattern of Watson-
Crick (and GU) basepairs.

e The embedding of the contact structures in three-dimensional space (such

as pseudoknots).

The classical definition of secondary structures excludes pseudoknots mostly
for technical reasons [100] (the folding problem for RNA can be solved effi-
ciently by dynamic programming in the absence of pseudoknots [100, 108]).
The sequence structure relation of RNA was studied in detail in a series of
papers at the level of secondary structures.[4, 18, 20, 19, 25, 26, 76, 85, 86|

The most salient findings of these investigations are:
(i) There are many more sequences than (secondary) structures.

(ii) There are few frequent and many rare structures. Almost all sequences

fold into frequent or common structures.

(iii) Sequences that fold into a common structure are distributed nearly uni-

formly in sequence space.



1 Introduction 2

(iv) A sequence folding into a common structure has a large number of neu-
tral neighbors (folding into the same structure) and a large number of

neighboring sequences that fold into very different secondary structures.

(v) Neutral paths perlocate sequence space along which all sequences fold
into the same secondary structure. In fact there are extended neutral

networks of sequences folding into the same common structure.[26, 65]

(vi) Almost all common structures can be found close to any point in sequence

space. This property is called shape space covering.

The impact of these features on evolutionary dynamic is discussed in [37, 75].
A population explores sequence space in a diffusion-like manner along the neu-
tral network of a viable structure. Along the fringes of the population novel
structures are produced by mutation at a constant rate [36]. Fast diffusion to-
gether with perpetual innovation makes these landscapes ideal for evolutionary
adaptation. An increasing number of experimental findings, as well as results
from comparative sequence analysis suggest, that pseudoknots are important

structural and functional elements in many RNA molecules.

1.1 The Purpose of this Work

It is an important question, whether the findings (i) through (vi) remain true
when pseudoknots are taken into account. Assertion (i), the existence of more
sequences than structures, is a necessary prerequisite for all subsequent state-
ments concerning the sequence-structure map of RNA. It is necessary therefore
to estimate the number of RNA structures with pseudoknots in order to decide
whether the results quoted above can in fact be true for “real” RNA molecules.
Combinatorial aspects of RNA secondary structures have been studied in de-
tail by Waterman and coworkers [56, 74, 82, 97, 99, 100, 98] and Hofacker et
al. [32]. In section 3 we discuss generalizations of secondary structures and
their graph-theoretical properties. The combinatorics of these objects is then
studied by both analytical and numerical methods in section 6. In order to

investigate if the findings (ii) through (v) apply we need an RNA-structure
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prediction method. That means a suitable energy function has to be designed
and implemented into a folding algorithm. We describe in section 4 an energy
function that deals with RNA-secondary structures comprising a wide variety
of pseudoknots, namely the bi-secondary structure (introduced in section 3).
The energy function is tested in section 5 using two interesting molecules which

biological aspects are described in section 2.
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2 Functional Aspects of RNA Pseudoknots

2.1 Why Does One Care about Pseudoknots ?

Recent work has indicated that pseudoknots are only marginally more stable
than simple secondary structures (although thermodynamic data in this area
are still scarce [61, 49]). This observation suggests a role for pseudoknots
as conformational switches or control elements in several biological functions
[73]. In molecules that lack an overall three-dimensional fold, pseudoknots
fold locally and their positions along the sequence reflect their function [48].
For example, pseudoknots that are folded at the 5’-end of mRNAs tend to be
involved in translational control whereas those at the 3’-end maintain signals
for replication. In molecules with catalytic activities, pseudoknots are located
at the core of the tertiary fold and involve nucleotides that are far apart in the
sequence (RNAseP). The diversity of molecular biological functions performed

by pseudoknots can be subdivided into tree different groups:

(i) Translational control: 5’-end pseudoknots appear to adopt two roles in
the control of mRNA translation: either specific recognition of a pseudo-
knot by some protein is required for control, as described for the 5’-end
of mRNAs in some prokaryotic systems [73, 58|; or, the presence of a
folded pseudoknot is necessary with no requirements on the nucleotide
sequence [5, 92, 8]. In several viruses, the expression of replicase is con-
trolled either by ribosomal frame shifting [5, 92, 8, 13, 15] or by in-frame
read-through of stop codons [104]. In both cases, pseudoknot formation is
necessary [5, 92, 15]. The requirements appear, however, more strict for
read-through than for frame shifting. Nevertheless, the correct position
of the pseudoknot in the 3’ direction with respect to the slip site in ribo-
somal frame shifting, and with respect to the AUG codon in read-through
is an absolute requirement [5, 104]. The presence of three pseudoknots
in 16S rRNA has been suggested on the basis of comparative sequence
analyses [59]. In general these pseudoknots are assumed to show strong

interactions with ribosomal proteins. One pseudoknot is known to be
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important for the binding of tRNA to the ribosomal A site [106, 52], and
was shown to be essential for ribosomal function [60]. These observa-
tions are particularly interesting in view of the suggested conformational

switch that involves the other two pseudoknots.

(ii) Core pseudoknots: are necessary to form the reaction center of ri-
bozymes. Most of the enzymatic RNAs with core pseudoknots are in-
volved in cleavage or self-cleavage reactions [51, 21, 6, 29]. One Example
(RNAseP) is discussed in this section.

(iii) 3’-end pseudoknots: replication control is the common function of
tRNA-like motifs at the 3’-end of several groups of plant viral RNA
genomes [48]. This structural similarity is paralleled in biological func-
tion as the tRNA-like motifs are recognized by many tRNA-specific en-
zymes such as aminoacyl-tRNA synthetases, nucleotidyl transferase, or
RNAseP [48]. The tRNA-like structure has been shown to be neces-
sary for the initiation of replication [48]. A telomeric function of the
tRNA-like structure was also demonstrated [62] , in agreement with the
genomic tag model associated with such 3’-terminal tRNA-like motifs
[102]. Recently, the strech of three pseudoknots preceding the tRNA-like
structure in tobacco mosaic virus was shown to act as the functional
equivalent of a poly(A) tail, stabilizing a reporter mRNA and increasing

gene expression up to 100-fold [23].

Throughout our work two rather complex molecules were picked out to demon-
strate their pseudoknot folding behavior and the problems associated with
structure prediction (section 5). One example chosen for short distance pseu-
doknots (almost exclusively H-type) is tmRNA, a molecule with interesting
molecular biological features. Another example for long distance tertiary in-
teractions is RNAseP RNA. Here we give a brief characterization of these

species:
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2.2 tmRNA
2.2.1 The Biological Relevance of tmRNA

Because of the action of nucleases, mRNAs may be truncated and lose their
encoded stop codons at their 3’ ends. Translation of those messages can still
proceed but comes to a halt when the ribosome reaches the 3’ end of the
mRNA. In the absence of a stop codon, release factor cannot trigger the dis-
sociation of nascent polypeptides from ribosomes, and all ribosomes engaged
in translation of the same reading frame are stalled. Alanine-charged tm-
RNA may come to the rescue. It combines both transfer and messenger RNA
properties. The tRNA-like domain enables the ribosome to catalyze the next
peptidyl transfer of the nascent chain to the tmRNA-bound alanine. The de-
fective mRNA can then be released, and the ribosome switches to the reading
frame provided by the tmRNA. This process, message switching, might resem-
ble frame shifting or ribosomal hopping, with the significant difference that it
works in trans, as the new reading frame is provided by a second molecule.
Charged tRNAs complementary to the codons of tmRNA are then used for
translating the encoded tag. The tagged polypeptide can finally be released
as the ribosome reaches the in-frame stop codon of the tmRNA. Tail specific

proteases are now able to destroy the defective translation product.

2.2.2 Secondary Structure of E.Coli tmRNA

Experimental results: To determine the secondary structure several meth-
ods were used which complement each other. The structure of tmRNA was
proposed on the basis of covariation of homologous sequences [10] and on its re-
activity in solution toward enzymatic and chemical probes (RNAses, imidazol
probing and lead-induced hydrolysis [17, 93]). The probing data allows dis-
crimination between the single- and double-stranded regions within tmRNA.
Because tmRNA is a large molecule (363nt), many secondary structure models
are possible even if the probing data considerably restrict the number of realis-

tic solutions. Although there is no evidence it may be that tmRNA sequences
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are posttranscriptionally modified. Structural elements H1, H3, H4, H5, H6
pK2.1, and both stems of PK1, PK3, and PK4 are supported by the data
collected. Elements H2 and pK2.2 are questionable by probing, but supported
robustly by covariations. Element R1 is drawn as a pseudoknot, but at least
one alternative form could fit the data equally well. Many of these structural
domains are connected by single-stranded links of variable length. However,
in some cases, there is no connecting nucleotides. It seems plausible that tm-
RNA might undergo conformational change during the transition from tRNA
to mRNA. If so, then covariation of nucleotides among the various sequences
might reflect either of the two conformations, because it only represents a func-
tionally conserved base pair. Probing experiments as performed, only access
the tmRNA as it exists in solution, and not a molecule that might be induced

to a different form by interaction with a ribosome, for instance.

H1 : acceptor stem
H6 : T-stem

Figure 1: The secondary structure of tmRNA
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2.3 RNAseP
2.3.1 The Biological Relevance of RNAseP

Ribonuclease P (RNase P) is a key enzyme in the biosynthesis of tRNA
[2, 14, 69]. It is an RNA processing endonuclease that specifically cleaves
precursors of tRNA, releasing 5’ precursor sequences and thereby forming the
mature 5’ ends of the tRNAs. RNase P is involved in processing all species of
tRNA and is present in all cells and organelles that carry out tRNA synthe-
sis. It is a particularly interesting enzyme because of its composition: it is a
ribonucleoprotein [41]. In Bacteria the RNase P holoenzyme is composed of a
large RNA (usually 350-400 nucleotides) and a single molecule of a small pro-
tein (ca.120 amino acids in known instances). The bacterial RNase P RNA is
clearly the catalyst in the reaction. In contrast, archaeal and eucaryal RNase
P RNA subunits have not yet been found to exhibit catalytic activity after the
removal proteins. With the possible exception of the ribosome [54], RNase P
is the only known example of an RNA that in vivo truly acts as an enzyme,
in the sense that it reacts with multiple substrates. Other known catalytic
RNAs, for instance self-cleaving introns or satellite RNAs, naturally perform

only a single intramolecular reaction [84].

2.3.2 Secondary Structure of E. coli RNAseP RNA

Experimental results: The determination of the secondary structure of the
bacterial RNase P RNA was a challenge because of the substantial sequence

and length variation in the molecule from diverse organisms (figure 2).



2 Functional Aspects of RNA Pseudoknots

Gram positives

Kk

cyanobacteria

proteo- |LlowGsC_high G+G
bacteria

deinococci
& relatives

green non-
sulfur bacteria
Bacterla
Thermologa
Archaea
&
Eucarya

3

chlamydiae

planctomyces

g

spirochetes

Bacteroides

& relatives

green sulfur

bacteria

Bacterial RNase P RNA structure

Figure 2: Phylogenetic tree of bacterial RNaseP RNA



Figure 3: Comparison of RNAseP RNA secondary structure of Escherichia coli and

Bacillus subtilis
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3 Contact Structures and Diagrams

3.1 Secondary Structures

The three-dimensional structure of a linear biopolymer, such as RNA, DNA,
or a protein can be approximated by its contact structure, i.e., by the list
of all pairs of monomers that are spatial neighbors. A contact structure is
represented by the contact matriz C with the entries C;; = 1 if the monomers
1 and j are spatial neighbors without being adjacent along the backbone, and
Ci; = 0 otherwise. Hence C;; = 0 if |i — j| < 1. We shall use the notation

[n] :={1,...,n}.

Definition. A diagram ([n],2) consists of n vertices labeled 1 to n and a
set, €1 of arcs that connect non-consecutive vertices. A closely related class
of diagrams which allow also arcs between consecutive vertices are the linked
diagrams introduced by Touchard [90]. These are studied in some detail in the
references [35, 40, 80, 81]. It is customary to arrange the vertices along the
r-axis and to draw the vertices in such a way that they are confined in either
the upper or the lower half-plane. The diagram of a contact structure with

contact matrix C has the set of arcs

Q= {{i,j}|Cy=1}. (1)

The contact matrix is thus the adjacency matrix of the corresponding diagram.

Definition. A diagram graph is a simple vertex labeled graph I' with the

following properties:

(i) The n + 1 vertices of I" are labeled 0,1, ..., n.
(ii) T contains the Hamiltonian cycle [0, 1,...,n,0].

(iii) The “root” vertex 0 has degree 2.
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Lemma 1. There is an isomorphism ¢ between the diagrams with n vertices

and the diagram graphs with n + 1 vertices.

Proof. Let B be the matrix with the entries B; ;11 =B;11, =1,1=0,...,n—
1, and By, = B,o = 1. Furthermore let C be a symmetric n X n matrix with
entries 0 or 1 and C;; = 0 whenever |i—j| < 1. In other words C is the contact
matrix of a diagram on n vertices. The adjacency matrix of a diagram graph
with n + 1 vertices is of the form

acni (") o

since the “root” vertex 0 has only the neighbors 1 and n. Since B is already
defined by n, this decomposition is unique and A can be constructed if C is

known and wvice versa.

Essentially the same construction can be used for contact structures of molecules
with a circular backbone, i.e., for circular ssRNA or ssDNA. The only restric-
tion is that {1,n} cannot be an arc in the case of a circular molecule. It is
convenient in this case to define the corresponding diagram graph without the
artificial root 0. Each graph I' with a Hamiltonian cycle is then the diagram
graph of a contact structure with a circular backbone. The results in the

following discussion hold for both linear and circular nucleic acids.

Definition. A diagram is called an 1-diagram if for any two arcs «, 3 € 2
holds anNf =0 or a = f.

Lemma 2. A diagram A is a l-diagram if and only if the vertices of the

diagram graph ¢(A) have vertex degree less or equal to 3.

Proof. By definition no vertex of the diagram is contained in more than a
single arc. Adding the two edges along the Hamiltonian cycle H, we find the
deg(v) < 3 for all vertices of the diagram graph.  The diagram graphs of
1-diagrams are closely related to cubic Hamiltonian graphs. The latter are

studied in detail in section 9.4 of reference [94].

Definition. Let @ = {i,j} with ¢ < j be an arc of a diagram. We write
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@ :=[i, j] for the associated interval.

Definition. Two arcs of a diagram are consistent if they can be drawn in

the plane without intersection in the same half-plane. An obvious algebraic

characterization is

Lemma 3. Two arcs «, 3 € Q of a diagram are consistent if either one of the

following four conditions is satisfied.

(iii) 8 C a.

(iv) @n B = {k}, a single vertex.

Case (iv) is ruled out by definition in 1-diagrams. 1-diagrams can be used
to model the base pairing interactions in nucleic acids. Indeed, the classical
definition of a secondary structure [97] requires that each base pairs with at
most one other nucleotide. The second defining condition is the absence of
pseudoknots which can be expressed in terms of the contact matrix in the
following from: If C;; = C; =1 and ¢ < k < j then ¢ < < j. That is, if the
intervals of two arcs {i,j} and {k, [} have non-empty intersection then one is

contained in the other [74]. Using the above terminology we have the following

Definition. A secondary structure is a 1-diagram in which any two arcs

are consistent. A graph that can be embedded in the plane such that all its

vertices lie on the exterior region is called outerplanar. This class of graphs
was introduced and characterized in terms of subgraphs in ref. [9]. Another

interesting characterization in terms of a spectral invariant is discussed in [12].

Lemma 4. A 1-diagram A is a secondary structure if and only if its diagram

graph ((A) is outerplanar.
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Proof. A secondary structure is a 1-diagram A in which all arcs can be
drawn without intersection in the same half-plane. Equivalently, all arcs can
be drawn inside the Hamiltonian cycle A in ¢(A). Each secondary structure
can be encoded as a string s of length n in the following way: If the vertex i is
unpaired, then s; = “.’. Each arc o = {p, ¢} with p < g translates to s, = “ (’
and s, = ¢)’. Since the arcs are consistent their corresponding parentheses are
either nested, (( )), or next to each other, () (). As there are no arcs between
neighboring vertices in a 1-diagram there is at least one dot contained within
each parenthesis. A variant of this notation is the mountain representation of
RNA secondary structures [33]. The “dot-parenthesis” notation is used as a
convenient notation in input and output of the Vienna RNA Package, a piece

of public domain software for folding and comparing RNA molecules [31].

The close resemblance of cubic Hamiltonian graphs [94] and diagram graphs of
1-diagrams suggests to investigate their relation in some more detail. A graph
S is homeomorphic from a graph I' if S can be produced from I' by inserting
vertices of degree 2 into some edges of I'. S is also called a subdivision of T'.
Obviously each cubic Hamiltonian graph gives rise to a diagram graph on n
vertices by subdividing the edges of a Hamiltonian cycle. On the other hand,
not all diagram graphs are homeomorphic from a cubic Hamiltonian graph:
Suppose {1,3} is an arc and 2 is an unpaired vertex. The corresponding
diagram graph cannot be cubic since the triangle 1,2,3 cannot be obtained

from a cubic graph.

Definition. An arc « is an undisturbed hairpin if

(i) either there is no 3 € Q for which 3 C & is true, or 3 C @ for all 8 € Q.
(ii) « is consistent with all g € Q.
Lemma 5. A diagram graph ((A) is homeomorphic from a cubic Hamiltonian

graph I if and only if the set of arcs {2 is non-empty and A does not contain

an undisturbed hairpin.
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Proof. Consider a subset C' of vertices such the induced subgraph in ¢(A) is
a cycle C' in ((A). It is easy to see that C' can be contracted to a cycle that
contains no vertices of degree 2 (in the original graph) if and only if it contains
at least 3 vertices of degree larger than 2. These contractions can be performed
independently in all such induced subgraphs, thus ¢(A) is homeomorphic from
a cubic Hamiltonian graph if and only if each minimal cycle contains at least
three vertices with degree 3. Observing that undisturbed hairpins are exactly

the minimal cycles that contain two vertices of degree 3 completes the proof.

Corollary. A diagram graph of a secondary structure is not homeomorphic

from a cubic Hamiltonian graph.

3.2 The Inconsistency Graph of a Diagram

Definition. Let A = ([n],2) be a diagram. The inconsistency graph O(A)
of the diagram has vertex set 2 and {«, 5} is an edge of O(A) if and only if

the arcs « and [ are inconsistent in A. Essentially the same construction is

used for the investigation of cubic Hamiltonian graphs in [94], where a result

analogous to the following theorem is proved:
Theorem 1. Let A be a diagram. Then the following statements are equiva-
lent.
(i) The diagram A can be drawn without intersecting arcs.

(ii)) The diagram graph «(A) is planar.

(iii) The inconsistency graph O(A) is bipartite.
Proof. (i <= ii) A can be drawn without intersection arcs if and only if
t(A) is planar because the Hamiltonian cycle H of +(A) divides the plane into

the interior and the exterior of H which correspond to the upper and lower

half-plane of the diagram A, respectively.
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(i <= iii) If © is bipartite then there are two disjoint subsets Qp and Qf of
Q2 such that all arcs within the same subset are mutually consistent. Thus all
arcs of A can be drawn without intersection. Conversely, if we can draw A
without intersecting arcs then all arcs above and below the z-axis are mutually
consistent, i.e., two arcs can be inconsistent only if they lie on different sides of
the z-axis. Thus ©(A) is bipartite. Most of the literature on linked diagrams
deals with complete diagrams, that is, each vertex = € [n] is incident with
an arc [90, 40, 80]. It is straightforward to extend Touchard’s definition of

reducible diagrams to the incomplete diagrams considered here:

Definition. A diagram ([n], Q) is reducible if there is an interval [p, q] C [n]
such that

(i) For each a € Q holds either aN[p,q] =0 or a C [p, q].
(ii) There is an arc a € Q such that N [p,q] = 0.
(iii) There is an arc « € €2 such that o C [p, ¢g|.

If a diagram is not reducible, it is ¢rreducible.

It will be convenient to say that an interval [r, s] supports an arc « if & C [r, s].
Let Q. 5 be the set of arcs supported by [r, s]. We shall say that ([r, s], Q. 4])
is a sub-diagram of ([n], ) if [r, s] fulfills (i). The sub-diagram is non-trivial
if {2} 4 is neither empty nor equals (2. A diagram is therefore reducible if and
only if it contains a non-trivial sub-diagram. Let ([p, g], Qpp,q) and ([, s], Q)
be two sub-diagrams of A. Then [p,q] C [r,s] implies Qp 4 C €, and
([p,ql N [r, 8], Qg N Qppg7) is again a sub-diagram of A. The sub-diagrams of

A therefore form a lattice with respect to inclusion.

Lemma 6. A diagram A is irreducible if and only if its inconsistency graph
O(A) is connected.

Proof. (i) Suppose ([n], ) is reducible, and let ([p, q], ) be a non-trivial

sub-diagram. Thus there are no arcs that are incident with vertices both in
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[p, ¢] and [n] \ [p, ¢] and an arc « supported by [p, ¢ is consistent with any arc
B not supported by [p,q]. For all 3 € Q\ Qp, 4 it is true therefore that 3 is
not connected with any o € Qp, ;1 in ©(A) and ©(A) decomposes into at least
two non-empty components.

Now assume that ©(A) is not connected. The support of a component ©" of
©(A) in [n] is the union of all intervals [r, s] where r and s are incident with
arcs in © and all vertices in [r + 1, s — 1] are unpaired. Either the support of
©' is connected, i.e., in which case it forms an interval fulfilling the conditions
(i), (ii), and (iii), and A is a reducible diagram, or it contains a “hole” [u,v]
that contains a vertex z incident with an arc v ¢ ©'. Since v is consistent
with all arcs of ©', it cannot be incident to any vertex outside [u, v] (otherwise
it would need to cross at least one arc of ©’). Thus [u, v] fulfills conditions (i),
(ii), and (iii), and A is reducible.

The proof of lemma 6 implies an even stronger result: A sub-diagram cor-
responds to one or more components of the inconsistency graph. Reducible
diagrams can therefore be viewed as being composed of substructures. These
substructures do not conform the conventional decomposition into stems and
loops, however, which form the basis of the standard energy model of nucleic
acid secondary structures [22]. The notion of a stem trivially generalized to

arbitrary 1-diagrams:

Definition. Two arcs o« = {i,j} and (3 are stacked if 3 = {i — 1,5 + 1} or
B={i+1,57—1}. A stemis a subset ¥ of arcs oy through «y, such that «,

and o, are stacked for p=0,...,h — 1.

Lemma 7. Let ¥ be a stem in the 1-diagram A. Then the arcs of ¥ are
either all isolated vertices or they are contained in the same component of the

inconsistency graph ©(A); all arcs of a stem have the same adjacent vertices

in ©(A).

Proof. It suffices to show that an arc 3 that is inconsistent with one arc a € ¥

must be inconsistent with all arcs of the same stem. We observe that the arcs of
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¥ have the form o, = {i+p, j—p} withp =0, ..., h. Suppose 3 is inconsistent
with «a, for some p. Then it involves a vertex k£ with ¢ +p < k < j —p and
a vertex [ with either [ < ¢+ porl > j — p. Since there is at most one arc
attached to each vertex, # cannot involve the vertices between ¢+ p and i + h
or the vertices between j — h and j — p since they are already used by the arcs
of the stem WU; hence we have 1 + h < k < j — h. A similar argument shows
that [ satisfies either [ < i or [ > j, and 3 is therefore inconsistent with all arcs
a, € ¥. Hence 3 is adjacent in O(A) to all oy, € ¥ and thus they belong to
the same component of the inconsistency graph. If all arcs in {2 are consistent

with (the arcs of) the stem W they appear as isolated vertices in ©(A).

3.3 Bi-Secondary Structures

Definition. A bi-secondary structure is a 1-diagram that can be drawn with-

out intersections of arcs. We may draw the arcs in the upper or lower half-

plane, but they are not allowed to intersect the z-axis. Thus Q = QyUQ;
and the two diagrams ([n], Qy) and ([n],§2) are secondary structures. Bi-
secondary structures are therefore “superpositions” of two secondary struc-

tures.
Theorem 2. Let A be a 1-diagram. Then the following statements are
equivalent:
(i) A is a bi-secondary structure.
(ii) ¢(A) is planar.
(iii) ©(A) is bipartite.
(iv) Among any three arcs of A at least two are consistent.

(v) ©(A) does not contain a triangle.
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Proof. The equivalence of (i), (ii), (iii) is established in Theorem 1 for all dia-
grams. The equivalence of (iv) and (v) follows immediately from the definition
of ©(A). The implication (iii==-v) is obvious. It remains to show that (iv) or
(v) indeed implies (i), (ii), or (iii). We shall prove that —(ii) implies —(iv).

Suppose ¢(A) is not planar. Then by Kuratowski’s theorem implies that it
contains a subgraph S that is homeomorphic from either the complete graph
K5 or the complete bipartite graph K33 [42]. The vertex degree in ((A) is
at most 3. Therefore it cannot contain a subdivision S of K5 which would
have has five vertices with vertex degree 4. Any subdivision S of K3 3 contains
exactly six vertices 1,2, 3,4, 5,6 of degree 3. Of the three edges incident with
these vertices two must belong to the Hamiltonian cycle H because there is
at most one arc of A attached to each vertex. Thus S contains a cycle H’,
containing the vertices 1 through 6, that corresponds to 4 in the sense that
all edges of H that have been inherited by S belong to H'. A remaining edge
at 1 through 6 corresponds to an arc of A, hence it is directly connected to an-
other vertex of degree 3. Thus #' is a Hamiltonian arc of S. Without loosing
generality we may assume that the vertices 1 through 6 are ordered along H’
and hence also along H. Since S is a subdivision of K33 the three remaining
edges (i.e., arcs of A) must be {1,4}, {2,5}, and {3,6}. Obviously, they are
mutually inconsistent. Non-planarity of ¢(A) implies therefore the existence

of three arcs that are mutually inconsistent.

B vy

o) €
G<:I

a B vy
e 0

Figure 4: Theorem 2 is not valid for general diagrams. The inconsistency graph of

the diagram Aj is a pentagon and hence is neither bipartite nor does it contain a

triangle
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GGACUGAmGAAACAAGCUUA

() o

GGU

Figure 5: The contact structure of the proposed SRV-1 frameshift signal contains
a pseudo-knot, see reference [89]. Pseudoknots such as this one belong to the class
of bi-secondary structures.

Knots such as the one in the lower part of the figure do not belong to the class of

bi-secondary structures.

The equivalence of (iii) and (v) does not hold for general diagrams. A coun-
terexample is shown in figure 4. The virtue of bi-secondary structures is that
they capture a wide variety of RNA pseudoknots, figure 5 (upper part), while
at the same time they exclude true knots such as the structure in the lower

part of figure 5.

Being the union of the two secondary structures ([n], Qy) and ([n], Q) we
can represent each bi-secondary structure as a string s using two types of
parentheses: As in a secondary structure we write a dot ‘.’ for all unpaired
vertices. A pair {p,q} € Qu becomes s, = ‘(’ and s, = ¢)’, while an arc

{p,q} € Q1 becomes s, = ‘[’ and s, = ‘1.

The fact that ©(A) is bipartite allows us to define a normal form for this

representation by means of the following rule:
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Figure 6: Two diagrams encoding the 3’ non-coding region of tobacco mosaic virus
RNA [1]. The upper diagram corresponds to the normal form, the lower diagram

maximizes the number of upper arcs.

The leftmost arc of each connected component of ©(A) belongs to Qy. In
particular, all isolated vertices of ©(A) are contained in §2y;. The normal form
of a secondary structure therefore contains only dots and (round) parentheses.
Within each non-trivial connected component of ©(A) the distribution of arcs
between (2 and ()7 is unique since the component is bipartite. Lemma 7
implies that all arcs in a stack are written with the same type of brackets in
normal form because they have a common neighboring vertex and hence they

all belong to the same class of the partition.

Remark. If we compare the normal form of a molecule with any other possible
representation it seems at the first sight as if two different molecules are given.
For example in figure 7 the first picture (the normalform) shows stack 4 as
pseudoknot whereas in the second picture stack 2 is the pseudoknot. In the
first case the pseudoknot connects two interior loops in the second case a
multiloop and a hairpin. But of course, if we use the bi-secondary structure as
the basis of an energy function (section 4), the result has to be the same energy
regardless of the distribution of arcs between the two half-plains (2 and Q.

So if we apply a folding algorithm which deals with bi-secondary structures,
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to a sequences with a known experimentally determined structure (section
5), we have to keep the representation in mind if we compare the results.
However experimentally determined structures are not necessarily published in
normalform. Therefore, if we compare two structures in () . [] representation

it is convenient to convert them into the normalform.

S

g
uYu
U U
u U
C—G
cC—G
C—GUUU UG
u U G
cC—6G cc— o S
— 4 C N\ U
U G U UUCC\\ GU
c—GUyC— NI
cC—G G
C_GUUG u
U GG u
U 9]
cC—G G — c—s
c—gYulVl
c—6G
cC—6G c—6G
UucCc—GuU uc—G U

Figure 7: Different Representations of a Bi-Secondary Structure

3.4 Beyond Bi-Secondary Structures

A color partition of a graph I is partition V = VUV, U. ..UV, of its vertex set
into ¢ subsets V; such that no two vertices in V; are adjacent. The chromatic
number x(I') is the smallest number ¢ of colors for which a color partition of I'
can be found. An arbitrary diagram A can be decomposed into substructures

by means of the following obvious result:

Lemma 8. Let A = ([n],2) be a diagram and let V : Q@ = OQ; U Qy U
... U Q. be a partition of the set of arcs. Then the sub-diagram ([n],2;),
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1 = 1,...,¢, can be drawn without intersection if and only if V is a color

partition of the inconsistency graph ©(A). Noticing that x(I') = 1ifI" contains
no edges and x(I') = 2 if T" is bipartite with non-empty edge set the following

characterization follows immediately:

Corollary. Let A be a 1-diagram. Then

(i) A is a secondary structure iff x(©(A)) = 1;

(ii) A is a bi-secondary structure iff x(©(A)) < 2.

The chromatic number x(©(A)) may therefore serve as a measure for the
structural complexity of a contact structure. The following example shows that
there are natural RNA structures that have a chromatic number x(©(A)) > 2.
The FEscherichia coli a-operon mRNA folds into a structure that is required
for allosteric control of translational initiation [88]. Compensatory mutations
have defined an unusual pseudo-knotted structure [87], the thermodynamics of
which were subsequently investigated in detail [24]. The diagram of its contact

structure cannot be drawn without intersections, see figure 8.

>

> Y
W

Figure 8: Diagram of the contact structure of E. coli a-mRNA. The structure contains 5 stems, labeled
by uppercase Greek letters. As a consequence of lemma 7 we may choose the color partition if ©(A) such
that all arcs in a stem have the same color. It therefore suffices to draw the inconsistency graph for stems
(r.h.s. of the figure). It contains triangles, thus the diagram of this RNA structure is not a bi-secondary
structure. It is easy to check that x(©(A)) = 3.
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= %a ]

Figure 9: The graph V¢ and its inconsistency graph.

Graphs with moderate chromatic numbers can be characterized by results sim-

ilar to Kuratowski’s theorem for planar graphs.

Proposition. [16] Let £ < 4. A graph I' with chromatic number x(I') > &

contains a subdivision of the complete graph Kj.

Remark. The generalization of this proposition to £ > 4 is known as Hajés’
conjecture. It is false for k¥ > 7 and unsolved for £ =5 and k = 6 [34].

The graph invariant p introduced by Colin de Verdiére [12] leads to the same

hierarchy of structures for small u:

pw=1 t(A) is a circle, A has no arcs.
=2 1(A) is outerplanar, A is a secondary structure.

=3 t(A) is planar, A is a bi-secondary structure.

It is tempting therefore to conjecture that x(©(A)) < 3 might correspond to
diagram graphs with Colin de Verdiére invariant ;1 < 4. The graphs with p < 4
have recently been identified as the flat or linklessly embeddable graphs [44]. A
useful characterization of this class of graphs is proved in [67, 68]: “A graph is
non-flat if and only if it has no minor in the so-called Petersen family”. The

graph V¢*, figure 9, is a valid diagram graph. It is easy to check that V' is flat
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and that its inconsistency graph is O(Vy") = K4. Hence there are flat diagram
graphs for which x(©(A)) > 4. We do not know whether all diagram graphs
with x(©(A)) < 3 are flat.

3.5 A Metric for 1-Diagrams

An interesting algebraic interpretation of secondary structures was proposed
in [65]. Interpreting each arc {i,j} as a transposition (i,7) on [n] we may
assign the permutation

7(A) = [ (ias o) (3)

acq)
to each diagram A.

Lemma 9. (i) If A a 1-diagram then 7(A) is an involution.

(ii) An involution 7 is the permutation representation of a 1-diagram if and
only if its cycle decomposition does not contain a canonical transposition, i.e.,
a transposition of the form (4,7 + 1).

(iii) Different 1-diagrams give rise to different involutions.

Proof. (i) Since the arcs of an 1-diagram are disjoint we find only 1-cycles (the
unpaired vertices) and 2-cycles (the arcs) in the cycle decomposition of 7(.5).
Thus 7(S) is an involution. The claims (ii) and (iii) are obvious. A natural
set, of generators for the symmetric group S, is the set 7 of all transpositions.

The corresponding length function is
{(m) = n — cyc(m), T € Sp, (4)

where cyc(m) is the number of cycles into which 7 decomposes. We have
¢(t) = 1if and only if 7 € T is a transposition. The associated metric is
the canonical metric on the Cayley graph I'(S,,T), see [65] for a detailed

discussion. Since the involutions form a subset of S,, we have

Theorem 3. The function

(A, A') = L(m(A)m(A") ) =n —eye(r(A)m(A) ), (5)
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where m(A) denotes the permutation representation of a diagram A, is a metric
on the set of all 1-diagrams with n vertices. In particular, two 1-diagrams
A and A’ have distance d(A,A’) = 1 if and only if they differ by a single
arc. Metrics on “shape space” are necessary for a detailed quantitative study
of sequence-structure maps. Applications to RNA secondary structures are

reported for instance in [20, 76].

3.6 The Intersection Theorem

The virtue of equ.(3) is not limited to defining a metric on the set of structures.
Suppose we are given an alphabet of monomers (for instance {A, U, G, C}

in the case of RNA) and a rule that determines with pairs of monomers may
form a base pair (AU, UA, GC, CG, GU, UG in the case of RNA ).

Definition. A sequence s is compatible with a structure (1-diagram) A if for
each arc {7, j} the letters (monomers) s; and s; fulfill the pairing rule. The set

of all sequences that are compatible with A is denoted by C[A].

Theorem 4. (Intersection Theorem) Let A and A’ be 1-diagrams. Then
C[A] N C[A'] is nonempty.

The proof of this result in ref. [66] is valid for all 1-diagrams, not only for
secondary structures. The intersection theorem sets the stage for shape space
covering: it allow close-by sequences to fold into structures that are as differ-
ent as desired — given a suitable folding potential. Further applications of
equ.(3) can be found in [101]. Neutral networks in sequence space are modeled
as random graphs in [66]. This ansatz generalizes from secondary structures
to 1-diagrams without modifications. The only input parameter in this model,
namely the fraction A of neutral neighbors, must be determined computation-

ally for a particular choice of the folding potential.
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4 The Energy Model

As mentioned before the most essential part and core of every energy directed
folding algorithm is the energy function. In other words, any result produced
by a folding algorithm depends at first on the quality of the underlying energy
function. And the reliability of the energy model depends on the quality of the
empirical thermodynamic data. Unfortunately empirical energy parameters of
sufficient accuracy for secondary structures with pseudoknots are not available.
In this section we try to overcome this lack of data with the help of sterical

considerations and three more or less intuitively introduced parameters.

For practical reasons all experimental data obtained for secondary structures
are also used for bi-secondary structures. Therefore, we first describe the en-
ergy model for secondary structures and then proceed to bi-secondary struc-

tures and their additional features.

4.1 Thermodynamic Nearest Neighbor Parameters

The results of both quantum chemical calculations and thermodynamic mea-
surements suggest that horizontal (base pairing) contributions to the total en-
ergy depend exclusively on the base pair composition, whereas vertical (base
stacking) contributions depend on base pair composition and base sequence
i.e. the upstream and downstream neighbors along the chain [71]. The nearest
neighbor model introduces the assumption that the stability of a base pair, or
any other structural element of an RNA, is dependent only on the identity of
the adjacent bases and/or base pairs. The model is justified by the major con-
tribution of short-range interactions (hydrogen bonding, base stacking) to the
overall stabilizing energy of nucleic acid structures. In addition, it is natural
to assign loop entropies to entire loops instead of individual bases. Treating
stacks as special types of loops, one assumes therefore that the energy of an

RNA secondary structure ® is given by the sum of energy contributions € of
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it’s loops L.

E(®) =) e(L)+e(Lear), (6)

Led
where L.;; is the contribution of the “exterior” loop containing the free ends.
Note that here stacked pairs are treated as minimal loops of degree 2 and
size 0. In the following we shall discuss the individual contributions in some
detail.

In particular, the energy model contains the following contributions [91]:
Stacked pairs and G-U mismatches contribute the major part of the en-
ergy stabilizing a structure. Surprisingly, in aqueous solution parallel stacking
of base pairs is more important than hydrogen bonding of the complementary
bases. By now all 21 possible combinations of A-U G-C and G-U pairs have
been measured in several oligonucleotide sequences with an accuracy of a few
percent. The parameters involving G-U mismatches were measured more re-
cently in Douglas Turner’s group [30] and brought the first notable violation
of the nearest-neighbor model: while all other combinations could be fitted
reasonably well to the model, the energy of the g:%:g g: stacked pair seems to
vary form +1.5kcal/mol to —1.0 kcal/mol depending on its context.
Unpaired terminal nucleotides and terminal mismatches: unpaired
bases adjacent to a helix may also lower the energy of the structure through
parallel stacking. In the case of free ends, the bases dangling on the 5" and 3’
ends of the helix are evaluated separately, and unpaired nucleotides in multi-
loops are treated in the same way. For interior and hairpin loops, the so called
terminal mismatch energy depends on the last pair of the helix and both neigh-
boring unpaired bases. While stacking of an unpaired base at the 3’ end can
be as stabilizing as some stacked pairs, 5’ dangling ends usually contribute
little stability. Terminal mismatch energies are often similar to the sum of the
two corresponding dangling ends. Typically, terminal mismatch energies are
not assigned to hairpins of size three. Few measurements are available for the
stacking of unpaired nucleotides on G-U pairs, and for this reason they have
to be estimated from the data for G-C and A-U pairs.
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Loop energies are destabilizing and modeled as purely entropic. Few experi-
mental data are available for loops, most of these for hairpins. The parameters
for loop energies are therefore particularly unreliable. Data in the newer com-
pilation by Jaeger et.al. [39] differ widely from the values given previously [22].
Energies depend only on the size and type (hairpin, interior or bulge) of the
the loop. Hairpins must have a minimal size of 3, and values for large loops

(k > 30) are extrapolated logarithmically:
H(k) = H(30) + const. x log(k/30) (7)

Asymmetric interior loops are furthermore penalized [55], using an empirical
formula depending on the difference |u; — uy| of unpaired bases on each side

of the loop.
AFninio = min {AFmaX: |U1 — UQ‘ X AFninio (m1n{40, U1, UQ}) } (8)

For bulge loops of size 1, a stacking energy for the stacking of the closing and
the interior pair is usually added, while larger loops are assumed to prohibit
stacking. Finally, a set of eight hairpin loops of size 4 are given a bonus energy
of 2kcal/mol. These tetraloops have been found to be especially frequent in
rRNA structures determined from phylogenetic analysis. Melting experiments
on several tetraloops [3] show a strong sequence dependence that is not yet
well reflected in the energy parameters. No measured parameters are avail-
able for multi-loops, their contribution (apart from dangling ends within the
loop) is approximated by logarithmic extrapolation. Energy parameters for
the contributions described above have been derived mostly from melting ex-
periments on small oligonucleotides. The first compilation of such parameters
was done by Salser [72]. The parameters most widely in use today are based on
work of D. Turner and coworkers . The current work uses the compilation of
[22, 91, 30], who performed measurements at 37°C in 1 M NaCl. More recently
the differences between symmetric and asymmetric loops have been reported
to be only half the magnitude suggested by Papanicolau et.al. [55] and of
higher sequence dependence [57]. Serra et.al. [78] found a dependence of hair-

pin loop energies on the closing base pair and presented a model to predict the
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stability of hairpin loops [77]. Walter and coworkers suggested a model system
for the coaxial stacking of helices [95]. Wu and Walter studied the stability of
tandem GA mismatches and found them to depend upon both sequence and
adjacent base pairs [96, 45]. Ebel and coworkers measured the thermodynamic
stability of RNA duplexes containing tandem G-A mismatches [70]. Morse
and Draper presented thermodynamic parameters for RNA duplexes contain-
ing several mismatches flanked by C-G pairs. Mismatches are reported to have
a wide range of effects on duplex stability; the nearest neighbor model is con-
sidered not to be valid for G-A mismatches [53]. These results are, however,

not yet included into the parameter set used in this work.

4.2 Bi-secondary Structure Features

4.2.1 The Sterical Hindrance Involving Pseudoknot

Formation

It is obvious that tertiary interactions like pseudoknots are subjected to sterical
considerations. In contrast to the lack of thermodynamic data for pseudoknot
forming, a lot of geometry information for RNA in general is available [71]. So
the energy function deals mainly with sterical consideration beside the entropic
contribution of loop formation. The basic idea rests on two simplifications:
RNA stacks are viewed as stiff rods and unpaired regions are assumed to be
very flexible. So if we want to close a loop, containing stiff rods and flexible

chains the following parameter describes the sterical hindrance:

v=Ku—L,, + Y L (9)

i#imam

e u ... unpaired bases. Based on neutral networks a model of evolutionary

adaptation can be proposed.

o L .. number of bases in the biggest stack.

tmax *



4 The Energy Model 31

e [, ... number of bases in stack i.

e K ... constant that determines how many stacked bases can be bridged

by an unpaired base.

e I ... lowest possible energy contribution for pseudoknot generating

loops.

The free energy values are estimated by extrapolation using the theory of Ja-
cobson and Stockmayer [83]. If the free energy needed to join the ends of an
unrestricted, zero volume polymer is known, the theory predicts the free en-
ergy needed to form a similar but larger loop. The required size of an RNA
loop before it starts behaving as such a polymer still needs to be determined.
We therefore introduced a threshold constant 7, which we used as a starting

point for logarithmic extrapolation.

Three different cases can be distinguished:

(i) v < 0 loop formation is impossible
(ii) v < v loop energy is fixed at a constant value E,,

(iii) » > v logarithmic extrapolation of destabilizing entropy loop contribu-

tion

AG = E,; + const. x log(v/7) (10)

The pre-logarithmic multiplication factor was also used to extrapolate the
energies of all other loops (equation 7). In order to get a notion which values
v can adopt, we give a view examples. For each example we calculate v with

to different values of K.
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Figure 10:
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Figure 12:
K=25A4A:v=35B:v=-25
K=3 A:v=8 B:v=-2

The first three pictures show H-type pseudoknots, only in figure 10 pseudo-
knot formation is possible. The following four pictures display more complex
situations. For instance in figure 15 and figure 16 a second pseudoknot can
only be formed if K = 3.
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5 Structure Prediction

There are several methods to deduce RNA-structures from a given sequence
information and like almost all scientific prediction methods they make use of
experimental results and simplifying assumptions. RNA prediction methods
can be divided into two broad classes: Folding by phylogenetical comparison

and energy directed (i.e.kinetic or thermodynamic) folding.

5.1 Phylogenetic Structure Analysis

Given a large enough number of sequences with identical secondary structure,
that structure can be deduced by examining covariances of nucleotides in these
sequences. This is the principle used for structure prediction through phyloge-
netic comparison of homologous (common ancestry) sequences [28]. Basically
these methods just look for compensatory mutations such as an A change to
C in position i of the aligned sequences simultaneously with a change from
U to G in position j, indicating a base pair (i,j). So the sequence alignment
is the most complicated theoretical part (if the sequences in the set are to
dissimilar). The basic assumption is that structure is more conserved during
evolution than sequence, since it is the structure that determines function.
The only experimental information needed is a large enough number of se-
quences. Fortunately the sequence of nucleic acids is nowadays one of the best
accessible molecular biological information. In fact the success of the method
in the prediction of, for instance, the secondary structures of the 16S riboso-
mal RNAs [105], RNAseP or the clover-leaf structure of tRNAs provides an

excellent justification for this method.

The advantages: Since no assumptions about pairing rules are necessary,

non-canonical pairs and tertiary interactions can be detected as well.
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The disadvantages: A sufficiently large set of sequences which exhibit the
proper amount of variation has to be provided. So the sequences should be
dissimilar enough to show many covariations while still yielding a good align-
ment. If there are strongly conserved regions (i.e. the function is sequence de-
pendent) or parts of the structure are highly variable (because non-functional)
our assumption holds not true. As a consequence, phylogenetically determined
structures usually are incomplete, that means, they do not show all base pairs

of the actual structures.

Nevertheless phylogenetic comparison can generate the most reliable structure
models to date and are therefore frequently used for comparison of other folding

algorithms.

5.2 Energy Directed Folding

There are to different approaches to energy directed folding: Algorithms that
search for the structure of minimal free energy (or the equilibrium ensemble)
and kinetic folding algorithms. It is not known if the biological relevant struc-
ture of a given RNA molecule is the structure of minimal free energy. The
structure might be trapped in some local minimum during the folding process
(this might be the case with long RNA-molecules). Kinetic algorithms there-
fore try to simulate the folding process. The folding of pseudoknots can be

easily included and therefore we restrict the discussion to this method.

The Kinetic Algorithm

The first kinetic algorithm was proposed by Martinez [50] in 1984, mainly as an
attempt to create a faster algorithm. As do many other algorithms it starts by
compiling a list of possible helices. His idea was that the helix with the largest
equilibrium constant (that is the lowest energy) would form first. All helices

not compatible with this helix are then deleted from the list. The process
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is repeated until no helix is left whose incorporation would lower the energy
of the structure. Such an algorithm will indeed execute in only O(n?) steps.
The procedure implies that a helix that has once formed never opens again, so
there is no refolding. Currently the only kinetic algorithms allowing sequence
re-folding are nondeterministic. Furthermore, folding in vivo already starts
during transcription, so that helices near the 5’ end of the sequence should be
formed first. Algorithms that take this fact into consideration are discussed in
[1, 27].

The advantages: with a reliable energy function and an appropriate algo-
rithm no additional experimental data is needed to fold any sequence. If the

algorithm is fast enough a lot of interesting statistical properties concerning
RNA folding can be revealed.

The disadvantages: the experimental data which is used to derive our ther-
modynamic parameters can never be completely satisfying (for instance pseu-
doknot data). Even with excellent parameters it is impossible to simulate the
in vivo conditions during the folding process. So the simplifications which we

are forced to do, have to be kept in mind when looking at the results.

In this work a kinetic folding algorithm generalized for bi-secondary structures
was utilized, mainly because the implementation of pseudoknot folding is easily
accomplished. In contrast to the original Martinez algorithm the generalized
folding algorithm, of course, does not exclude pseudoknots as they occur in

bi-secondary structures.

5.3 Parameter Adjustment

To evaluate the energy function parameters a rather heuristic approach was
used. Experimental research provides a lot of RNA bi-secondary structures
mainly derived from comparative sequence analysis and complementing prob-

ing experiments. Some of them were used to adjust the parameter set.
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5.3.1 The H-Type Pseudoknots

H-type pseudoknots are the most simple cases of tertiary interactions (fig-
ure 10,11,12). Therefore we started our attempt to adjust energy function
parameters with a set of short RNAs with only one H-type pseudoknot. The
selected RNAs are about 80nt long, all of them fragments of longer RNAs.
They were taken from 7 closely related bacteriophages. The folding started
with the open chain.

Table 1: Sample of closely related bacteriophages.

# | Phage | Length | Pk-position
1| LZ5 82nt 19 ..42
2 | LZ3 81nt 19 ..42
3 T4 81nt 18 ..41
4 | TulA | 8lnt 18 ..41
5 | OX2 87nt 18 ..41
6 | TulB | 8lnt 18 .41
7 | Baker | 84nt 18 ..41
| 1 | 10 | 20 I 30 | 40 | 50 | 60 | 70 | 80
R CCCCCa o TEDIIY - (12T eee e DI oI e
UACUCAUUAAAGGUGUUGCUUGUGCACUACGUCAAGAUAGCAUUAUUAGAAUUUUGGUUUCCGCAGAAGCCUGCGGUCACUU
2 e CCCCCa o TEDIIY - (11T e s IDDIIIDD I C(CCCC(EI D) D)) I
UACUCAUUAAAGGUGUUGCUUGUACACUACGUCAAAAUAGCAUUGUUAGAAUUUUGAUUUCCGCAGAAGCCUGCGGUCACU
3 (e )DD D I [LLL..... (1110 I oI .
UACUCAUUAAAGGUAUUGCUUGUGCACUACGUCAAGAUAGCAUUGUUAGAAUUUUGAUUUCCGCAGAAGCCUGCGGUCACU
4 (((Covnnnn )DD DI CCLCC..... CCCCCCC.1110 . e e IDDIIIDD I (CCCCTRTIDD) D)) I
UACUCAUUAAAGGUAUUGCUUAUGCACUACGUCAAGAUAGCAUUGUUAGAAUUUUGAUUUCCGCAGAAGCCUGCGGUCACU
5 (((C.nnnnn. )))) . LLLLCC. ... ) (CCCCCII1T e DI CCCCCCa e I e
UACUCAUUAAAGGUAUUGCUUGUACACUACGUCAAGAUAGCACUGUUAGAAUUUUUGAAACCAUAAAAUCCAAAAUUUUUAUCAACU
6 (((C....... )DDD I I 1 N S (A ... IDDIIEDD I (CCCC(EI D) D)) I
UACUCAUUAAAGGUAUUGCUUGUACACUACGUCAAGAUAGCAUUAUUAGAAUUUUGAUUUCCGCAGAAGCCUGCGGUCACU
7 (e ) LLLICC ... ). (CCCCII1Te N CCCCCCe eI e

UACUCAUUAAAGGUAUUGCUUGUACACUACGUCAAGAUAGCAUUGUUAGAAUUUUUGAAACCAUAGAAUCCAAAAUUUUUUAUC
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In table 1 we display the experimentally predicted region for pseudoknotting,
below the results of our folding experiments are shown. The H-type pseudoknot
formation is relatively robust if the parameters are not varied to much. The

results were obtained with the following set of parameters:

8> K >4
12>v>8
E, = 4200 cal/mole

The E,; contribution for the lowest possible pseudoknot generating loop was

chosen according to [1].

5.3.2 Beyond H-Type Pseudoknots

Two rather complex molecules were picked out to demonstrate their pseudo-
knot folding behavior and the problems dealing with them in more detail. One
example chosen for short distance pseudoknots (almost exclusively H-type) is
tmRNA, a molecule with interesting molecular biological features. Another
example for long distance tertiary interactions is RNAseP RNA. Of course
both RNAs fold into bi-secondary structures. In both cases the complete sec-
ondary structure without pseudoknots was used as start structure from which
the folding process commenced. This is in accordance with the assumption,
that at first the hole secondary structure is formed before tertiary interactions

are established.

tmRNA

The five pseudoknots, of course show different behavior if we vary the parame-
ter set. PK 3 is a good examples for the adjustment of parameter K. Because
if K is smaller than 5, v is smaller than 0, therefore PK 3 would be ruled out.
In this case the assumption that stacks form stiff rods holds not true, because
a single unpaired base is not likely to bridge five stacked basepairs. PK 1 is
an example for a pseudoknot where K is not the most important constrain. In
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this case the logarithmic extrapolation together with 7 dominates the folding
probability. Finally it turned out, that if we choose parameters that enable
formation of PK 2, a view unintentional long range pseudoknots arise.

< R1 > < PK1 >
CCCCCCCCCCCCC. - Loee-33333) ... 1131 .o eee s s (CCCCCCCCCLOOEL. 200 - nn e e 11111...
GGGGCUGAUUCUGGAUUCGACGGGAUUUGCGAAACCCAAGGUGCAUGCCGAGGGGCGGUUGGCCUCGUAAAAAGCCGCAAA
I 1 I 10 | 20 | 30 | 40 | 50 | 60 | 70 I
< PK2
e CCCCCCe eI et CCCCCCCCCCennnnnnnn ))).)))))) (CCCCCCCCCC. CCCC. .. L))
AAAUAGUCGCAAACGACUAAAACUACGCUUUAGCAGCUUAAUAACCUGCUUAGAGCCCUCUCUCCCUAGCCUCCGCUCUUAGG
80 [ 90 I 100 | 110 | 120 | 130 I 140 | 150 | 160
> < PK3 >
DDDID IS DDD DD I 1177 .. CCCCCCCCCCCC. COEEDIIIIIIIIII) e 11111..
ACGGGGAUCAAGAGAGGUCAAACCCAAAAGAGAUCGCGUGGAAGCCCUGCCUGGGGUUUCCGCGUUAAAACUUAAUCAGGCUA
I 170 | 180 I 190 | 200 | 210 | 220 | 230 | 240
< PK4 >
CCCCCCCCCCCCCC  LEOEDIIIIIIINIIII) e 111111000 ...
GUUUGUUAGUGGCGUGUCCGUCCGCCGCUGGCAAGCGAAUGUAAAGACGGACUAAGCAUGUAGUA
| 250 | 260 [ 270 | 280 | 290 | 300 | 310
CCCCCCannnnnnn. DDDDDD I € C CC CUUNAII )N ...
CCGAGGAUGUAGGAACUUCGGACGCGGGUUCAACUCCCGCCAGCUCCACCA
| 320 | 330 | 340 | 350 | 360

—~ ~y _ %%Z§§§§§& =\ 4 = \ = W -\

""""" et S
Rl PK1 PK2 PK3 PK4

Figure 17: Sequence and structure of tmRNA in () . [] representation and as graph
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With the parameter set: K =5, v = 10, E,; = 420 all pseudoknots except
PK 2 emerge. The values lie within the intervals obtained from our H-type

studies.

Table 2: PKs in tmRNA beginning with the most stable pseudoknot

PK 4.1 | 248-261 270-283
PK 4.2 | 264-269 293-298
PK 1.1 | 49-53 63-67
PK 1.2 | 55-60 73-78
PK 3.1 | 200-211 218-229
PK 3.2 | 213-217 241-245
R11.1 8-13 21-26
R11.2 | 16-19 30-33

PK4

PK1

PK2

R1

As mentioned above, the proposed structures H2 and pK2.2 are implied by
covariation, but not supported by probing, and might then represent features
of a second, functional conformation not present in the molecules studied in
solution. Preliminary footprinting experiments of tmRNA with the ribosome
are consistent with this suggestion, because the probing pattern of H2 and
of loop2 of PK2 (as well as other parts of tmRNA) varies in the presence of
ribosome. Despite the complexity and imponderables of a probing study, the
combination of probing and covariation together strongly support some struc-
tural features, e.g., the pseudoknots PK3 and PK4. Some folded domains may
only be stabilized by interaction with proteins (such as EF-Tu) or ribosomes.
Probing data for R1 are consistent with breathing of the structure in solu-
tion, and these domains might be stabilized in vivo. So the predicted stability

reflects experimental findings in a very convincing way.
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RNAseP RNA
Comparative structure folding predicts two pseudoknots. None of them are
H-type pseudoknots.

< PK1

CCCCCCCCCCCCCCl. CC- (el CeCCC-a2333333333-93333) ) - - . . LIL. LELLLCC(C
GAAGCUGACCAGACAGUCGCCGCUUCGUCGUCGUCCUCUUCGGGGGAGACGGGCGGAGGGGAGGAAAGUCCGGGCUCC

| 1 [ 10 [ 20 [ 30 | 40 | 50 [ 60 [ 70
< PK2

<. LLLL. CCceeeeccC. . ... )DDDDECEC TS DD IS X € CHAA G CCCCC. . e
AUAGGGCAGGGUGCCAGGUAACGCCUGGGGGGGAAACCCACGACCAGUGCAACAGAGAGCAAACCGCCGAUGGCCCGC

| 80 | 90 [ 100 [ 110 | 120 [ 130 | 140 | 150
RENS DD IDDDDDD DD IR e 1IN CCCCCCCCa e DN NN e
GCAAGCGGGAUCAGGUAAGGGUGAAAGGGUGCGGUAAGAGCGCACCGCGCGGCUGGUAACAGUCCGUGGCACGGUAA

| 160 | 170 | 180 [ 190 | 200 | 210 | 220 | 230
PK2 >
MDINININII) ..t CCCCCCa .o CCCCCIITIMIMNINMINMID .o IN) .
ACUCCACCCGGAGCAAGGCCAAAUAGGGGUUCAUAAGGUACGGCCCGUACUGAACCCGGGUAGGCUGCUUGA
| 240 | 250 | 260 | 270 [ 280 [ 290 | 300
PK1 >

CCCCCCCCae eI ) e )DDDD D) . 11111311 00000)) ...
GCCAGUGAGCGAUUGCUGGCCUAGAUGAAUGACUGUCCACGACAGAACCCGGCUUAUCGGUCAGUUUCACCU

I 310 [ 320 | 330 | 340 | 350 | 360 | 370 |

Figure 18: Sequence and structure of E.coli RNAseP in () . [] representation and as graph
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It turned out that it is almost impossible to get both of them predicted cor-
rectly. The short distance interaction of the PK 2 halfstem GGGC (82-85)
with a fragment of PK 1 halfstem CCUG (71-68) prevents the formation of
both PK 1 and PK 2. The problem is strengthened by the type of folding
algorithm that is used. The kinetic folding algorithm does not treat PK 1 as
a single stem because of the unpaired U in one halfstem. Instead two sep-
arate stems, which overlap and therefore exclude each other, are tested. So
the only chance to get PK 1 and PK 2 is to modify the kinetic folding and to
reduce the longrange costs extremely. To reduce the long range costs we can
increase the threshold parameter v or decrease the constant factor for the log-
arithmic extrapolation. Both cases lead to parameters which are suitable for
RNAseP RNAs taken from several different species (but give rise to additional
pseudoknots):

Escherichia coli

Alcaligenes eutrophus

Desulfovibrio desulfruicans

Pseudomonas flurescens

Another sample of RNAseP RNAs form hairpin loop with large pseudoknot

stacks. Here the simplification of sterical conditions is totally inappropriate.

Agrobacterium tumefaciens

Rhodospirillum rubrum

Cyanophora paradoxa cyanelle

Anacystis nidulans



Figure 19: Secondary Structure of Alcaligenes eutrophus and Agrobacterium tume-

faciens

The Results of our tmRNA and RNAseP Folding Experiments:

The results show that it is much easier to get parameters that lead to short

distance (H-type) pseudoknots than to get parameters for long range interac-
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tions. That means if we choose parameters that enable the formation of long
range interactions a lot more H-type pseudoknots than in the phylogenetical

structure predicted will arise.

Particularly in RNAseP RNA additional non pseudoknot interactions are pre-
dicted which sometimes compete with pseudoknot stacks for bases. Since the
parameters for secondary structures were not changed two possibilities are
conceivable to avoid this additional stems. Either the algorithm only allows
pseudoknot formation and uses the start structure as the most stable secondary
structure, or the selected parameters prefer pseudoknot formation extremely.
It always has to be kept in mind that both RNAseP RNA and tmRNA struc-
ture models were derived in large parts from comparative structure analysis.
That means, that they may not show all base pairs of the real structure. How-
ever, changes in tertiary structure tend to be rarer than most compensatory
changes in regular helices, so larger sets of sequences are required to detect
them. Making comparative analysis of tertiary structure more difficult still,
the specificities of bases that engage in tertiary pairs or triples tend to be less
rigid than the canonical complementarities that establish secondary structure.
Another crucial point concerning tertiary interactions are the RNA associated
proteins. This proteins are thought to influence the tertiary structure much

more than the pure secondary structure, particularly longrange interactions.
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6 The Combinatory Map of RN A Bi-Secondary

Structures

In this section we present estimations for the enumeration of secondary struc-
tures as well as bi-secondary structures. We also study the statistics of bi-

secondary structures produced with different energy function parameter sets.

6.1 Enumeration of Bi-Secondary Structures
6.1.1 Enumeration 1-Diagrams

The number X, of all diagrams on n vertices is X,, = 2(~1)(=2)/2 gince there
are (n — 1)(n — 2)/2 possible arcs [79], which can be arbitrarily combined to
form a diagram. In lemma 9 we have shown that all 1-diagrams correspond to
involutions, therefore the number T, of involutions on [n] is an upper bound
for the number D,, of 1-diagrams on [n]. The combinatorics of involutions is

discussed for instance in the book [103]:

Proposition. The number 7}, of involutions fulfills the recursion
Tn = Tn—l + (TL — 1)Tn—2 n 2 2 and T() = T1 =1 ,
and has the asymptotic form

1 n 1
7o Lo (27 L)
ﬂn exp( 2+\/_ 4)

The number of involutions 7}, therefore grows faster than exponential in the

sense that /7, — oo. 1-Diagrams can be counted by a very similar similar

recursion as the following result shows:

Theorem 5. The number of 1-diagrams fulfills the recursion

Dn—|—2 = Dn+1+(n+1)Dn—Dn_1+Dn_2 n 2 2 DO = D1 = DQ = 1, D3 =2.
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Proof. The first few values of D,, are obvious, Dy = 1 is a convenient defini-
tion. The recursion is derived as follows: A 1-diagram on n + 2 vertices can
be formed either by adding a lone vertex to a 1-diagram on n + 1 vertices or
by adding an arc {1, %} to a 1-diagram A on n vertices by inserting the vertex
labeled k between the k£ — 1st and the kth vertex of A. Note, however, that
A must be a 1-diagram, but in addition it might have an arc {k — 1,k} in A,
since these vertices are separated by the endpoint of the newly introduced arc
in the new structure. Viewing this differently, we may either add the arc {1, k}
or the W-like structure consisting of the arcs {1,k} and {k — 1,k + 1}, which
leaves us with a 1-diagram on n — 2 vertices and the same problem. Repeating

this argument we arrive at the following expansion:

Hence we have D, .o = Dy y1+nD,+(n—1)D,_o+(n—3)D,,_4+. .. Observing
that D,,.1 can of course be written in the same form and substituting into the

above equations yields

Dyio = (n+1)Dp+nDy_1+(n—1)Dy_ o+ (n—2)Dy_3+...4+2D1+Dy— D, .

Subtracting the corresponding expansion for D, yields
Dyio—Dpiyy=(n+1)D,—Dy_y+ Dy

A simple rearrangement now completes the proof.

Corollary. lim,_,,, /D, = .
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Proof. The series D,, is obviously monotonically increasing. Hence the series
tni2 = (n+ 1)ay, ap = a; = 1 is a lower bound. It is well known that

a, = (n — 1)!! grows faster than exponentially.

Remark. A very similar formula is obtained for the case of a circular back-
bone. There are D,,_5 diagrams with arc {1, n} on n vertices. Thus the number
of 1-diagrams with circular backbone is D!, = D,, — D,,_». An exponential up-
per bound can be found, however, on the numbers D, (c) of 1-diagrams whose

inconsistency graph has chromatic x(©(A)) < ¢. We find
Theorem 6. D,(c) < (2¢+ 1)".

Proof. Consider a 1-diagram A = ([n], Q) with x(©(A)) < c¢. Then there
is a color partition of Q with ¢ colors. As ([n],2;) is a secondary structure,
it can be encoded in dot-parenthesis notation. Coloring the parenthesis with
a different color for each class €2; of the color partition hence yields a unique
representation of A. This representation can be interpreted as a string of
length n over an alphabet consisting of ‘.’ and c¢ different pairs of brackets,
i.e., with 2c¢ 4+ 1 letters. Theorem 6 is not a very good estimate as we shall

see in section 3.3.

6.1.2 Secondary Structures

A secondary structure on n + 1 digits may be obtained from a structure on n
digits either by adding a free end at the right hand end or by inserting a base
pair 1 = (k + 2). In the second case the substructure enclosed by this pair is
an arbitrary structure on £ digits, and the remaining part of length n—k —1 is
also an arbitrary valid secondary structure. Therefore, we obtain the following

recursion formula for the number S,, of secondary structures:

n—1
Sut1 =S+ ) SiSnk1, n2m+l Sy=..=Spa=1 (11

k=m
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Table 3: The constants A,,; in equ.(12).

m 1

1 2 3
112618 1.986 1.716
2 | 2414 1.899 1.680
3 12289 1.849 1.652
5 | 2147 1.783 1.612

This expression has first been derived by Waterman [97]; m denotes the min-
imum number of unpaired digits in a hairpin loop. Similar recursions can be
derived for the numbers U™ of secondary structures with minimum hairpin
length m and minimum stack length [, see [32] for details. Asymptotically,

these numbers behave as
U™ ~ B n AL (12)

The most important numbers are collected in table 3. A more detailed table
can be found in [32].

Detailed combinatorial studies on various aspects of secondary structure graphs
are based on equ.(13), see for instance [56, 82, 97, 99, 100, 98, 32]. In the

following we shall make use of the number

T | Corh I

of secondary structures of length n with k£ base pairs. This closed formula was

recently derived in [74].

6.1.3 Bi-Secondary Structures

A first naive upper bound is D,(2) < 52 since on each side of the z-axis

we have a secondary structure on n vertices. Theorem 5 implies D, (2) < 5".
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A slightly better bound can be derived using the enumeration of secondary

structures:

nin—k—1\(n—k\ (n—2k\ (2]
. < Py '
Lemma 10. D,(2) < osg{%{%/? 2( E—1 )(k—l—l)( 21 )(l)

Proof. We start with the s(n, k) secondary structures with &k arcs. In order to
produce a bi-secondary structure we use 2/ of the n — 2k unpaired positions for

n;lZ k) possible choices for these ad-
ditional pairs, which may form any of the C; = ;2 (¥) possible configurations

of [ matched parentheses. C is a Catalan number. Without loosing generality

introducing [ additional arcs. There are (

we may assume that [ < k, i.e., the partial secondary structure with the larger

number of pairs is drawn above the x-axis. Thus

Dn(2) < nzﬂ i s(n, k) (” ;l2k> .

k=0 1=0
Replacing the sums by appropriate multiples of the maximum entry is triv-
ial.  Note that this bound is still a gross overestimate: (i) It contains all
the redundancy of the (). []-representation. (ii) The number C; also counts
conformations of square brackets of the form [], which do not correspond to a
graph at all, and it counts conformations in which not all square brackets are
inconsistent with an arc that is represented by a round bracket. These latter

configurations are counted more than once.

Corollary. lim {/D,(2) < 4.76136931.

n—00

Proof. Let A,(k,l) denote argument of the maximum in lemma 10. It is

straightforward to compute

1
Az,y) = Ji_)rgﬁ]ogAn(nx,xy)

= 2(1—-2z)log(l —z)—2zlogz — (1 — 2z) log(1l — 2z)
—(1 =22 — 2y) log(1 — 2z — 2y) — 2y log(y)

(14)
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Set A := max{A(z,y)|0 < x+y < 1/2 Ay <z} Then lim {/D,(2) <
exp(A). Solving the optimization problem that defines A is straight-forward.
A short computation shows that § = 1/4/21 and # = (7 — 1/21)/14 is the only
local maximum with z,y < 1/2. It violates the condition y < z, however. The
solution thus lies on the boundary of the triangle (0,0), (1/2,0) and (1/4,1/4).
Setting y = 0 one obtains the maximum # = 1/2 — 1/1/20. Along the edge
r+y = 1/2 we find § = 1/1/12 violating the condition y < z. With z = y
we arrive at the cubic equation 312® — 3122 4+ 10z — 1 = 0 which has a single
real solution # ~ 0.1942. We find A(z,%) =~ 1.5605329 = A, because this
value is much larger than the values of A(z,y) at the three corners of the
triangle. More sophisticated models of RNA take into account that (i) base
pairs must enclose at least m = 3 other bases, and (ii) that isolated base pairs

7(zm,l)

are energetically disfavored. In [32] the numbers W5 ™ of secondary structures

with stack size at least [ base pairs and separation of the vertices incident with
an arc at least m is derived. We define U{™"* to be the number of 1-diagrams
with x(©(A)) < k and with the same restrictions, and set

A= lim {/ @™ (15)

n—o0

Clearly we have ¥{™52) < [\I!%m’l)]"‘ since the 1-diagram A is a superposition

of at most k secondary structures. In particular we find the upper bound
A% < 3.418 for the biophysical case.

We have not been able to derive an exact counting series for bi-secondary struc-
tures. Hence we resorted to a numerical survey. We pursued three different

strategies for estimating the number of bi-secondary structures:

(1) Complete enumeration is feasible only for very small values of n because

the number of structures grows faster than 2".

(2) As an alternative we produce random strings from the alphabet (). []
and check each string if it is the normal form of a bi-secondary struc-

ture. The number of secondary structures is then estimated by 5" x
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Table 4: Best estimates for the constants Agg

The counting data were fitted by the model

antcm.
m 1
1 2 3
11442 249 2.00
2 14.03 243 1.94
3 13.81 235 1.89
5 |3.44 222 1.74

an/Nsample’ where N is the size of the random sample and N, ¢

ample
is the number of detected normal forms in the sample.

(3) Using the recursion for secondary structures with given minimal stack
length [ and given minimal hairpin size m that is described in detail in
[86], we randomly generate a sample of pairs of secondary structures.
Interpreting these as the upper and lower part of bi-secondary structure
we check their superpositions for being normal forms of bi-secondary
structures. The number of bi-secondary structures is then approximately
\Il(nm’l) X an/Nsample’ where the numbers \Il,(lm’l) of secondary structures

with hairpins of length at least m and minimal stack length m can be

obtained recursively, see [32].

Our best estimates are compiled in table 4. In the biologically interesting case,
m = 3 and | = 2, we find A:(f% ~ 2.35.
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6.2 Statistics of Bi-secondary Structures

Most people who use folding algorithms are not interested in folding millions of
sequences, they just want to know the secondary structure of specific sequences.
But statistics can serve as a reference to compare structures obtained with
different parameters used in our energy function. To generate such statistical
reference we folded samples of 106 random sequences from the natural GCAU
and the restricted GC alphabets. Throughout our statistical investigation
we applied three different parameter sets,without varying the pre-logarithmic

factor:

(i) Realistic parameters: K =4, v =9, E,, = 420
(ii) Nonrealistic parameters: K =3, v =10, E,; = 200

(iii) No pseudoknots possible: K =1000, v =0, E,; = 1000

In the first case the parameters lie within the intervals obtained for H-type
pseudoknots (section 5.3.1), the nonrealistic parameters are expected to make
pseudoknot formation much to frequent and finally we use the plain secondary
structure as a reverence. All folded sequences are constrained to have a mini-
mum hairpin size of 3 and a minimum stack size of 2, i.e., there are no isolated

basepairs.

6.2.1 Distribution of Pseudoknots

The natural GCAU sequences with realistic parameters shows that by far the
most sequences are without pseudoknots and the probability for more than 2
pseudoknots is for all sequence lengths low. If we use parameter set (ii), of
course more pseudoknots appear, particularly for longer sequences. Is remark-
able that parameters (i) give positive curvature whereas parameters (ii) give

negative. For the GC sequences with realistic parameters, the plot resembles
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Figure 20: Number of pseudoknots for parameter set (i) (left side) and
(ii) (right side), for sequence length 100,70,50 and 30.

the GCAU plot with parameter set (ii). The GC plot for nonrealistic param-

eters shows for longer sequences a maximum probability for one pseudoknot

per structure.
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6.2.2 Number of Stacks and Loops

GCAU GC
5 T T
14 +
4 r 12 +
g g1t
Sat £
=4 =
2 2
() ()
L2+ 2 6
5 T
4 |-
1 |-
2 |-
0 . . . 0 . . .
20 40 60 80 100 20 40 60 80 100
chainlength chainlength

Figure 21: Mean values of the number of stacks and loops for parameter sets (i)
O, (ii) © and (iii) A

The number of loops must equal the number of stacks because every loop must
be closed by a stack. The mean number of loops and stacks for structures with-
out pseudoknots scores linearly with the length. Dependence on the alphabet
is weak. Structures folded with parameter set (ii) show at least for GCAU
sequences the same behavior. In all other cases the dependency is slightly

nonlinear, particularly for GC and parameter set (ii ).

6.2.3 Number of Base Pairs

The mean number of base pairs increases linearly with sequence length n in all
cases. Structures on the GC alphabet show much more base pairs. Parameter
set (i) and (iii) produce similar plots, parameter set (ii) produces less base

pairs.
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Figure 23: Mean values of stack sizes for parameter sets (i) O, (ii) ¢ and (iii) A

6.2.4 Stack Size

In all cases the mean stack size converges to a constant value although calcula-
tions for longer chain lengths would be needed. For both alphabets parameter

set (ii) produces the smallest mean stack sizes but with a faster convergence,

100
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whereas parameter set (i) resembles more the plot without pseudo knots (but

with smaller mean stack sizes).

6.2.5 Loop Size
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Figure 24: Mean values of loop sizes for parameter sets (i) 0O, (ii) ¢ and (iii) A

The mean loop size converges to a constant value for all alphabets and param-
eters. Mean loop sizes for structures without pseudoknots are particularly for
GC sequences much smaller than in all other cases. The biggest mean loop
sizes are produced by parameter set (ii). Except GC parameter set (iii) all

mean loop sizes increase with chain length.

6.2.6 Frequencies of Structures

As we have shown in section 6.2 the number of possible bi-secondary structures
is much smaller than the number of sequences for any sequence length n. Our
estimation counts the number of syntactically admissible structures irrespec-
tive of their stability. Since many sequences must fold into identical structures,

the question arises how these relatively few structures are distributed over se-
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quences. To determine the frequency distribution of secondary structures one
can fold large pools of random sequences, sort the resulting structures by fre-
quency and plot the rank of each structure versus its frequency. Using the sec-
ondary structure at full resolution this can be done only for very short (< 40)
sequences since for longer sequences one will not find any identical structures
in the sample. For longer sequences we can only study the frequencies of more
coarse grained structures. We used the so called loop structure. It is obtained
by denoting a stack by a single vertex and omitting the unpaired bases. If we
compare the frequency distribution for sequences of different lengths even at
different levels of coarse graining, remarkably similar results show up, following

roughly the generalized form of Zipf’s law given by Mandelbrot [47, 46].

flr) =a(l+r/b)~ (16)

where r is the rank (by frequency) of the structure S and f(r) is the fraction
of occurrences of S in the sample. Zipf’s law was originally derived from the
analysis of the frequency of words in literary texts [107] and has since been
found in a variety of contexts [38]. It states that “if one takes the words making
up an extended body of text and rank them by frequency of occurrence, then
the rank multiplied by it’s frequency of occurrence f(r) will be approximately a
constant”. The form given above can be derived analytically for simple models
of random text [43, 11]. Zipf’s law suggests that most sequences fold into few
very common structures while most structures are extremely rare. In the above
parameterization of Zipf’s Law the exponent ¢ describes the distribution of
rare sequences, the constant b is a rough measure for the number of frequent
structures, while a gives the frequency of the most common structures. The
parameters b and c¢ depend strongly on the chain length. The parameter
¢ describing the scaling of the power law tail of the distribution decreases
with chain length, indicating that a larger fraction of sequences folds into rare

structures for longer chains.

Our intention was to investigate if energy functions dealing with bi-secondary

structures follow the some law. We calculated frequency distributions at full
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resolution ( n=30) and coarse grained structure ( n=70,100) for GCAU and
GC alphabets. Again parameter sets (i)-realistic parameters, (ii)-nonrealistic

parameters and (iii)-no pseudo knots, were compared.
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Figure 25: Zipf plot n=30
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The results can be interpreted if we consider the different ratios of structures
to sequences. If we allow pseudoknot formation to occur very easily, the ratio
becomes bigger and the maximum rank grows. The same holds true if we use
a two letter alphabet instead of a four letter alphabet. In the first case the
accessible structure space grows (because of the pseudoknots) in the second
case the sequence space shrinks. In all cases the notion of Zipf’s law obtained

for secondary structures is maintained.

6.2.7 Neutral Networks

A question related to the relative frequencies of structures is their special
distribution over sequence space. RNA folding maps show a characteris-
tic feature called neutrality which has been studied in detail for secondary
structure.[26, 65] Neutrality means that there are extended nets of connected
sequences perlocating the sequence space which are folding into the same com-
mon structure. A sequence is connected to another sequences if the Hamming
distance between them is one (point mutation) ore two (compensatory mu-
tation of a base pair). Based on neutral networks a model of evolutionary
adaptation can be proposed. Because of the conserved secondary structure on
the neutral net, fitness values do not change. Therefore random walks along the
neutral net can be performed until a point is reached where a better secondary
structure can be obtained within a few mutations. To investigate how far neu-
tral nets extend in sequence space we implemented the following algorithm:
Starting from a random initial sequence I, we constructed a monotonously
diverging “neutral path “ by mutating our test sequence I,,, accepting the mu-
tated sequence I, if the mutation is neutral S(I) + S(I,) and the Hamming
distance does not decrease d(I(,41),1,) > d(I,,I,). As mutations we again
allow the exchange of a single unpaired base or to exchange two bases paired
in the reference structure. The length L of a path is the Hamming distance
between the reference sequence and the last sequence, and hence lower bound

on the diameter of the connected neutral network. Clearly, a neutral path
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cannot be longer than the chain length, L < n.
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As we can see the length of the neutral path decreases if pseudoknots are
allowed. This is due to the fact that much more sequences are accessible.
Therefore mutations can lead easier to new structures as it is in the case for

secondary structures.
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7 Conclusion

Secondary structures form a particular class of contact structures. In this work
we have considered a natural generalization of this class. Indeed, most known
RNA structures with pseudoknots are bi-secondary structures (which do not
involve nested pseudoknots). Bi-secondary structures correspond to planar

graphs while secondary structures form the sub-class of outerplanar graphs.

The inconsistency graph introduced in section 3.2 is a useful construction cap-
turing most of the geometrical features of nucleic acid structure. Its chromatic
number may serve as a measure of structural complexity. It seems possible
that an analogous construction will be useful for classifying and comparing
protein structures as well.

The analysis of graph-theoretical properties of classes of contact structures is
also useful for designing energy models. In order to understand the sequence-
structure mapping of a class of biopolymers it is necessary to have bounds
on the number of structures that can possibly be formed for a given set of se-
quences. While the number of possible contact structures grows faster than ex-
ponentially with the length of the molecules we find exponential upper bounds
when the structural complexity is limited. In particular, there are not more
than some 4.7" possible bi-secondary structures. If we enforce in addition the
sterical (loop-length at least 3) and thermodynamic (no isolated base pairs)
constraints of natural RNA sequences, then this bound drops to 3.42". Exhaus-
tive enumeration indicates that the actual number of bi-secondary structures
with biophysical constraints grows roughly as 2.35". Therefore the number of

sequences, 4" , exceeds by far the number of possible bi-secondary structures.

The energy model for bi-secondary structures introduced in section 4 tries to in-
corporate sterical considerations. RNA stacks are viewed as stiff rods whereas
unpaired regions are assumed to be very flexible. Three parameters were used
to quantify pseudoknot producing loop formation. The exact parameter values

were adjusted with the help of known bi-secondary structures. It turned out,
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that our energy model is capable to predict short range pseudoknots (H-type)
in a quite satisfying way. With long range pseudoknots the situation is differ-
ent, here the structure prediction is by far insufficient. This may be due to
sterical interactions with proteins or other parts of the RNA molecule. It has
to be considered that a relatively simple kinetic folding algorithm was used.
The prediction accuracy could be improved if the energy function is imple-
mented in a branch&bound search algorithm. This would in turn give a better
parameter adjustment. The statistic of bi-secondary structure elements shows

generic features which resemble those obtained from secondary structures.

e The number of base pairs, loops as well as stacks (including pseudoknots)

scale linearly with the chain length.

e Mean stack size and mean loop size become a constant for large chain

length.

The frequency of bi-secondary structures also follow the generalized Zipf low.
Although the possibility of pseudoknot formation increases the maximum rank
significantly, because the shape space gets bigger. The enlarged shape space
also causes the neutral paths to be shorter compared to pure secondary struc-
ture space. From the existence of such neutral networks one can expect far
reaching consequences for evolutionary optimization where the fitness depends
structure. Given a suitable error frequency an evolving population should per-
form a random walk along the neutral net, until it reaches a point where a
better secondary structure can be reached within a few mutations (i.e. a neu-
tral net with higher fitness comes sufficiently near). During the time where the
population diffuses on the neutral net, only the phenotype is conserved while

genotypic information is unstable.
Open Questions and Outlook

It remains to be investigated if the enlarged shape space and the subsequently
shortened neutral paths, changes significantly our notion of evolutionary opti-

mization on neutral networks. Therefore it would be necessary to develop an
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”inverse folding” algorithm. With the help of this algorithm the so called shape
space covering could be studied. The shape space covering radius is the radius
a ball in sequence space must have to contain the most common structures.
Another important task for the future is the implementation of a more sophis-
ticated folding algorithm. As pointed out above, a suitable branch&bound
algorithm would also improve the parameter adjustment of our energy func-

tion.
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