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Zusammenfassung

Biomoleküle wie DNA, RNA oder Proteine bilden die molekulare Basis aller

bekannten Lebensformen. Die Möglichkeit von Biopolymeren, in eine wohldefi-

nierte native Struktur zu falten stellt eine Notwendigkeit für biologisch relevante

Moleküle dar. Um Biomoleküle einer theoretischen Untersuchung zuführen zu

können ist es notwendig, ein gewisses Abstraktionsniveau einzuführen. Im Fall

von RNA wird diese Abstraktion durch Sekundärstrukturen erreicht. Basierend

auf experimentell gemessenen Energieparametern wurden an unserem Institut in

den vergangenen Jahren effiziente Algorithmen zur computergestützten Behand-

lung von RNA Sekundärstrukturen entwickelt und als Vienna RNA Package einer

breiten Öffentlichkeit zugänglich gemacht. Proteine werden oft als ”self-avoiding

walk” auf verschiedenen Gittern als Sequenzen aus zwei Monomertypen, nämlich

hypdrophob (H) und polar (P) dargestellt.

Ein grundlegender Baustein bei der Untersuchung von komplexen molekularen

Systemen ist die Untersuchung der Energiefläche, auf der sich die Dynamik des

Systems abspielt. Detailliertes Verständnis der strukturellen Eigenschaften von

komplexen Landschaften ist daher essenziell für die Biophysik von Heteropoly-

meren. Struktur-formende Prozesse sowie die Kinetik von Biopolymeren sind

inherent verknüpft mit den topologischen Gegebenheiten der Energielandschaft,

im Speziellen Basins und Energiebarrieren.

Im Rahmen dieser Dissertation wird ein effizienter Algorithmus zur Untersuchung

der Eigenschaften von Energielandschaften, z.B. Anzahl der lokalen Minima oder

Verteilung von Basins vorgestellt. Durch hierachische Anordnung der Konfor-

mationen ist der Algorithmus in der Lage, die Energielandschaft als so genan-

nten barrier tree darzustellen. Barrier trees vermitteln einen Eindruck von der

gesamtheitlichen Struktur sowie der Rauhheit der Energielandschaft.

Ein stochastischer Algorithmus zur Simulation der Faltungskinetik von RNA,

der auf elementaren Schritten im Konformationsraum basiert, wurde um das

Gebiet der Gitterproteine ergänzt. Eine erweiterte Form einer Arrhenius-artigen

macrostate-Kinetik, die auf barrier trees formuliert werden kann, wird mit der

stochastischen Kinetik verglichen. Der Vorteil der macrostate-Kinetik ist eine

drastische Reduktion an Rechenzeit. Dadurch kann die Dynamik von Biomole-

külen in der Grösse von tRNA binnen Minuten untersucht werden.

Weiters wird ein neuer Ansatz zur Berechnung des energetisch niedrigen Teils der

Energielandschaft von Gitterproteinen präsentiert.
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Abstract

Biomolecules like DNA, RNA or proteins form the molecular basis of all known

forms of life. The ability of biopolymers to fold into a well-defined native state is

a prerequisite for biologically functional molecules. In order to treat biomolecules

within a theoretical framework, a reasonable level of abstraction or coarse-graining

is needed. RNA can be modeled conveniently by means of secondary structures.

Based upon experimentally measured energy parameters, efficient dynamic pro-

gramming algorithms for a computational treatment of RNA secondary struc-

tures have been developed at our institute and made available as the Vienna

RNA Package. Proteins are often modeled as self-avoiding walks on various lat-

tices with a sequence consisting of only two monomer types, hydrophobic H and

polar P residues.

A fundamental prerequisite in complexity studies of molecular systems is certainly

a thorough investigation of the energy surface on which the system dynamics

evolve. A detailed understanding of structural features of complex landscapes

thus lies at the heart of the biophysics of heteropolymers. Kinetics and structure

formation processes of biopolymers are crucially determined by the topological

details of the energy landscape, i.e. basins and barriers separating them.

We introduce an efficient algorithm for measurement of features of energy land-

scapes, such as the number of local minima, the size distribution of basins of

attraction or thermodynamic quantities. The algorithm is capable of construct-

ing a hierarchical order of conformations that can be represented compactly in

so called barrier trees, giving an impression of the shape and ruggedness of the

energy landscape.

A stochastic algorithm for the simulation of kinetic folding of RNA, based on

elementary steps in conformation has been extended to the field of lattice proteins.

We compare results from an extended Arrhenius-type macrostate kinetics, that

can be formulated on the barrier tree with results from the stochastic simulation.

A major advantage of the coarse-grained dynamics is time efficiency, allowing

computational treatment of tRNA size molecules’ dynamics within a time-scale

of several minutes.

We will further present a novel approach to generate the lowest-energy part of

lattice protein energy landscapes based on elementary steps starting from a low-

energy state.
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1 Introduction

The last 150 years were certainly of utmost importance for molecular biology.

When Charles Darwin proposed his first empirical theory of biological evolution

in 1859, he suggested that the diversity and complexity of present day organisms

can be explained on the basis of two key principles: inheritable variation and

natural selection. Although the laws and mechanisms of variation had not been

accepted in the nineteenth century, his theory became one of the most influential

contributions to natural sciences and nowadays forms a cornerstone of a modern

view of the basis of life.

However, almost a century should pass after Darwin’s famous contributions that

scientists elucidated the molecular basis of life: Biomolecules or biopolymers,

mostly linear polymers consisting of covalently bounded monomers, are the most

important ingredients in the cookbook of life. A common principle to all poly-

meric macromolecules in living systems are highly ordered chemical entities with

specific sequences of monomeric subunits that are responsible for specific, dis-

crete structures and functions. There are three fundamental principles that arise

within this context [91]:

• function of a biopolymer is determined by its unique structure

• non-covalent interactions play a critical role in biopolymer structure and

function

• the specific sequence that is built from monomeric subunits encodes infor-

mation that is crucial for all living elements

Most biopolymers are heteropolymers, which means that their sequence is built

from a handful of different monomers. DNA and RNA, for example, are made of

four different nucleotides, whereas 20 different amino acids form proteins.

As the structure is responsible for a biopolymer’s function, it seems fair to say

that a theoretical chemist’s main interest lies in the three dimensional shape of a

biomolecule. As a matter of fact, it would be desirable to calculate a biopolymer’s

native structure only with knowledge of its sequence. However, the huge number

of atoms and the immense dimensionality of conformation space make such cal-

culations impossible with present day computer resources. It is thus necessary to
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shift the problem towards a direction that is computationally feasible, i.e. it is

necessary to coarse-grain the problem. Within the framework of RNA, the coarse-

graining is achieved by investigating secondary structures instead of the full 3D

structure of a molecule, proteins can be modeled by putting each monomer on a

2D or 3D grid and allowing only specific movements on this grid. Although such

simplifications include a considerable level of abstraction, these models do not

only give an impression of energetic properties of biomolecules. Simple models

also allow for a thorough investigation of biopolymer folding properties as well as

dynamics and kinetics studies that would not be possible within an exact model.

Several powerful algorithms that make a computational treatment of RNA feasi-

ble have been suggested within the last decades [117, 157, 170], a freely available

implementation of these algorithms is the Vienna RNA Package [77, 78]. In con-

trast to RNA, efficient algorithms to calculate the ground state of protein models

are not available. The situation is even worse here, especially due to the fact that

lattice heteropolymer folding was shown to be NP-complete [9, 30, 151].

It is necessary to get an impression of the underlying energy landscape in order to

investigate the dynamic behavior of a biomolecule. For RNA, efficient dynamic

programming tools for the calculation of all suboptimally folded secondary struc-

tures within a desired energy range above the ground state are available [164].

For lattice protein models, the set of suboptimal structures must be enumer-

ated exhaustively, preventing an examination of reasonably long model chains.

Nevertheless, with knowledge about all suboptimal structures, an insight into

the energy landscape of biopolymers is possible (for a thorough introduction to

characterization and computation of general landscapes, see [49, 143]). Another

prerequisite to investigate energy landscapes is some sort of metric that defines

adjacency between different (secondary) structures, called move set. To be more

precise, a move set is an order relation on the set of conformations that influences

the shape of the energy landscape dramatically: Depending on which combina-

tions of elementary moves are allowed, the energy landscape can be very rugged

or more or less smooth. While RNA landscapes are thought to be extremely

rugged, energy landscape of simple protein models are generally highly degener-

ate - this can basically be seen as an artefact of the assumed simplification in the

model.

The energy landscape of a biopolymer is determined by (a) the set of configura-



7

tions of the molecule, (b) the move set and (c) an energy function that assigns

an energy value to each legal configuration. The properties and topology of

the underlying energy landscape influence the folding behavior of a biomolecule.

A number of techniques for calculation of features such as the number of local

optima, the size distribution of the basins of attraction as well as a practical

visualisation in form of so called barrier trees (see chapter 4.1) have been devel-

oped for the special case of RNA secondary structures within the last years [49].

Similar tools can be applied to lattice protein folding. We present here a novel

approach to enumerate the near-ground state part of the energy landscape (see

chapter 6).

Having the energy landscape (or at least its low-energy part) at hand, the dy-

namics of a biomolecule can be investigated by means of a reduced description of

the state space. In contrast to a previously suggested Monte Carlo method that

considers every single configuration of the interesting molecule [47], we present

here a recently published method that assesses the dynamics by modeling it as a

Markov process on the level of barrier trees (see chapter 7). Within this model,

only local minima of the barrier tree are allowed states of the system. Transition

rates between these minima depend on the energy barriers between them. Frac-

tional population densities are assigned to certain local minima at the beginning

of the simulation. Depending on the initial conditions and the energy ratio in

terms of the barrier height between different states, other states (local minima)

are populated as time elapses. This method allows not only for a thorough and

fast study of the whole dynamics of a biopolymer, but enables also investigation

of the refolding behavior of biomolecules on a theoretical level. More generally,

properties of the folding landscape such as kinetic traps can easily be found with

this model.
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2 Biopolymer Modelling

Biopolymers are polymers found in nature. DNA, RNA, proteins and polysaccha-

rides are examples of biopolymers in which the monomer units, respectively, are

nucleotides, amino acids and carbohydrates. We will give an introduction to RNA

and proteins in this chapter as they form the molecular basis of all calculations

presented in this thesis.

2.1 RNA

Ribonucleic acid (RNA) is a linear polymer with a backbone of ribose sugar rings

linked by phosphate groups. Each sugar has one of the four naturally occurring

bases adenine (A), guanine (G), cytosine (C) and uracil (U) linked to it as a

side group. The sequence of these bases specifies the structure and function of

a RNA molecule. The 5’ carbon of one ribose is linked to the 3’ carbon of the

next ribose via a phosphate group, hence the backbone is directed: Since one end

has an unlinked 5’ carbon and the other one an unlinked 3’ carbon, the ends are

referred to as 5’ and 3’ ends. The chemical difference between RNA and DNA

is small: RNA has an OH-group at the 2’-position of the ribose ring, DNA has

just a H bound there. Further, DNA contains thymine (T) instead of uracil (U).

However, RNA and DNA differ in their structure: Whereas DNA mostly occurs in

double-stranded, perfectly complementary helical structures, RNA usually occurs

single-stranded. In other words we can say that when RNA is transcribed in cells

as single strands of nucleic acids, these are not simply long strands of nucleotides.

Rather, intra-strand base pairing produces a complex arrangement of structure

motifs.

It has been thought for a long time that there is a strict partitioning in the

way genetic information is processed: DNA is used for storage, RNA acts as a

transmitter and proteins are regarded chemical catalysts. This so called ’cen-

tral dogma of molecular biology’ has considered RNA as merely an intermediate

between DNA and proteins. However, RNA turned out to be ’more’: RNA

molecules do not only serve as carriers of information, but also as functionally

active units, i.e. RNA is seen nowadays as an important and versatile molecule

on its own. See [74] and references therein for an in-depth overview of RNA

structure and function.
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mRNA (messenger RNA) is an exact copy of one of the strands of a certain region

of DNA and its central region serves for a template during protein synthesis.

tRNAs (transfer RNA), figure 1, that have been sequenced in many organisms,

are short sequences of about 76 nucleotides that form a well-defined clover-leaf

structure. They play a crucial role in the process of protein assembly as they

are charged with an amino acid at the 3’ end which is incorporated into the

nascending peptide chain during protein synthesis. We did some kinetic studies

with tRNAphe, see section 7.3.1. RNA is also present at another site of protein

synthesis: Ribosomes are composed of two sub-units, each containing three types

of rRNA (ribosomal RNA) as well as several different proteins. Ribosomes have

binding sites for mRNA as well as tRNA and they move sequentially along a

mRNA template, acting on one codon at once.

Figure 1: Tertiary structure of tRNAphe from yeast (saccharomyces cerevisiae). The backbone

is drawn as yellow ribbon, purines an pyrimidines of the nucleotides are shown in blue. tRNA

occurs in typical L-shaped structures, the anticodon loop at the bottom is the counterpart to

the respective codon on an mRNA. The tRNA is loaded with an appropriate amino acid at the

CCA motif (right top) by the enzyme aminoacyltransferase.
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When Cech and Altman discovered that RNA has the ability to exhibit catalytic

activity [23, 60, 61], the idea that an RNA World [54, 82, 83] stood at the ori-

gin of life was born. Within this view, RNA served both as carrier of genetic

information as well as catalytically active substance. RNA may not necessarily

have been the first step in prebiotic evolution, but the idea that RNA preceded

not only DNA, but also the invention of the translational system, seems widely

accepted. While the activity of these so called ribozymes is usually restricted to

cleavage and splicing of RNA itself, recent evidence suggests that RNA also plays

a predominant role in ribosomal translation. DNA molecules exhibiting catalytic

behavior have also been discovered [20].

Another interesting example of RNA involvement are RNA viruses, particles con-

sisting of one or more RNA molecules contained within a protein coat. Viral RNA

genomes not only code for proteins, but also carry out the role normally adopted

by DNA in storing genetic information. Many different families of RNA viruses

are known: Simple bacteriophages, such as Qβ or MS2, which multiply inside bac-

terial cells. More complex examples include plant pathogens like Tobacco Mosaic

Virus or human pathogens like influenza or HIV. RNA secondary structure mo-

tifs are known to play a crucial role in the viral cell cycle. Well known examples

are the internal ribosomal entry site (IRES), the RRE motif in HIV or the CRE

hairpin in Picornaviridae. A comprehensive survey of structural features across

the full genomes of the whole family Flaviviridae was given recently [147].

Newer investigations revealed that riboswitches - complex folded domains that

serve as receptors for specific metabolites - play a crucial role in controlling

genes [46, 48, 99, 105, 116, 124, 160]. Generally, gene-control systems must

have the ability to respond precisely to specific signals, rapidly bring about their

genetic effect and have sufficient dynamic character to fine-tune the level of ex-

pression for hundreds of different genes. Although it has long been realized that

protein-based control systems are present in organisms, there is an emerging

awareness of the role of RNA factors in gene control nowadays: On the one hand

side RNA is present in gene control mechanisms in form of microRNAs (miR-

NAs) and related short-interfering RNAs (siRNAs). These are short non-coding

RNA fragments of about 22 nucleotides in length that regulate gene expression

by several mechanisms like post-transcriptional gene-silencing or DNA methy-

lation [43, 68]. Although protein factors are required for proper operation of

these mechanisms, many organisms rely on RNA for critical regulatory tasks.
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On the other side numerous mRNAs in procaryotes exhibit complex folded do-

mains within the non-coding region of their nucleotide chain that directly bind

to specific metabolites. These riboswitches control gene expression by harness-

ing changes in RNA structure without involvement of protein factors, influencing

transcription elongation, translation initiation or other aspects of the process that

leads to protein production [116].

It has been shown repeatedly that alternative conformations of the same RNA

sequence can perform completely different functions, see e.g. [6, 120, 135]. SV11,

for instance, is a relatively small molecule that is replicated by Qβ replicase. It

exists in two major conformations, a meta-stable multi-component structure and

a rod-like conformation, constituting the native state, separated by a huge energy

barrier. While the meta-stable conformation is a template for Qβ replicase, the

ground state is not. By melting and rapid quenching the molecule can be re-

converted from the inactive stable to the active meta-stable form [166].

In recent years dynamical aspects of RNA structure formation, including transi-

tions at the level of RNA secondary structure, have received increasing attention,

because they can play a crucial role for the understanding of the biological func-

tion of RNA. It has been shown for a number of natural RNAs that the formation

of alternative or metastable conformations are well-defined steps in their folding

pathways. These folding intermediates determine the biological function of the

molecule.

The translation of the four genes encoded on the genomic RNA of the bacterio-

phage MS2 is regulated by the secondary structure transition of the 5’ untrans-

lated leader sequence from a metastable hairpin to a stable cloverleaf structure

[122]. While the expression of the lysis and replicase genes is coupled to the ex-

pression of the coat protein in the full-length RNA, the maturation gene, coding

for the A-protein needed by the virion for the attachment to E. coli, is unaccessi-

ble to the ribosome due to the cloverleaf structure of the leader sequence. During

transcription of the viral RNA the 5’-end of the leader sequence is trapped in

a metastable hairpin allowing the ribosome to access the A-protein gene. After

some time the hairpin is disrupted in favor of the stable cloverleaf, thereby si-

lencing the A-protein gene expression. This secondary structure switch precisely

controls the amount of A-protein translated from the MS2 genomic RNA.

The Hok/Sok system of plasmid R1 from E. coli is another prominent example for
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the regulation of gene expression via an intricate cascade of secondary structural

rearrangements. The Hok/Sok system mediates plasmid maintenance by express-

ing the Hok toxin which kills plasmid-free segregates. The plasmid encodes for a

highly stable mRNA, which is translated to the Hok toxin if the mRNA is in its

activated conformation, and a labile anti-sense RNA (Sok) which act as an anti-

dote by binding to the activated hok mRNA, leading to rapid degradation of the

resulting duplex. The full-length hok mRNA forms a pool of inactive mRNAs.

In time, however, the hok mRNA gets processed resulting in the truncation of

the 3’-end, which triggers a refolding of the mRNA into the active conformation.

Then both locations, the Hok gene and the Sok binding site are accessible. If the

plasmid was lost, the pool of the antidote Sok is depleted, since the hok mRNA

is considerably more stable then the sok RNA inducing the killing of the cell. For

recent reviews on biologically functional RNA switches we refer to [12, 115, 105].

The structure formation process of RNA can conceptually be partitioned into two

consecutive stages [14, 148]. First, the specific sequence (the string of bases) or

primary structure, is transformed into a pattern of complementary base pairings

called the secondary structure. Second the secondary structure distorts, to form

a three dimensional spatial structure or tertiary structure (see section 2.4 for

a formal definition of RNA secondary structure). The tertiary structure is the

three-dimensional configuration of the molecule. Tertiary interactions are hydro-

gen bonding or stacking interactions between structure elements. Although the

hierachical nature of RNA formation is generally accepted, there exist examples

where the secondary structure is changed after the tertiary strucrure has been

fomed [163].

It is hard to solve the structure prediction problem for RNA structures since

the number of degrees of freedom of the RNA chain is very high. Nevertheless,

there are several facts that support the consideration of the secondary structure

of RNA as a coarse grained approach to the three dimensional spatial structure:

• The conventional base pairing and the base stacking cover the major part

of the free energy of folding.

• The secondary structure provides a scaffold of distance constraints to guide

the formation of the tertiary structure.

• In contrast to the protein case, the secondary structure of RNA is well
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defined and assigns all bases to secondary structure elements.

• RNA secondary structure is conserved in evolution and has been used suc-

cessfully to interpret RNA function and reactivity.

The secondary structure of RNA is formed by aggregation of planar complexes,

or base pairs of purine and pyrimidine bases. There are four naturally occurring

bases: Adenine (A), Guanine (G), Cytosine (C) and Uracil (U). G and C,

respectively A and U are complementary bases which can form strong hydrogen

bonds, a weaker base pair is also possible between G and U, often referred to as

“wobble” base pair.

2.2 Proteins

Proteins are macromolecules that are constructed from one ore more unbranched

chains of 20 different amino acids linked by peptide bonds. Amino acids can be

hydrophobic or hydrophilic, small or large, charged or uncharged. A typical pro-

tein contains a few hundred amino acids, though short chains (the smallest are

often called peptides) and extremely long ones are known. One of the largest pro-

teins known at this time is titin, a protein found in skeletal and cardiac muscles,

which contains on average 26926 amino acids in a single chain.

Proteins exhibit an extraordinary diversity of function. One protein is respon-

sible for transport of oxygen in the blood, another produces a strong, fibrous

structure found in hair and yet another one catalyzes cleavage of nucleic acids.

The following list is an incomplete enumeration of protein function:

• nearly all biochemical reactions are catalyzed by enzymes that mostly con-

tain proteins

• any form of motion in living cells is based on contractile proteins, e.g.

muscle fibers

• the structure of cells, and the extracellular matrix in which they are em-

bedded, is largely made of protein1 (for example collagens)

1plants and microbes mostly rely on polysaccharides (cellulose) for support, but these are

synthesized by proteins
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• proteins are often found in signal-transduction mechanisms

• heterotrophic nutrition is crucially dependent on proteins

• proteins occur as transcription factors that turn genes on and off

In proteins, amino acids are connected via peptide bonds, where the carboxyl

group of one amino acid is connected to the amino group of the other (figure 2).

The sequence of amino acids is often called primary structure. In the 1930ies,

Pauling an Corey found that the peptide bond C-N is somewhat shorter than

the C-N in a simple amine and that the atoms associated with the peptide bond

are coplanar. They found a resonance or partial sharing of two pairs of electrons

between the carboxyl oxygen and the amide nitrogen. A small electric dipole is

set up by a partial negative charge of the oxygen and a partial positive charge of

the nitrogen.

Figure 2: Upper plot: The peptide bond. Torsional angles are labeled with Greek letters.

Rotation around ω is generally hindered. Lower plot: Three bonds separate sequential α

carbons. Six atoms of a peptide group lie in single plane with the oxygen of the carboxyl group

and the hydrogen of the amide nitrogen trans to each other. Rotation is only possible around

the φ and ψ angles.

The lower plot of figure 2 shows that the backbone of a polypeptide chain can

be pictured as a series of rigid planes with consecutive planes sharing a common
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point of rotation at Cα. Free rotation around the peptide bond is not possible,

more flexibility for rotation is around the N-Cα bond (called φ angle) and around

the Cα-C bond (called ψ angle). In principle, both φ and ψ can have values

between -180◦ and +180◦. Nevertheless many values are prohibited by steric

interference between atoms in the polypeptide backbone and amino acid side

chains. In real proteins, the achievable values are restricted to small regions that

are displayed in so called Ramachandran plots.

The term protein secondary structure refers to a local conformation of parts of

a polypeptide, i. e. a periodic spatial arrangement of residues that are close to

each other on the (primary) amino acid chain. A few types of secondary structure

are particularly stable and are found in may proteins, the most prominent are

α helix and β conformations described below, though there are other secondary

structure elements such as loops and turns that allow a polypeptide chain to

change direction.

An α helix is a rod-like coiled structure where the polypeptide backbone is tightly

wound around an imaginary axis drawn longitudinally through the middle of the

helix. The inner part of the helix is formed by the backbone, while the side-chains

are turned outward. In this arrangement, all non-terminal CO and NH groups

are hydrogen bonded, which means that an α helix makes optimal use of internal

hydrogen bonds.

A β conformation is a more extended conformation of the polypeptide where the

backbone is structured in a zigzag layer rather than a helical structure. These

layers (β strands) can be arranged side by side (parallel or anti-parallel) to form

a structural element called β sheet. In this arrangement, hydrogen bonds are

formed between adjacent segments of the polypeptide chain. Although we claimed

protein secondary structure to refer to local conformations, the individual seg-

ments that form a β sheet can be quite distant from each other, they may even

be segments in different polypeptide chains.

Protein tertiary structure will be of special importance for our purpose in this

thesis. With this term we refer to the three-dimensional arrangement of all atoms

in a protein. In contrast to secondary structure (referring to local arrangements

of amino acids), tertiary structure includes longer-range aspects of amino acid

sequence. Amino acids that are spatially far apart from each other and that

reside in different secondary structures can interact within the completely folded
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structure. Weak-bonding interactions or covalent bonds such as disulfide cross-

links are often responsible for the tertiary positions of interacting segments in the

polypeptide chain.

2.3 Continuous Space models - State of The Art

We gave an introduction to biopolymers, their function and current understand-

ing in the last sections. The main intention of this thesis is investigation of the

dynamics of biopolymers. Despite all the progress in recent years [121, 138], it

seems fair to say that Molecular Mechanics will for the foreseeable future remain

incapable of predicting, say, the folding pathway of a globular protein starting

from a random coil state all the way to its (unknown) native state. Thus, we

will present a different approach here: Reduced models that are simple repre-

sentations of biopolymers. In the following we will give a brief introduction on

the concepts of and prerequisites necessary to modeling biopolymers within a

computational framework.

In order to treat this class of molecules on a theoretical level and investigate

its behavior computationally we need some sort of abstraction. The most evi-

dent difference between modeling nucleic acid and protein dynamics is the level

of abstraction used as a basis for the models: In contrast to protein folding,

the secondary structures of nucleic acids provides a level of description that is

sufficient to understand the thermodynamics and kinetics of RNA folding [146]

(without recourse to an atom-by-atom model of the molecule), see section 2.4.

Before giving an introduction to the ”simple-exact” methodology of protein fold-

ing (section 2.5), we start with an overview of generally known computational

continuous-space methods that are readily applicable to proteins and nucleic

acids.

Given, that computational resources would not represent the limiting factor,

quantum mechanical methods would be a first choice for studying conforma-

tions and interactions of biomolecules. These methods solve for the electronic

structure of molecules and thus derive the effective Born-Oppenheimer potential

for nuclear motion from first principles. However, such methods are enormously

resource- and time consuming for larger biomolecules. Instead, force field meth-

ods that ignore the electronic motions are used to calculate the energy of systems
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as a function of the nuclear positions only.

The principles of force fields (also known as molecular mechanics) are based upon

Newtonian mechanics. The basic idea is that bond lengths, valence and torsional

angles have “natural” values depending on the involved atoms and that molecules

try to adjust their geometries to adopt these values as closely as possible. Ad-

ditionally, steric and electrostatic interactions, mainly represented by van der

Waals and Coulomb forces, are included in the so-called potential. A typical

force field contains a set of several potential functions which themselves contain

adjustable parameters. These parameters are optimized to obtain the best fit

of experimental values, as geometries, conformational energies and spectroscopic

properties. It is important to realize that force fields are usually parameterized

for a limited set of molecular properties and a specific set of molecules.

Many of the molecular modeling force fields in use today can be interpreted in

terms of a relatively simple four component picture of intra- and intermolecular

forces within the system (see Appendix B for details).

Etotal = Ebond + Eangle + Etorsion + Enon−bonding

Figure 3: Three components picture of molecular forces. Non-bonding forces are not shown.

These simple terms mentioned above can be expanded to adjust the potentials

better to the experimental results (e.g. Morse potential for bonds, Taylor ex-

pansions with higher terms, cross-terms between the potentials), but with the

disadvantage of higher calculational effort. That is the reason why biomolecu-

lar force fields usually do not include refinement terms for the bond, angle and

torsion potential. Sometimes force fields include additional potential terms for
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specific interactions, such as hydrogen bonding or dipole-dipole interaction. A

typical example is the hydrogen bonding term in the AMBER force field.

Calculating the energy with respect to a given conformation is only one part of

optimizing the structure of molecules. For improving the structure it is necessary

to change the geometry in such a way, that the total energy is lowered. This

process is repeated iteratively so that an energy minimization corresponds to a

geometry optimization. Ideally, finding the global minimum of the underly-

ing potential function is desired. Unfortunately, there is no method available

to determine the global minimum of a function of many variables. Hence, opti-

mization algorithms (steepest descent, conjugate gradient) are often trapped in

a local minimum. A consequence of ending the optimization run in a local

minimum is that different optimized structures will be achieved, depending on

the starting geometry. Therefore it is usually necessary to use different starting

geometries and compare the obtained structures to get lower energies.

A useful approach to overcome the problem of local trapping is the implementa-

tion of some kind of randomness (namely stochastic techniques) as it is done with

simulated annealing. Simulated annealing is a widely used optimization pro-

cedure that originated in statistical physics [85]. In effect it tries to simulate the

cooling and the crystallization process occurring in a heated solid. Starting point

is the configuration space Ψ and an energy function U , which U : Ψ → R. In

the case of molecular mechanics U corresponds to the potential function whereas

Ψ is the conformation space constructed from all possible conformations of the

molecule. Beginning from a starting geometry, the energy E0 of the molecule is

calculated. This is followed by a random step in conformation space, represent-

ing a random change of the molecular geometry. Then the energy E1 of the new

conformation is calculated. The probability p of accepting the new conformation

as a new starting structure at this point is given by:

p =

{

1 : E1 ≤ E0

e−
E1−E0

kT : E1 > E0

k and T are the Boltzmann constant and the temperature, respectively. In fact,

this is known as the Metropolis algorithm [110]. It ensures that the optimization

cannot be trapped in a local minimum since higher energies are accepted with a

certain probability so that energetic barriers can be overcome. If n is the number

of simulated annealing steps the global minimum is always found for n→ ∞. A
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typical simulated annealing procedure starts at high temperature T to warrant

that the random walk overcomes the highest barriers and reaches most of the

conformational space. Then the temperature is lowered by a certain scheme and

the molecule is trapped in the conformation it has entered most often.

In molecular dynamics (MD), successive configurations of a system are gen-

erated by integrating Newton’s laws of motion. The result is a trajectory that

specifies how the positions and velocities of the particle in the system vary with

time.

Fi(t) = miai(t) = mi
∂2ri(t)

∂t2
, where Fi(t) = −

∂Etot

∂ri

The forces acting on the atoms are the negative gradient of the potential en-

ergy Etot. Under the influence of a continuous potential the motions of all the

particles are coupled together, giving rise to a many-body problem that cannot

be solved analytically. Therefore the equations of motion are integrated using a

finite difference method. As basic idea the integration is broken down into small

stages, each separated in time by a fixed time δt. The accelerations ai of the

particles are available from the force Fi, calculated from Etot. The accelerations

ai are then combined with the positions and velocities at a time t to calculate the

positions and velocities at a time t+ δt. Choosing an appropriate time step δt is

essential for a successful molecular dynamics simulation. Typical δt for all-atom

force fields with no constraints is 1 femtosecond. As the process of folding takes

place in a millisecond scale, the simulation of biomolecular folding by atomistic

MD is not within the reach of present day computers.

There are several force field program packages available for biomolecular com-

putation. The most prominent of these force fields is the Cornell force field of

AMBER, which is not only used in the AMBER packages, but is also included in

various other program packages (e.g. NAB, JUMNA). Other examples of force

fields are CHARMM (Chemistry at HARvard Molecular Mechanics) [15, 101]

and GROMOS (GROningen MOLecular Simulation System) [154]. The poten-

tials in AMBER, CHARMM and GROMOS have the same basic structure as

described in the beginning of this section. Only AMBER has an additional en-

ergy term for an adequate description of hydrogen bonds. Apart from these force

fields there are some other packages for simulating biomolecules including other

energy term expressions, like DREIDING [107] and Tripos 5.2 [28].
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2.4 RNA Secondary Structure

We consider nucleic acid structures at a coarse-grained level, representing each

nucleotide by a single point. Only covalent and non-covalent contacts (the latter

correspond to specific hydrogen bonds) are used instead of spatial coordinates,

hence only RNA sequence and the list of base pairs enter our considerations.

A secondary structure S is formally defined as the set of all base pairs (i, j) with

i < j such that for any two base pairs (i, j) and (k, l) with i ≤ k the two following

conditions hold [157]:

1. i = k if and only if j = l.

2. There are no knots or pseudoknots allowed. For any two base pairs (i, j)

and (k, l) the condition i < k < l < j or k < i < j < l must be satisfied.

The first condition simply means that each nucleotide can take part in at most

one base pair. Several examples of tertiary interactions breaking this condition

are known, including base triplets, G-quartets and A-platforms. The second

condition forbids knots and pseudoknots. While pseudoknots are important in

many natural RNAs [159], they can be considered part of the tertiary structure

for our purposes and we will therefore neglect them for the purpose of this thesis.

The two conditions above imply that secondary structures form a special type of

graphs. In particular, a secondary structure graph is sub-cubic (i.e. the vertex

degree is at most three) and outer-planar. The latter property means that the

structure can be drawn in the plane in such a way that all vertices (representing

nucleotides) are arranged on a circle (the molecule’s backbone), and all edges

(representing base pairs) lie inside the circle and do not intersect, see figure 4.

The possibility to compute the free energy of structure formation given the se-

quence and the list of base pairs forms the physico-chemical basis for a coarse

grained computational chemistry of nucleic acids. Note that a secondary struc-

ture as defined here corresponds to an ensemble of conformations restricted to a

certain base pairing pattern. No information is assumed about the spatial confor-

mation of unpaired regions. Since the entropic contributions of these restricted

conformations have to be taken into account, we are dealing with (temperature

dependent) free energies here.
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Figure 4: Secondary structure of phenylalanine-tRNA from yeast as conventional drawing and

in circular representation. The chords in the circular representation must not cross in secondary

structure graphs.

Any secondary structures can be uniquely decomposed into loops as shown in

figure 5 (note that a stacked base pair may be considered as a loop of size zero).

A secondary structure graph is equivalent to an ordered rooted tree. An internal

node (black) of the tree corresponds to a base pair (two nucleotides), a leaf

node (white) corresponds to an unpaired nucleotide. Contiguous base pair stacks

translate into “ropes” of internal nodes, and loops appear as bushes of leaves.

Both quantum chemical calculations and thermodynamic measurements suggest

that horizontal (base pairing) contributions to the total energy depend on the

base pair composition, whereas vertical (base stacking) contributions depend on

base pair composition and base sequence, i.e. the upstream and downstream

neighbors along the chain [132]. The nearest neighbor model introduces the

assumption that the stability of a base pair, or any other structural element

of a RNA, is dependent only on the identity of the adjacent base and/or base

pairs. The model is justified by the major contribution of short-range interactions

(hydrogen bonding, base stacking) to the overall stabilizing energy of nucleic acid

structures. In addition, it is natural to assign loop entropies instead of individual

bases. Stacks are treated as special types of loops. The energy of an RNA

secondary structure S is thus assumed to be the sum of the energy contributions
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Figure 5: Various representations of RNA secondary structure: The tree representation of the

secondary structure graph in the middle (l.h.s); Representation of an RNA secondary structure

as a planar graph (middle); The loop decomposition of the secondary structure graph in the

middle (r.h.s). The closing base pairs of the various loops (base pair, hairpin, bulge, interior,

multiloop) are indicated by dotted lines (Note that a helix of length n decomposes in n-1 stacked

base pairs).

of all “loops”2 L

E(S) =
∑

L∈S

ε(L) + ε(Lext) (1)

where Lext is the contribution of the ”exterior” loop containing the free ends.

Note that stacked pairs are treated as minimal loops here. This decomposition

has a solid graph theoretical foundation [96]: the loops form the unique minimal

cycle basis of the secondary structure graph. More importantly, a large number

of careful melting experiments have shown that the energy of structure formation

(relative to the random coil state) is indeed additive to a good approximation,

see e.g. [51, 81, 106, 156].

Usually, only Watson-Crick (AU, UA, CG and GC) and wobble pairs (GU,

UG) are allowed in computational approaches since non-standard base-pairs

have in general context-dependent energy contributions that do not fit into the

”nearest-neighbor model”. Qualitatively there are two major energy contribu-

tions: Stacking of base pairs and loop entropies. Stacking energies can be com-

puted for molecules in the vacuum by means of standard quantum chemistry

approaches, see e.g. [75, 119]. The secondary structure model, however, con-

siders only energy differences between folded and unfolded states in an aqueous

2i.e. the faces of the planar drawing of the structure
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solution with rather high salt concentrations. As a consequence one has to rely

on empirical energy parameters. Loops are destabilizing: The closing base pair

restricts the possible conformations of the sequence in the loop relative to the

conformations that could be formed by the same sequence segments in a random

coil resulting in an entropy loss and thus an increase in free energy.

Let A be some finite alphabet of size κ, let Π be a symmetric Boolean κ×κ-matrix

and let Σ = [σ1 . . . σn] be a string of length n over A. A secondary structure is

compatible with the sequence Σ if Πσp,σq
= 1 for all base pairs (sp, sq). Following

[80, 157] the number of secondary structures S compatible with a specific string

can be enumerated as follows: Denote by Sp,q the number of structures compatible

with the substring [σp . . . σq]. Then

Sl,n+1 = Sl,n +

n−m∑

k=l

Sl,k−1Sk+1,nΠσk,σn+1 (2)

A secondary structure compatible with a given sequence with maximal number

of base pairs can be determined by a dynamic programming algorithm [117].

Other variants of the algorithm have been formulated besides this ”maximum

matching” problem: Zuker and Stiegler [169, 170] formulated the algorithm for

the minimum energy problem using the now standard energy model. Since then

several variations have been developed: Zuker further devised a modified algo-

rithm that can generate a subset of suboptimal structures within a prescribed

increment of the minimum energy [168]. The algorithm will find any structure

S that is optimal in the sense that for every pair b in S there is no structure Sb

that contains the pair b and has lower energy than S.

John McCaskill [108] showed that the partition function over all secondary struc-

tures

Z =
∑

S

exp(−∆G(S)/kT ) (3)

can be calculated by dynamic programming as well. In addition his algorithm can

be used to calculate the frequency with which each base pair occurs in the Boltz-

mann weighted ensemble of all possible structures. Having the partition function

at hand, it is possible to explore the thermodynamics of RNA secondary struc-

tures. The free energy of structure formation, for example is, ∆G = −RT lnZ.

From this, other thermodynamic parameters, such as melting curves, can be

computed.
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A for academic use freely available implementation of the just mentioned al-

gorithms is the Vienna RNA Package3 [76, 77, 78] which forms the basis of all

RNA-related calculations presented here. Energy parameters used in the software

can be found in [106].

Pseudoknots must be treated separately, since they do not meet the second condi-

tion given at the beginning of this section. The prediction of RNA pseudoknots,

however, is still largely an open problem. Themodynamic structure prediction

based on the standard energy model is NP-complete [1, 100] in general, albeit

restricted classes of pseudoknots can be dealt with by polynomial algorithms.

Nevertheless, these approaches are expensive in terms of CPU and memory us-

age [1, 38, 71, 126, 130, 131] and in addition suffer from uncertainties of the

energy model for pseudoknots [62].

The conformation spaceX of a given sequence is the set of all secondary structures

S compatible with this sequence. As mentioned earlier, each secondary structure

S ∈ X itself is a list of base pairs (i, j) in a way, that any two base pairs from

S do not cross each other, if S is represented as a graph in the plain. From the

total recursion (equation 2) an asymptotic formula for the growth of the number

of secondary structures with chain length n can be derived [19, 40, 79, 109].

Sn ∼ n− 3
2 · αn (4)

Counting only those planar secondary structures that contain hairpin loops of

size three or more (steric constraint), and that contain no isolated base pairs

one finds α = 1.8488 for the total number of secondary structures. The size of

the conformation space increases exponentially with the chain length. A con-

venient measure to get am impression on the conformation space X of a given

sequence is the density of states g(ε). It displays the energies of the individual

structures S, and their distribution with regard to the ground state. Algorithms

for computing the complete density of states for a given RNA sequence are avail-

able [32]. However, the density of states gives only the number of conformations

in a certain energy range, but not their explicit structures. If we were interested

in this information, suboptimal folding techniques are needed. We used the tool

RNAsubopt4 [164] which, based on an efficient dynamic programming algorithm,

provides all suboptimal folds for a given sequence within a desired energy range.

3available from http://www.tbi.univie.ac.at/~ivo/RNA/
4part of the Vienna RNA package
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2.5 Discrete Protein Models

As mentioned before, structure calculations of proteins at an atomic resolution

make use of the same force field machinery as nucleic acdis’ calculations do.

Within continuous space models, a crucial problem is of course the large number

of degrees of freedom. Consequently, it is still impossible to determine the min-

imum energy structure for larger proteins based on the knowledge of only their

sequence. To circumvent this problem, many approaches were made to reduce

the conformation space, Most of them work with reduced amino acid represen-

tations on various lattices. The simplest approaches use only one representative

pseudo atom per amino acid (mostly Cα sometimes Cβ), extended versions in-

clude additional pseudo atoms for the side chains. Lattice models have several

advantages. First, such models can explore larger conformational changes and

they allow for an easy design of local conformational transitions. In contrast

to conventional MD simulations, lattice models enable precalculation of entire

sets of some conformational transitions. Atomic-level simulations can currently

explore only small conformational changes that occur within very short times.

Second, lattice models overcome the problem of incomplete sampling that is in-

herent in atomic resolution models (due to parameters and approximations that

must be assumed there). Third, lattice models do not include terms for covalent

energies and thus circumvent the problem of calculating small differences (few

kilocalories) between large energy terms (megacalories) [35].

There are in principle two types of lattice model simulations, aiming at two dis-

tinct objectives. One was designed to understand the basic physics governing the

protein folding process. The key feature of this lattice type is its simplicity. The

energy evaluation on such a lattice model can be achieved quite efficiently. Based

on this type of models, methods involving exhaustive searches of the available

conformation space became feasible. However, most of these models are unable

to describe subtle geometric aspects of proteins’ conformation. Prominent ex-

amples of this type are the models of Gō and coworkers [55] and the HP-model

proposed by Dill [33, 35]. Gō models were used to study folding kinetics using

hypothetical potential functions (intrachain attractions are only considered if a

pair of monomers is arranged in its native conformation) with Metropolis Monte

Carlo sampling in simple lattice models. Gō models suffer from sparse sampling

and the unphysical potential. Dill and collaborators provided a framework that
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accounts for more realistic features of heteropolymers: Amino acids are divided

into two categories (hydrophobic H and polar P). The polypeptide chain was

originally modeled on square (SQ) and simple cubic (SC) lattices, respectively.

Although the simplicity makes it possible to study the model in great detail,

the main weakness of this model is related to the lack of a clear notion of sec-

ondary structure. Attempts were made to enable a better description of local

structure by modeling the polypeptide chain by means of a symbolically defined

secondary structure on tetrahedral (TET) [167], body-centered-cubic (BCC) and

face-centered-cubic (FCC) lattices. A common feature of all studies addressing

the HP model is that they claim to being simple, yet exact. This should illus-

trate that these models account for a hydrophobic collapse, enable some form of

folding kinetics and design of foldable sequences with unique ground-states and

enable modeling a two-state cooperativity in the folding process. Much effort

was put into studying the HP model by different means within the last 15 years.

(We just refer to some relevant contributions of S̆ali et al. [153], Shakhnovich et

al. [111] and Karplus et. al. [37, 152] here.) See sections 2.6, 2.7 and chapter 3

for our implementation of this model.

Lattice models by Skolnick et al. [139], Miyazawa and Jernigan [113, 114] belong

to the second category of lattice models. These models are geared towards re-

alistic folding of real proteins. They are parametrized using measured protein

structures. By statistical sampling of such available structures model templates

are created. The resulting potentials are often referred to as statistical poten-

tials. Works by Crippen [31], Eisenberg at al. [11] and Sippl et al. [73] are further

examples of this category.

Both approaches can be uncoupled from the lattice condition, resulting in the

so called off-lattice models. The origin of off-lattice models can be found in the

works of Warshel and Levitt [94, 95]. In the simplest approaches the protein

is represented by a chain of balls (amino acids) connected via stiff bonds. All

energy functions used in lattice models have also been used in off-lattice models

(e.g. [118, 137]).

For a recent review of reduced protein models we refer to [88]. Two review

articles by Dill address the whole framework of heteropolymer modeling along

with protein folding theory [34, 35].
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2.6 Lattices and Self-Avoiding Walks

Let {ν1, . . . , νd} be a set of d linear independent vectors in R
m, d ≤ m. A lattice

is a set

L = {~x ∈ R
m|~x = Mξ, ξ ∈ X ⊆ Z

d}

where the matrix M with columns ν1 through νm is called generating matrix of

the lattice. The dimension of the lattice is dimL = d. It is always possible to

represent a lattice by a square generating matrix. As an example consider the

face centered cubic lattice FCC (figure 6). A generating matrix for FCC is

MFCC =






−1 1 0

−1 −1 1

0 0 −1






The corresponding set of integer vectors X is the set of all triples with an even

sum. It is always possible to find a representation such that ~0 ∈ L. We will denote
~0 the origin of the lattice. Once M is defined it is computationally advantageous

to perform all calculations in terms of the integer vectors ξ ∈ X instead of the

lattice points.

An automorphism of a lattice L is a distance-preserving transformation (isom-

etry) of the space R
n that fixes the origin ~0 and maps the lattice onto itself.

The automorphisms of L form the group Aut[L]. It is sometimes useful to con-

sider the group of all distance preserving maps that map L to itself, the so-called

affine automorphism. This group is obtained by adjoining the translations in

lattice vectors to Aut[L].

We want to model linear polymers on a given lattice L by placing monomers at

adjacent lattice points. This adjacency and the resulting neighborhood relation

remain to be specified. The simplest way is to use nearest neighbors with respect

to euclidean distance in R
m, although other choices yield interesting models as

well: the knight-move lattice KM (figure 6) and its 3D derivative TDKM are defined

via moves that do not lead to nearest neighbors in euclidean space [56]. We

define the set of lattice points N (~x) that are accessible by a single step from ~x

and claim symmetry of this neighborhood relation: ~y ∈ N (~x) =⇒ ~x ∈ N (~y). As

a consequence we can regard the lattice as an undirected graph Λ = (L,N ), the

vertices being the lattice points L, the edges being defined by N 5

5Note that although the lattice points of the knight-move lattice are the same as those of
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Figure 6: Lattices and relative moves. From top left to bottom right: Square SQ, hexagonal

HEX, triangular TRI, knight’s move KM, simple cubic SC, face-centered cubic FCC, body-centered

cubic BCC and diamond TET.

Since we consider only transitive lattices we shall furthermore insist that the

neighborhood N is the same everywhere on the lattice: We require that for any

~x ∈ L there is an affine automorphism α̂ such that α̂(~x) = ~0 and α̂(N (~x)) = N (~0).

As an immediate consequence, Λ = (L,N ) is vertex transitive and thus regular.

Each lattice point has exactly z
def
= |N (~0)| neighbors. We will further assume

that the graph Λ is connected. In the following sections we will use the term

lattice instead of the more exact ”lattice graph” for the point set L embedded in

R
m together with the adjacency relation N . Figure 6 shows a subset of lattices

we considered throughout our work.

A walk of length N on a lattice is a sequence w = (~x0, ~x1, ~x2, . . . ~xN ) of lattice

points ~xi ∈ L such that ~xi ∈ N (~xi−1) for all 1 ≤ i ≤ N . The number of distinct

lattice points visited along a walk w will be denoted by |w|.

A walk w is self-avoiding if ~xi 6= ~xj for all i 6= j. In other words, w is self-

avoiding if and only if |w| = N + 1. Self-avoiding walks have a long history as

the square lattice, LKM = LSQ, their neighborhood relations are different, however.
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models of linear polymers, as they incorporate the most important property of

such molecules: excluded volume [39, 50]. For linear polymers |w| equals the

number of n of monomers, i.e., the chain length.

In the reminder of this section we show that a walk on a given transitive lattice

graph Λ = (L,N ) can be uniquely described by strings. We insist that w starts

at the origin ~0. We begin by choosing an arbitrary lattice point ~β ∈ N (~0) which

we shall identify as the “backwards direction” of a walk. Next we assign an affine

automorphism α̂ to each ~α ∈ N (~0) such that (i) α̂(~α) = ~0 and (ii) α̂(~0) = ~β ∈ N .

In general the choice of the automorphism α̂ is not unique; for our purposes this

ambiguity does not have consequences. Of course we can write

α̂(~x) = S · (~x− ~α) (5)

and thus it may be regarded as a co-ordinate transformation. The walk (~0, ~α1)

thus reads (~β = α̂1(~0),~0) in the new co-ordinates. Now we may append the

second step in this coordinate system, say ~α2. After applying the corresponding

transformation we have (α̂2(α̂1(~0)), α̂2(~0),~0). In general we obtain a representa-

tion of the first k steps of w in the k-times transformed co-ordinate system by

applying the coordinate transformation α̂k associated with the step ~αk to the

previous representation and appending ~0. Thus the coordinates of the k-th point

of the walk can be written in the form

~xk = α̂−1
1 (α̂−1

2 (α̂−1
3 (. . . α̂−1

k−1(α̂
−1
k (~0)) . . . )))

def
= Ψ−1

k (~0) (6)

Ψk is the affine transformation that takes the original coordinate system into the

k-times transformed system after the k-th step of the walk. By construction we

have Ψk(~xk) = ~0, and thus

Ψk(~x) = Tk(~x− ~xk) (7)

where Tk is a linear transformation. Of course we have Tk = SkTk−1. Now

consider the k-th step of the walk itself; we have

sk = ~xk − ~xk−1 = Ψ−1
k−1(α̂

−1
k (~0)) − Ψ−1

k−1(
~0) = T−1

k−1~αk −~0 = T−1
k−1~αk (8)

We also know that the (k−2)nd point in the walk has the coordinates ~β in the co-

ordinate system defined by Ψk−1. Thus Ψk−1(~xk−2−~xk−1) = −Tk−1sk−1 = ~β, and
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f b f l r

l r l b f

r l r f b
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b f d l

f b l d
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r u f b

u r b f

d l r u

Figure 7: Move tables for the square lattice SQ (left) and the honeycomb lattice HEX (right).

The lattices themselves are shown in figure 6. Relative moves are given in capitals, lower case

letters refer to absolute moves. Note that the honeycomb lattice is a subset of the triangular

latticeTRI , which makes use only of the relative moves B, L, and R, while F, U, and D do not

occur.

hence sk−1 = −T−1
k−1

~β. Thus we can easily recover the coordinates ~xk provided

the individual transformation Sk are known.

The ambiguity in the assignment of the affine automorphism α̂k to the moves ~αk

can be removed by requiring that sk be determined by sk−1 and ~αk alone. This

amounts to determining the linear transformation Sk depending on the absolute

move sk−1 of the previous step and the current choice of the neighbor ~αk. The

advantage of this procedure is that it not necessary to explicitly determine the

linear transformations at all. Let D denote the set of all possible differences

between consecutive steps, D =
{
s = ~y−~x

∣
∣ ~x ∈ L and ~y ∈ N (~x)

}
. We shall call

D the set of absolute moves in L. All we really need for handling the walks then

is a table containing the assignments

D ×N (~0) 7→ D : (sk−1, ~αk) → sk (9)

This construction is illustrated in figure 7 for the square lattice and the honey-

comb (hexagonal) lattice. We shall adopt the convention to use lower case letters

for the possible choices of absolute moves sk and capitals for the “relative” moves

~αk.

A walk on L can thus be encoded as the string of the letters representing the

“relative moves”. The necessary alphabet size is z, the vertex degree of the

lattice graph. As we claimed self-avoidingness of the walks we only need z − 1

letters (this generally applies to walks that never reverse a step)6. In order to

6A walk that does not reverse a step uses only the relative moves associated N (~0) \ {β}
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reconstruct the coordinates ~xk of the individual steps of the walk we iteratively

translate the relative moves into the absolute increments using tables as the ones

in figure 7. Practically these computations are performed in terms of the integer

lattice coordinates rather than the “actual” coordinates of ~x ∈ R
m.

Usage of relative moves is well established [90], our implementation has been

adapted to apply to any regular lattice. For a more thorough survey on the

work that has been done with lattice biopolymers in our group in the 1990ies

see [129]. The main advantage of our approach is that it becomes very easy to

handle walks on different lattices and with different dimension within the same

computer program as the move-tables described in equation 9 and figure 7 can

be implemented as simple look-up tables of characters without any reference to

a coordinate system. The algorithm has several advantages over representing

structures by absolute moves or integer coordinates that turn out to be very

useful:

• Lattice independent programming of folding algorithms and structure com-

parison is possible

• Concatenation of strings corresponds to elongation of the first walk

• Storage requirements are kept small (compression of walk-data strings)

• Structure comparison is achieved by simple string comparison methods:

Hamming distance and sequence alignment define a metric distance measure

in shape space

• Simple point mutations, i.e., the exchange of one relative move within the

walk by another one correspond to pivot moves [104]

H

L(r)

L(f)

F(f)

L(l)F(l)

P

F(f)

R(r)

R(b)

Figure 8: An example for the relative encoding of a SAW, FRRLLFLF. Absolute directions are

shown in parentheses. The labels P and H refer to Dill’s HP lattice heteropolymer model, see

section 4 for details.
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The drawback of this approach is that strings of relative moves, and therefore

self-avoiding walks within our framework, that are subject to point mutations

are not necessarily enantiomeres in d > 2. In other words, pivot moves, in our

implementation, do not necessarily yield chiral structures in d > 2 since not only

rotations, but also reflections are allowed. Mutations (and thus pivot moves)

correspond to automorphisms, mapping the lattice to itself [5]. See figure 9 for

illustration of this fact. If we wanted to consider chirality correctly, we had to

change more than one relative directions within our framework, choose a different

move-set or investigate relative move strings with respect to exact automorphsm

groups (see [5] for details). These considerations are subject to our current in-

vestigations.

(A) FUURR (B) FUDLR

(C) FUDRR

Figure 9: Point mutation of the relative-move string (shown below the structures) in the SC

lattice. A point mutation does not necessarily yield two enantiomere structures. Assume

structure (A) is the start-structure. Point mutation of the third relative direction from U to

D yields the structure shown in (C). This operation was achieved by reflection and rotation.

If we wanted to get reflection (B) of the start structure, we had to change two relative moves

within the self-avoiding walk.

What still needs to be established is the total number of SAWs of given length,

i.e. the size of the conformation space of a lattice protein. Let L be some regular

d-dimensional lattice and ω an N -step self-avoiding walk w = (~x0, ~x1, ~x2, . . . ~xN )

of distinct lattice points in L such that each point is a nearest neighbor of its

predecessor (section 2.6). We shall restrict attention to the simple (hyper-)cubic
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lattice Z
d and assume that all walks begin at the origin (ω0 = ~0). The number of

N -step SAWs on Z
d starting at the origin and ending anywhere, cN , are believed

to have asymptotic behavior [141]:

cN ∼ µN ·Nγ−1 (10)

as N → ∞. µ is called the connective constant (or effective coordination number)

of the lattice, γ is the critical exponent. The connective constant is definitely

lattice-dependent, while the critical exponents are believed to be universal among

lattices of a given dimension d. See the table below for some known numerical

vales of µ and γ.

dim Lattice Type µ ref. γ ref.

SQ 2.63820 [8, 44, 64] 1.34275 [64]

2 TRI 4.15076 [64, 65, 66] 1.343 [64]

HEX 1.84777 [64] 1.345 [64]

SC 4.68391 [64] 1.161 [64]

3 BCC 6.53036 [27, 125] 1.161 [17]

FCC 10.0364 [64] 1.162 [64]

Table 1: Asymptotic enumeration of SAWs.

Figure 10 shows results from exhaustive enumerations of SAWs on various lattices.

The lengths given in figure 10 represent the maximum length of SAWs that can

be generated exhautively for the respective lattice on a modern workstation (see

also section 2.8).

2.7 Potential Functions

As mentioned in the previous section, we use relative moves for storing strings

and comparing structures. The structure is represented as a self avoiding walk

on a regular lattice and the movement of the chain is represented as a sequence

of moves where each is encoded relative to the prior.

The energy function for a sequence with n residues S = (s1, s2, . . . , sn) with

si ∈ A = {a1, a2, . . . , ab}, the alphabet of b residues and an overall configuration

X = (x1, x2, . . . , xn) on a lattice L cam be written as the sum of all pairwise
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Figure 10: Exhaustive enumeration of SAWs on selected lattices

inter-residue interactions

E(S, X) =

n∑

i=1

n∑

j>i+1

E(si, sj)d
α
ijf(si, sj, |i− j|) (11)

where dij = ||xi−xj|| is the Euclidean distance, Eij = E(si, sj) a pair-potential re-

trieved from an energy matrix (see below). In our implementation, contributions

are considered up to a certain cutoff distance: dα
ij = 0 if dij > dmax. Generally,

α is −1 and dmax = 1 (for compliance with Dill’s model). Finally, f respects the

dependency of distance within the sequence and takes on 1 in all our calculations.

We implemented two different potentials: HP and HPNX. Within the ”clas-

sical” HP model [35, 90], a crude simplification is introduced by reducing the

various inter-atomic forces to one inter-residue force, the hydrophobic force. This

unspecific force is assumed to be the dominant contribution to stability and there-

fore to a large extent determines the 3D structure of the backbone. Heteropoly-

mers are composed from a two-letter alphabet A = {H,P} where there is only

one stabilizing interaction if, and only if hydrophobic residues (H) are neigh-

bors on the lattice but not along the chain. Polar residues (P) do not explicitly

contribute to the overall energy. Although this model is a crude abstraction,

several salient features of real protein structures are implicitly considered: The

hydrophobic effect comprises solvent-driven collapse to a native state, chains have

(relatively) much conformational freedom and the self-avoiding walk constraint

accounts for excluded volume restrictions [39].

The HPNX model is a generic extension of the HP model and mimics ”elec-
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trostatic” interactions between negatively charged residues (N) and those with

a positive charge (P) as well as repulsions within these classes. A third class of

apolar residues is ”neutral” (X). As the frequency of Hs - within a random dis-

tribution - is the same as in the HP model, the HX subset corresponds exactly

to the HP model [128].

The HP′ and YhHX models shall also be mentioned here for the sake of com-

pleteness, the first being derived from the conventional HP potential and includ-

ing a stronger overall attracting force. The latter is a modified form of Crippen’s

empirical potential [31] which consists of four different classes of residues. Ap-

pendix A lists associated energy matrices.

At this point it seems fair to consider a simple question: Is it correct to model

proteins with only 2 (resp. 4) different types of monomers, or is this simplification

too crude? We could also formulate this question as: What is the minimum

number of different monomers to fold a functional protein? Experimental studies

have shown that the full sequence complexity of naturally occurring proteins

is not necessarily required to design a functional, rapidly folding protein. In

fact, proteins with a drastically reduced set of amino acids (compared to the 20

naturally occurring ones) have been successfully designed experimentally in the

last years (e.g. [133]). Some amino acid residues have similar physico-chemical

properties and their substitutions are tolerated in many regions of a protein

sequence.

Govindarajan and Goldstein proposed that evolutionary pressure is responsible

for a protein to fold fast. Studying the foldability of structures in a lattice model,

they suggested that structures with larger optimal foldability should tolerate more

sequences and be more robust to mutations [58, 59]. Within this context, we can

also speak of the designability of a structure, that is the number of sequences

that have that structure as their unique lowest-energy state. Li et al. studied

the designability of all compact structures in HP lattice models of sizes 3 ×

3 × 3 (SC lattice) and 6 × 6 (SQ lattice) [97]. They found that structures differ

drastically in their designabilities and that a small number of structures emerge

with designabilities much larger than the average. In another contribution, Li

et al. recently calculated designabilities with all 20 amino acids with empirically

determined interaction potentials and found that the designability of a structure

is not sensitive to the alphabet size as long as hydrophobic interaction is included
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in the potential [98].

An interesting contribution was given recently by Fan and Wang, who published

rigorous investigations with reduced alphabet sizes. According to them, the lower

bound of amino acid types required for a protein to fold into a stable structure

is around ten [45].

2.8 Lattice Protein Folding Algorithms

One of the main intentions in lattice protein studies has always been the search

for a protein’s ground state only with knowledge of its sequence. Furthermore,

it is not clear whether a ground state - if found - is unique. As illustrated in

section 2.4, efficient algorithms to determine the ground state and all suboptimal

structures within a predefined energy interval exist at least for RNA. In contrast

to that, the structure prediction problem for lattice proteins was shown to be NP-

complete, even for the HP model [150]. Crescenzi et al. [30] gave a proof for the

two-dimensional case, the three-dimensional case was proved by Berger et al. [9].

At present no polynomial time algorithms are known for an NP-complete problem

and it is generally believed that such an algorithm does not exist [52]. This

imposes a major drawback in the ability to investigate protein properties within

reasonable time scales and computer resources. Nevertheless, a large variety of

approximation algorithms has been proposed so far. A resource intensive genetic

algorithm based on Monte Carlo techniques in the square lattice yields good

results for fairly long chains up to a length of 60 monomers [151]. Another

approach tries to approximate the whole density of states by recursively counting

up low energy states [144]

Bornberg-Bauer and Renner provided a fast, straightforward heuristic algorithm

for HP-type lattice proteins [10]. Their deterministic ”greedy chain-growth al-

gorithm” is designed after the concept of unguided, cotranslational folding of a

nascent peptide and runs in O(n) in chain length. A ”frozen” start structure is

taken as starting point and all possible combinations (of a predefined window-size)

of subsequent lattice positions is evaluated for the energetically ”best” structure

(i.e. the structure with maximum hydrophobic interactions). The first relative

move of the so calculated ”current” optimal structure is then appended to the

end of the frozen part of the SAW and the procedure is repeated until an optimal
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structure of given length is reached. The method is fast enough for statistical

investigations on large ensembles of structures.

Several interesting contributions were given by Backofen and Will [2, 4, 5] within

the last years. Inspired by findings of Yue and Dill [165] (who proposed a branch-

and-bound algorithm for finding optimal structures on the SQ lattice), they de-

signed a global optimization technique for HP-kind lattice models on the cubic

(SC) and the (more demanding) face-centered cubic (FCC) lattice. The method is

based on constraint optimization and can successfully fold sequences up to length

300. In addition, the method has been applied to enumerate all minimum energy

conformations for sequences up to length 48.

When talking about folding algorithms for lattice heteropolymers one must bear

in mind that proteins, contrary to their reputation, do not always fold efficiently

and spontaneously. Several proteins need some sort of help, e.g. by ”chaperon”

molecules, others are folded erroneously and are recycled by proteolytic enzymes.

A protein’s native state is not necessarily the state of lowest free energy [72]. In

fact, a biological molecule doesn’t have to be absolutely stable, it only has to

be functional enough to do its job. Considering this, it seems fair to claim that

perhaps the appropriate model for protein folding is an approximation algorithm

that is guaranteed to quickly find a near-optimal structure. Hart and Istrail

presented an algorithm for the HP model that guarantees structures with energy

better than 3/8 of the optimal structure [70], although accuracy depends strongly

on the lattice and energy function.

We decided to take a different approach in calculating protein structures: Rather

than sampling structures by a Monte-Carlo method, we implemented a ”brute

force” tool (latticeSub) to exhaustively generate all SAWs of given length on

any of the lattices given in figure 6. Evidently, this approach is restricted to very

short chain lengths due to NP-completeness of the problem (see figure 10).

Although chain lengths are restricted to small values, the set of all configurations

of given length allows for calculation of energy landscapes and thus gives valuable

insight into the folding dynamics of short lattice heteropolymers. A different

approach to calculate only a low-energy fraction of the state space will be given

in chapter 6.
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3 Biopolymer Folding - Energy Landscapes

In order to understand the (folding) dynamics of biomolecules, we need to inves-

tigate the underlying energy landscape, i. e. we are interested in the topology

of the folding landscape. The folding landscape (or Potential Energy Surface,

PES) of a biopolymer molecule is a complex surface of the (free) energy versus

the conformational degrees of freedom. In formal terms, we need three things to

construct an energy landscape [127]:

• A set X of configurations

• a notion M of neighborhood, nearness, distance or accessibility on X, and

• an energy function f : X → R

In this chapter we will work out the details of non-degenerate energy landscapes

in terms of a theoretical description, a thorough investigation for degenerate

landscapes will be given in the next chapter.

3.1 The Move Set

The conformation space X of a biopolymer sequence is the total set of configura-

tions S compatible with this sequence. In the RNA case, the set of configurations

is given by the secondary structures which are compatible with a particular se-

quence. In the lattice protein case, all self-avoiding walk structures of a given

length are considered as allowed conformations. The degrees of freedom are the

allowed transformations provided by a move set M.

Depending on the coarse-graining of the energy, conformation space (and hence

the associated energy landscape) can be highly degenerate, especially in the lat-

tice protein case (sections 4.1 and 7.3.2). A priori it is not clear how to move in

such a complex space, therefore a set of rules is needed to control the movement.

Such a set of rules is called a move set. It is basically a collection of operations,

which, applied to an element of X, transforms this element into another element

of X. Strictly spoken a move set is an order relation on X, defining adjacency

between the elements of X. It fixes the possible conformational changes that

can take place in a single step during the simulation of folding and thus defines
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the topology of the conformational space. The following properties are important

for move sets:

1. Each move has an inverse counterpart. At thermodynamic equilibrium the quo-

tient of forward and backward reaction rates must give the microscopic equilib-

rium constant (If there is no backward reaction, the law of microscopic reversibil-

ity is broken).

2. The outcome of an operation always leads to an element of the underlying state

space (Any operation yielding an element outside the state space is illegal).

3. The move set has to be ergodic7. This means, starting from an arbitrary point

of the state space every other point must be reachable by a sequence of legal

operations.

4. Every move set defines a metric on the underlying state space.

Two more terms are relevant for the further discussion. A trajectory is defined as

a sequence of consecutive states of the state space generated by a series of legal

operations from some initial state. A path (or folding path) is defined as a cycle

free trajectory, more concrete, each state occurs only once within the sequence

of adjacent states. Any trajectory can be transformed into a path by eliminating

the cycles.

3.1.1 Move Set: RNA

The most elementary move set, on the level of RNA secondary structures consists

of insertion and deletion of a single base pair (i, j) in agreement with the knot-

free restriction (section 2.4). It is always possible to construct a path between

any two Si, Sj ∈ X by using operations from this move set. To find such a path,

remove from Si all base pairs that do not occur in Sj, and insert afterwards into

this intermediate structure Sk all base pairs from Sj that do not occur in Si.

(Note, that Sk = Si ∩ Sj can be the empty set, which resembles the open chain,

being as well an element of X). Since every element of X can be connected to

every other element of X by a path, it follows that this is an ergodic move set

7Although aware of this fact we implemented a non-ergodic move set for lattice proteins,

see section 3.1.2
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on X. The highly cooperative zippering mechanism observed in helix-formation

events of nucleic acids can be properly described with this move set.

Although the simple move set is sufficient in principle, it lacks efficiency in prac-

tice. Hence, a third move consisting of a base pair shift must be introduced

(figure 11). The so called shift move converts an existing base pair (i, j) into

a new base pair (i, k) or (l, j) in a single step. See ref [47] for details on the

implemented move sets for RNA.

Figure 11: Formation of helices with incomplete base pairing. The effect that anneals inter-

mediately mismatched helices is called defect diffusion: The bulge can easily migrate along the

helix. For the left to right transformation the shift moves are indicated by arrows

3.1.2 Move Set: Lattice Proteins

pWithin the framework of SAWs, one can classify elementary moves according

to several properties, i.e. it is necessary to determine whether a move is

• local or non-local,

• N -conserving or N -changing,

• endpoint-conserving or endpoint-changing,

A local move is one that alters only a few consecutive sites (or beads) of a SAW,

leaving the other sites unchanged. In other words a local move ’cuts’ a small

piece from the original SAW and splices in a new local conformation. We say

that a move is k-local if each move affects at most k consecutive positions in the

SAW. Of course, it is always necessary to check if the proposed new walk is still

self-avoiding. A non-local move, in contrast, alters a large fraction of the SAW.

Since a non-local move is rather radical, the resulting new walk usually violates

the self-avoidance constraint [141]. N-conserving moves are those in which the
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excised and spliced-in subwalks have the same number of beads, whereas a N-

changing move has the freedom to splice in a piece with different length than the

original piece. We will exclusively examine N -conserving moves in the following.

One of the simplest, yet efficient moves is called pivot move [89], a non-local,

endpoint-changing move. The elementary move is as follows: A site ~xk on the

walk x ∈ X is chosen as a pivot point and a symmetry operation of the lattice

(rotation and/or reflection) is applied to the part of the walk subsequent to

the pivot point (namely ~xk+1, . . . , ~xN), using the pivot point as the origin. The

resulting walk is accepted if it is self-avoiding, rejected otherwise. See figure 12

for an illustration of pivot move.

Figure 12: A pivot move in the SQ lattice (here a +90◦ rotation). The pivot site is marked with

a red cross, dashed lines indicate the proposed new segment

We have previously mentioned that there are several advantages in considering

pivot moves (section 2.6). First, pivot moves provide an ergodic move set, that

means that any state of the configuration space must be reachable from any

other state by a finite set of operations according to a certain move set. Another

advantage is that implementation of pivot moves is fairly easy. Within our im-

plementation, point mutations of a SAW in relative move notation yield pivot

moves. Originally, the pivot algorithm was presented as a dynamic Monte Carlo

algorithm which generates SAWs in a canonical ensemble with one endpoint fixed

and the other endpoint free. Ergodicity of pivot moves was proven by Madras

and Sokal [104] for the simple (hyper)cubic lattice. Another ergodicity proof was

given in [102]. In fact, the same authors proved that every local, N -conserving

Monte Carlo algorithm is non-ergodic for sufficiently large N [103]. In other

words, some SAWs cannot be transformed into some others by any sequence of

allowed moves.

Despite of this fact we implemented another set of elementary that belong into

the class of non-ergodic local, N -conserving moves: End-, corner-, and crankshaft
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moves (figure 13). We did this in accordance with literature (see e.g. [140]) to

investigate differences in folding pathways and study the influence of the chosen

move set with respect to the topology of the whole energy landscape. One could

(A) (B)

(C)

(D)

Figure 13: Crankshaft-, corner- and end moves. (A) and (B) show the possible end moves.

Note that move (B) allows for a 180◦ flip within one elementary move. (C) shows a corner

move, the only possible one-bead internal move. (D) shows a 180◦ crankshaft move.

of course ask whether the non-ergodicity of these moves will be a problem. The

answer to that depends on the type of information one is seeking. If one is seeking

moderately accurate numerical data for modest values of N , then perhaps the

exclusion of some configurations causes only a small error. We are interested in

protein folding kinetics and as long as the native state is accessible the existence

of a small fraction of inaccessible states is negligible. Just in the same way as

highly unlikely states are irrelevant for real proteins, we argue that these states

are negligible for our purposes. However, the fraction of configurations that are

inaccessible from the open chain configuration is subject to future investigations.

Figure 14 shows examples of SAWs on the SQ and SC lattice that are inaccessible,

starting from an open chain, by moves shown in figure 13. An interesting aspect

are knotted configurations. It is known that real proteins do not have tight

knots and hence it is fairly unlikely that these configurations are ’visited’ during

a folding event since a protein would have to escape such a configuration after
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being knotted once.

(A) (B)

Figure 14: Non-ergodicity of local moves. The configuration on the left (SC lattice ”double

cul-de-sac”, ref [104]) is frozen and not accessible by any moves from figure 13. The knotted

conformation on the right (SC lattice) can not be unknotted by the moves shown in figure 13.

Hence it is impossible to reach this conformation using the same moves. As long as conforma-

tions like this are not the native state they will pose no problem.

3.2 Energy Landscapes: Mathematical Definitions

Within the framework of the folding landscape we can meaningfully speak of

local minima or metastable states, their basins of attraction, and the saddle

points separating them. Formally8, a structure x ∈ X is a local minimum of E

if E(x) ≤ E(y) for all its neighbors, (x, y) ∈ M. A gradient walk is defined as

follows: starting from x ∈ X we move to its neighbor y with minimal energy if

E(y) < E(x). If the minimum energy neighbor y of x is not uniquely defined we

use a deterministic rule to break the tie, for instance, by choosing the structure

that comes lexicographically first. The step from x to y = γ(x) is repeated until

we reach a local minimum where the walk terminates, γ(x) = x. The local minima

are therefore the attractors of the map γ : X → X and each x ∈ X is mapped to

a unique local minimum z = γ∞(x) = γt(x) by a finite number t of applications of

γ. The basin of attraction of a local minimum z, B(z), consists of all structures

that are mapped to it by the gradient walk, i.e. B(z) = {x ∈ X|γ∞(x) = z}.

8Although we labeled structures with S up to this point, we switch the notation to x here

to stress that he following definitions are generic and not specific for RNA or lattice proteins.
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Below we will need the (trivial) fact that these “gradient basins” of the local

minima form a partition of X.

Let us now turn to the transitions between local minima. The energy of the

lowest saddle point separating two local minima x and y is

E[x, y] = min
p∈Pxy

max
z∈p

E(z) (12)

where Pxy is the set of all paths p connecting x and y by a series of subsequent

moves. The saddle-point energy E[ . , . ] is an ultra-metric distance measure on

the set of local minima.

In the simplest case the energy function is non-degenerate, i.e., f(x) = f(y)

implies x = y. Then there is a unique saddle point s = s(x, y) connecting

x and y characterized by E(s) = E[x, y]. This definition of a saddle point is

more restrictive than in differential geometry where saddles are not required to

separate local optima. For each saddle point s there exists a unique collection of

configurations V(s) that can be reached from s by a path along which the energy

never exceeds E(s). In other words, the configurations in V(s) are mutually

connected by paths that never go higher than E(s). This property warrants to

call V(s) the valley below the saddle s. Furthermore, suppose that E(s) < E(s′).

Then there are two possibilities: if s ∈ V(s′) then V(s) ⊆ V(s′), i.e., the valley

of s is a “sub-valley” of V(s′), or s /∈ V(s′) in which case V(s) ∩ V(s′) = ∅,

i.e., the valleys are disjoint. This property arranges the local minima and the

saddle points in a unique hierarchical structure which is conveniently represented

as a tree, termed barrier tree (see Fig. 15). Since saddle points separate local

optima, each valley V(s) contains (in the non-degenerate case at least two) local

minima z1, . . . , zk. Conversely, V(s) ⊆
⋃

k B(zk), i.e., the valley of s is contained

in the union of the basins of attraction of the metastable states “below” s. The

metastable states therefore form the tips (or leafs) of a tree. This so-called barrier

tree is the subject of the next chapter. In the case of degenerate landscapes

an analogous construction is possible when certain saddle points with the same

energy are collected into equivalence classes, as we will see in section 4.3.
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4 Barrier trees

We set up the requirements to investigate energy landscapes of biopolymers in

the last chapter. What we have at hand at this point is a straightforward de-

composition of non-degenerate landscapes into basins surrounding local minima,

connected by saddle points. The decomposition of landscapes into basins and

investigation of trees that represent local minima and their connecting saddle

points has been developed independently in different contexts, among them ±J

spin models [86, 87], potential energy surfaces (PES) for protein folding [7, 53]

and molecular clusters [41, 155] as well as the kinetics of RNA folding [47] (see

section 7.1). This chapter is dedicated to a more thorough investigation of bar-

rier trees. We will give examples of barrier trees for RNA and lattice proteins,

present an algorithm for efficient computation of such barrier trees and investigate

a rigorous concept of barrier trees for degenerate landscapes.

4.1 Examples

Barrier trees of RNAs are usually non-degenerate and the straightforward def-

initions from section 3.2 can generally be applied ”as-is” to RNA energy land-

scapes. The situation is quite different with lattice proteins, since energy land-

scapes and thus barrier trees usually exhibit a large degree of degeneracy here.

This is evident since the model of lattice proteins implies rigorous assumptions,

i. e. fixed bond lengths- and angles and an alphabet-dependent energy function

(section 2.7). In order to illustrate the difference, we give the tree represen-

tation of the lowest 10 minima in the (non-degenerate) energy landscape of a

random RNA sequence with length n = 40 in figure 15. Leaves 1-10 correspond

to the valleys of the landscape, while saddle points (labeled with capital let-

ters for A to I) are displayed by internal nodes. Saddle point energies can be

read off easily, the scale on the left indicates values in kcal/mol. The energy

of barrier 3, for example, is B(3) = E(A) − E(3), whereas the Energy barrier

to reach 1 (i.e. any structure from the right subtree below saddle E) from 3

is E(3 → 1) = B(3) + (E(C) − E(A)) + (E(D) − E(C)) + (E(E) − E(D)) =

1.0 + 1.1 + 0.6 + 0.38 = 3.08 kcal/mol (T = 310.15K). Figure 17, in contrast,

shows barrier trees of degenerate landscapes.

The fundamental question concerning these energy landscapes still is: What influ-
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Figure 15: A typical barrier tree of a short random RNA sequence UUGGACCCAUUC-

GAUCCCAGACCUUCAAGGCUUCUCUGUC with length n = 40 as calculated with barriers.

ences the ruggedness? In fact, the definition of neighborhood strongly influences

this feature of the surface. In other words the choice of the move set critically

forms the topology of the energy landscape. This is shown in figure 16 for RNA.

As illustrated in section 3.1.1, we have two move sets available: insertion/deletion

(left plot) and insertion/deletion/shift (right plot). Since the first one is a subset

of the second, all local optima of the latter are also local optima of the simple

move set. The local minima are again labeled in ascending order starting with

the ground state. Equivalent minima are labeled identically in both trees, corre-

sponding local minima are given in brackets in the left plot. Local minimum 8

occurs only within the simple move set (left), whereas local minimum 20 in the

right plot just occurs here because is has not been seen yet in the left plot, i.e.

it has a higher energy up to which the algorithm couldn’t get in the left plot.

Within the framework of lattice proteins and SAWs the situation is different.

The simplest lattice is of course the square lattice SQ, which was originally used

by Lau, Chan and Dill [24, 35, 90] to establish their model. Figure 17 shows two

barrier trees for a random HP-sequence HHHPHHPHHPHHHHPH with n = 16 on this

lattice. The most noticeable difference (compared to RNA energy landscapes)

is definitely the high degree of degeneracy. We only show the deepest 100 local

minima of the energy surface. There are two degenerate ground states (E = −9),

23 local minima with E = −8 and the rest is energetically indistinguishable with
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Figure 16: The tree representation of the energy landscape of a typical RNA sequence. The 20

lowest local minima are shown for the simple move set (left plot: insertion/deletion) and the

enhanced one (right plot: insertion/deletion/shift).

E = −7. Degeneracy can easily be explained as an artefact of the underlying

model, i. e. of the underlying energy function. As we are dealing with a two-

letter alphabet, the energy of a certain structure is given by the negative sum of

all nearest-neighbor non-bonded H monomers (section 2.7 and appendix A). This

and the restriction to fixed bond lengths and bond angles sets the stage for highly

degenerate barrier trees. If we wanted to circumvent this problem, we could easily

switch to a bigger alphabet, e.g. the HPNX alphabet. A more realistic model

would of course include a larger alphabet (remember the magic number of 10

letters required to fold a functional protein (ref. [45])). Another possibility would

be to define more complex potential functions than those described in section 2.7.

As in the RNA case we are interested in the influence of the move set on the

general features of the landscape. The upper tree in figure 17 was calculated with

pivot moves as elementary move operation, whereas in the lower tree crankshaft-,

corner-, and end moves were considered. We mentioned earlier that the latter set

of elementary moves is not ergodic. For the upper plot we used an exhaustive

search strategy to find all SAWs9 of length n = 15. After eliminating mirror-

image structures, we found 802076 SAWs of length n = 15. For the lower plot,

we used the program latticeFlooder (chapter 6) to generate a total of 800829

SAWs starting from an open chain conformation. 1247 SAWs are not accessible

9note that a SAW is always one element shorter that the sequence ”laid” onto it
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by the latter move set starting from the open chain conformation.

Generally, the number of neighbors a structure can attain with a single elementary

move is of critical importance for the topology of the energy landscape. If many

moves are possible (with respect to self-avoidance), one can expect to get fewer lo-

cal minima and lower barrier heights. The non-local pivot move allows to convert

a single structure to a completely different structure in one move, hence energy

landscapes that are calculated with pivot moves are generally slightly ’smoother’

than others. This can clearly be seen in the upper tree of figure 17, where the

maximum barrier height is 5. When we change the move set to crankshaft-,

corner- and end moves (this is just possible in the SQ and SC lattices within our

implementation), valleys become ’deeper’ and barrier heights are bigger (lower

tree in figure 17). The number of neighbors that are reachable in an elementary

step is not so large (as we are dealing with a local move set).
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Figure 17: Energy landscapes of a random lattice protein, sequence HHHPHHPHHPHHHHPH, with

length n = 16. Influence of the move set on the topology of the landscape. Pivot moves (upper

plot) yield smoother landscapes, local moves (lower plot) yield deeper basins. See text for

details.
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4.2 The algorithm of barriers

After illustrating principal properties of barrier trees, the next step in our in-

vestigation of the energy landscapes of biopolymers is to calculate the barrier

tree of the interesting biomolecule. We use the program package barriers10 to

calculate barrier trees. The framework of RNA secondary structures and SAWs

allows for a discrete description of the problem, which, although computation-

ally challenging and in contrast to continuous models, sets the stage for an exact

enumeration of the underlying states. This holds at least for moderate-size state

spaces. Although the algorithm was described in previous work [161], we review

the main concept here.

barriers constructs the barrier tree directly from an energy-sorted list of all

configurations, so a prerequisite step is to generate these lists of ”suboptimal”

configurations. RNAsubopt, which computes all secondary structures below a cer-

tain energy threshold is used in the RNA case. In the lattice protein case we

have two tools at hand: latticeSub (section 2.8), yielding exhaustive enumera-

tion of SAWs on a given lattice up to a certain (moderate) length (figure 10) and

latticeFlooder (see chapter 6) that starts from a given SAW and generates all

neighbor structures according to a selected move set. These neighbor structures

are again considered start structures and this procedure is continued until a)

all structures up to a predefined energy threshold or b) a predefined amount of

structures are found.

Algorithm 1 lists pseudo-code for the main routine of barriers. During the

calculation, two lists of local minima are needed, each of which are required to

be empty at the start of the algorithm. B is a global list of all local minima

found in the landscape, K is a local list of local minima that contains neighbors

of the current structure x. As mentioned before all suboptimal structures are

processed in energy-ascending order. Starting with a structure x, the first step

is to generate its complete neighborhood N according to the chosen move set

and store all neighbor elements y on a stack (line 3). Then each element of this

”neighbor stack” is processed: A routine searches a hash if structure y has already

been seen in a previous step of the computation and, if so, counts the number b

of local minima that contain legal neighbor structures of x. The set K of local

minima containing neighbors is updated immediately (lines 5 and 6). When all

10available from http://www.tbi.univie.ac.at/~ivo/RNA/Barriers
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Algorithm 1 The algorithm of barriers

Require: subopt

1: B ⇐ ∅

2: for all x ∈ subopt do

3: K ⇐ ∅

4: N ⇐ generate neighbors(x)

5: for all y ∈ N do

6: if b⇐ lookup hash(y) then

7: K ⇐ K ∪ b

8: end if

9: end for

10: if K = ∅ then

11: B ⇐ B ∪ {x}

12: end if

13: if |K| ≥ 2 then

14: merge basins(K)

15: end if

16: write hash(x)

17: end for

elements of the neighbor stack have been processed, there are in principle three

possibilities for each element x:

• If there was no adjacent structure resulting from the hash-lookup procedure

in line 5, the set K is empty. x is a new local minimum in that case and

the global list of local minima, B is expanded by x (line 10).

• If a neighboring basin was found then structure x is assumed to be ”tran-

sient”, which means that it belongs to a certain basin of attraction (note

that this condition is not listed in algorithm 1).

• If |K| ≥ 2 (line 12) then structure x has neighbors in exactly |K| basins.

In other words, x is a saddle point connecting all local minima in K. In

the barrier tree x becomes an internal node. All states from energetically

higher basins in K are copied to the energetically lowest basin in K (which,

of course, must also be an element of B). Let us denote this instance with:

energetically higher valleys in K are merged with the energetically lowest
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valley (a.k.a. the father) in K (line 13). Due to this one can say that from

the point of view of a structure with an energy higher than the saddle point

x, from this point of the algorithm onwards all elements in K appear as a

single valley that is subdivided only at lower energies.

The final step of the loop is to write structure x into a hash for further lookup

(line 15)

The flooding algorithm can be visualized with the following thought experiment

(figure 18): Imagine a landscape with only two deep valleys A and B where A is

energetically lower than B. Those two local minima are separated by the local

optimum T , which is a saddle point. Water rises from bottom to top. In the

first step (a), only the deeper valley A will be slightly filled with water. For

our algorithm this means that all structures that are either below or exactly at

the water surface belong to the local minimum A (all other structures are not

accessible by now as we go through an energetically sorted list of configurations

in ascending order). As the water still rises we encounter a different situation

in step 2 (b). Not only A is filled with water, but also the deepest regions of

B. From now on there are more possibilities for the configurations to belong

to: Depending on which valley is the nearest (from the point of view of the

conformation space), i.e. which local minimum contains structures that are legal

neighbors of the actual one, a structure can either be added to A or to B.

Imagine the water rises further. The higher the water surface gets, the more

structures are being seen. This means that with every increment (concerning the

rise of the water) there are more possibilities for a structure which has not been

seen so far to have neighbors in one or more of the valleys. Step 3 (c) shows

this situation: The saddle point T has been found and there exists at least one

structure which has neighbors in A and in B. In other words we can say the

two lakes coincide. This is of special importance for the algorithm. As soon as

T has been proved to be a saddle point, B is merged with its ’father’ A and

all structures from B can now be accessed as if they would be legal structures

belonging to A. However, the algorithm does not stop here. As illustrated in

step 4 (d), the water rises on and only valley A is still accessible. The end of the

algorithm is reached as soon as either (a) all structures have been processed or

(b) a predefined amount of local minima has been found.

The outcome of this procedure is the following information: There exist two
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(a) step 1 (b) step 2

(c) step 3 (d) step 4

Figure 18: Thought experiment for the flooding algorithm where water rises in a landscape.

For details see text.
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local minima A and B which are connected by the saddle point T at a certain

energy. All structures in A (as B is not accessible any longer) can be neighbors

of other structures at higher energy. Evidently this is a very simplified ’gedanken

experiment’. Real energy landscapes of biopolymers do not only contain just two

local minima, but several thousand.

4.3 Degenerate barrier trees

All definitions for local minima, saddle points, basins and related concepts given

so far are readily applicable to non-degenerate landscapes. However, energy land-

scapes of lattice proteins often exhibit a large degree of degeneracy. In order to

treat this type of landscape correctly, additional care has to be taken to find suit-

able definitions. The problem becomes clear when imagining a flat landscape. Is

every point a minimum, or none? If the second alternative is chosen, then the

global minimum is not a minimum; clearly one would like to avoid such state-

ments. Two non-adjacent minima should, by intuition, be separated by one or

more saddle points. But all points are minima in flat-land, so saddles can be

minima as well. We will elucidate such effects and formulate a rigorous concept

of barrier trees for degenerate landscapes in this section [49]. Note that the fol-

lowing definitions are given in terms of a connected, undirected, simple graph

G(X,E) with vertex set X and edge set E. Within the context of this thesis,

single vertices x ∈ X correspond to structures in the configuration space of a

biomolecule.

Notation In the following, we write ⊂ and ⊆ to distinguish between proper

subsets and subsets including the complete set. For the neighbors (adjacent

vertices) of x ∈ X we write

∂x = ∂{x} =
{
y ∈ X

∣
∣{x, y} ∈ E

}
. (13)

This definitions extend in a natural way to arbitrary vertex sets:

∂A =
{
y ∈ X \ A

∣
∣∃x ∈ A : {x, y} ∈ E

}
(14)

The set ∂A is the boundary of A. Furthermore, we write A = A ∪ ∂A for the

graph-theoretic closure of a vertex set A ⊆ X. The neighborhood of x is N (x) =

{x} ∪ ∂x = {x}.
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Definition 1. A landscape (G, f) on a graph G(X,E) is a function f : X → R.

The graph G is often referred to as the configuration space in the context of

combinatorial landscapes. We write min f for the value of the global minimum

of the fitness function.

Local Minima A vertex x is a local minimum of f(x) ≤ f(y) for all y ∈ ∂x (or,

equivalently, y ∈ N (x)); x is a strict local minimum if f(x) < f(y) for all y ∈ ∂x.

We write M for the set of all local minima. Furthermore, let M(x) be the vertex

set of the connected components of G[M] that contains x. Of course f is constant

on M(x). The set of these components is denoted by M = {M(x)|x ∈ M}.

There are two classes of local minima that can be distinguished by the behavior

of the function f on ∂M(x), see Fig. 19.

(1) M(x) is a valley if f(y) > f(x) for all y ∈ ∂M(x).
(2) M(x) is a shoulder if there is a y ∈ ∂M(x) such that f(y) = f(x).

f

Figure 19: Two types of local minima: shoulder (l.h.s) and valley (r.h.s.). Local minima are

marked by white circles. The vertex marked in gray is a saddle point but not a minimum of

the landscape.

Definition 2. Consider a landscape f on G(X,E). We say (G, f) is

non-degenerate or invertible if f(x) = f(y) implies x = y for all x, y ∈ X;
locally invertible if x, y ∈ N (z) and f(x) = f(y) implies x = y for all

z ∈ X;
non-neutral if f(x) = f(y) and y ∈ N (x) implies x = y for all y ∈ X;

We collect a number of obvious consequences of definition 2 in the following

Lemma 3. (1) non-degenerate =⇒ locally invertible =⇒ non-neutral

(2) If (G, f) is locally invertible then the end-point of a gradient walk is uniquely

determined by its initial condition. (3) All local minima are strict in non-neutral

landscapes.
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Walks A walk p of length m on a graph G is a sequence

[x1, e1, x2, e2, . . . , xm, em, xm+1] with xi ∈ X, ei ∈ E, and ei = {xi, xi+1}.

A walk is called a path if all xi and all ei are distinct. Intuitively, a saddle point

on the way from x to y is a maximum along a walk from x to y that is as low as

possible. Although one usually works with paths in a graph-theoretical setting,

we will use walks in the present context

Definition 4. Let Pxy be the set of all walks from x to y. We say that x and y

are mutually accessible at level η, in symbols

x"
η

# y , (15)

if there is walk p ∈ Pxy such that f(z) ≤ η for all z ∈ p, respectively.

The relation "
η

# is obviously symmetric (x"
η

# y implies y"
η

# x) and

transitive (x"
η

# y and y"
η

# z implies x"
η

# z). It is reflexive for all

η ≥ f(x). The following property will be used repeatedly:

Lemma 5. For all x, y, z ∈ X:

x"
f(x)

# y and y"
f(y)

# z implies x"
f(x)

# z (16)

Proof. Observe that x"
f(x)

# y implies f(y) ≤ f(x); hence y"
f(x)

# z.

Definition 6. The saddle height f̂(x, y) between two configurations x, y ∈ X is

the minimum height at which they are accessible from each other, i.e.,

f̂(x, y) = min
p∈Pxy

max
z∈p

f(z) = min{η|x"
η

# y} (17)

In particular, we have f̂(x, x) = f(x).

Cycles The notion of cycles from the theory of simulated annealing [21, 22]

reduces to connected components of level sets for our purposes. The valleys V(s)

discussed in section 3.2 are special cases of cycles.

Definition 7. The cycle of x ∈ X at height η, Cη(x), is the connected component

of the level set {y ∈ X|f(y) ≤ η} that contains x.

Thus x ∈ Cη(x) for η ≥ f(x) and Cη(x) = ∅ for η < f(x). Obviously, we have

Cη(x) =
{
y ∈ X

∣
∣y"

η
#x

}
(18)
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Lemma 8. Let η′ ≤ η′′ and x, y ∈ X. Then either Cη′(x) ∩ Cη′′(y) = ∅ or

Cη′(x) ⊆ Cη′′(y).

Proof. Suppose there is q ∈ Cη′(x) ∩ Cη′′(y). Then x"
η′

# q"
η′′

# y, hence

x"
η′′

# y and Cη′(x) ⊆ Cη′′(x) because of lemma 5.

As an immediate consequence we note:

Corollary 9. The set C(G, f) = {Cη(x)|x ∈ X, η ∈ R} of the cycles of the

landscape (G, f) forms a hierarchy, i.e., for all x, y ∈ X and η ′, η′′ ∈ R we have

either Cη′(x)∩Cη′′(y) = ∅, Cη′(x) ⊂ Cη′′(y), Cη′′(y) ⊂ Cη′(x), or Cη′(x) = Cη′′(y).

Commute Points Next we identify a set of points that is closely related to

our intuition of a “saddle point”.

Definition 10. The point z ∈ X is a commute point between x ∈ X and y ∈ X

if there is a walk p ∈ Pxy such that

(o) z ∈ p;
(i) maxu∈p f(u) = f̂(x, y) = f(z).

The set of commute points between x and y is denoted by S∗(x, y).

Commute points can also be characterized in terms of the cycles introduced above.

Theorem 11. A point s ∈ X is a commute point between x and y if and only if

(i) Cη(x) ∩ Cη(y) = ∅ for all η < f(s).

(ii) Cf(s)(x) = Cf(s)(y)

(iii) s ∈ Cf(s)(x)

Proof. First suppose s is a commute point between x, y ∈ M. Thus x"
f(x)

# y

and hence Cf(s)(x) = Cf(s)(y). Since f(s) = maxu∈P f(u) = f̂(x, y) we know

that x 6" η 6# y for all η < f(s), i.e., (i) holds. Condition (o) of the definition of

course implies (iii) of the theorem.

Conversely, assume the conditions of the theorem. By (ii) we have x"
f(s)

# y

and hence there is p ∈ Pxy with height η ≥ f(s). From (i) we see that there is

no such path with height η < f(x), thus f̂(x, y) = maxu∈p f(u) = f(s). Since

s ∈ Cf(s)(x) we can choose p to run through s.
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The definition of S∗(x, y) might seem strange since it defines the end-points x

and y of the walk as commute points whenever they are the highest points along

some p ∈ Pxy. In particular we have x ∈ S∗(x, x). These properties are, however,

a significant technical convenience.

Strict Merging Points While definition 10 above is appealing because of its

(relative) simplicity, it has a major shortcoming in the degenerate case. Consider

the simple 1-dimensional landscape on the l.h.s. of Figure 20. Then both a

and b are commute points according to definition 20, a fact that contradicts

the intuitive notion of saddle points.A different approach starts from the cycles

instead of considering walks connecting local minima.

1

f(
x)

a bs tg h k

x

y

1 2

Figure 20: Saddle points in a degenerate landscape. L.h.s.: All of a, b, g, h, k, s, t are commute

points, g, h, k are (degenerate) local minima, g, h, k, s and t are weak merging points (and

hence also saddle points), none of these points is a (strict) merging point.

R.h.s.: f -values increase from white to black. The red vertices are saddle points connecting the

two white basins. Replacing walks by paths in definition 15 would imply that 1 is not saddle

point between x and y in the second situation, while it is such a saddle in the first situation.

While this might be geometrically appealing it causes algorithmic difficulties since we cannot

treat the flat connected part as a unit.

Definition 12. A point m ∈ X is a strict merging point if there are local minima

x, y ∈ M such that

(i) Cη(x) ∩ Cη(y) = ∅ for all η < f(m),

(ii) Cf(m)(x) = Cf(m)(y),

(iii) m ∈ Cη′(x) ∩ Cη′′(x) for some η′, η′′ < f(m).
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We say that m is a strict merging point between (the basins of) x and y in this

case. The set of strict merging points between x and y will be denoted by M̂(x, y).

If f is non-degenerate, then m is a strict merging point between x and y 6= x if

and only if it is the (uniquely determined) commute point between x and y.

Lemma 13. If m is a strict merging point then it is a commute point. If m is a

strict merging point, then it is not a local minimum.

Proof. From (i) and (ii) we conclude that f(m) = f̂(x, y). By (iii) m is in

particular at least a neighbor of a point q ∈ Cf(m)(x) and thus itself contained

in the connected component Cf(m)(x). Hence condition (iii) of definition 11 is

satisfied.

To see the second part of the lemma consider local minimum z. Then Cη(z) = ∅

for all η < f(z) and hence Ch(z) = ∅, and condition (iii) is never satisfied.

In a non-degenerate landscape each commute point is therefore either a local

minimum or a strict merging point.

Merging Point None of the points s, t, g, h, k in the l.h.s. of Fig. 20 is a strict

merging point. Thus, strict merging points are also not the desired construction.

By lemma 13 we see that the desired definition must lie somewhere between

commute points and strict merging points. Let us consider both avenues.

In order to weaken the definition of strict merging points we define the borderless

cycle of x at height η in the following way

C◦
η (x) =







⋃

η′<η

Cη′(x) if η > f(x)

{x} if η = f(x) and x ∈ M

∅ otherwise

(19)

Definition 14. m ∈ X is a merging point between the local minima x, y ∈ M if

(i) Cη(x) ∩ Cη(y) = ∅ for all η < f(m),

(ii) Cf(m)(x) = Cf(m)(y)

(iii) m ∈ C◦
f(m)(x) ∩ C

◦
f(m)(y)
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We write M(x, y) for the set of merging points between x and y. The main

difference between definitions 14 and 12 is that z ∈ M is always a merging point

but never a strict merging point. To see this, choose x = y = z. Then (i) and

(ii) is satisfied trivially, and (iii) follows from C◦
f(z)(z) = {z}. Furthermore, the

definition now includes s and t in Fig. 20 as merging points between x and g,

and k and y, respectively.

Saddle Points The definition of a commute point includes a and b in Fig. 20

because nothing prevents the walk connecting x with y from first visiting a and

returning to x before crossing the “true saddle” to y. With the help of the the

following notation we can “repair” this definition. The idea is now to consider

only walks that never return to a basin that they have already left. The following

formalization(s) of this idea appears natural:

Definition 15. A point s is saddle point between x and y if there is a walk

p ∈ Pxy such that

(o) s ∈ p;

(i) maxu∈p f(u) = f̂(x, y) = f(s);

(ii) For all z ∈ M: G[C◦
f(s)(z) ∩ p] is connected.

A saddle point between x and y is direct if the walk p in addition satisfies

(iii) G[{u ∈ p|f(u) = f(s)}] is connected.

We write S(x, y) and Ŝ(x, y) for the saddle points and direct saddle points between

x and y, respectively.

Condition (ii) ensures that p meets the inside of a basin not more than once.

Condition (iii) means that the walk can be chosen as “unimodal”, leading from

C◦
f(s)(x) to C◦

f(s)(y) in such a way that f(u) = f(s) for all configurations in be-

tween. The following simple result a posteriori justifies the name “saddle height”

for f̂(x, y) introduced in definition 6.

Lemma 16. For all x, y ∈ M there is a saddle point s ∈ S(x, y) such that

f(s) = f̂(x, y).
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Proof. The basins C◦
f(s)(z) are connected by construction. Thus, a walk p satis-

fying (ii) can be obtained from any walk p′ connecting x and y at level f(s) by

replacing the part beginning at the first point z′ ∈ p′ ∩ C◦
f(s)(z) to the last point

z′′ ∈ p′ ∩ C◦
f(s)(z) along p′ by a walk from z′ to z′′ that is contained entirely in

C◦
f(s)(z). The restriction of definition 6 to walks satisfying condition (ii) hence

does not affect the saddle point height f̂(x, y).

Obviously, every saddle point is a direct saddle point between some basins, but

not all pairs of minima are connected by a direct saddle.

Theorem 17. If m ∈ X is a merging point then it is a saddle point. If x 6= y

then M(x, y) ⊆ Ŝ(x, y) for all x, y ∈ M.

A proof for that can be found in [49].

The following relationships for all x, y ∈ M follow directly from the definitions:

M̂(x, y) ⊆ M(x, y)

Ŝ(x, y) ⊆ S(x, y) ⊆ S∗(x, y)

For x 6= y we have M(x, y) ⊆ Ŝ(x, y) while M(x, x) = {y ∈ N (x)|f(x) = f(y)}

and Ŝ(x, x) = {x}.

commute

points

saddle points

merging points

strict
merging points

local
minima local minima strict merging points

commute points = saddle points = merging points

Figure 21: Venn-diagrams of the various notions of saddle points; l.h.s: degenerate landscapes,

r.h.s: non-degenerate landscapes.

Naturally, we define the set of all Q-points of a landscape, where Q is one of

S∗, S, Ŝ,M, M̂ , as

Q(G, f) =
⋃

x,y∈M

Q(x, y) (20)

i.e. S is a Q-point if and only if it is a Q-point between two local minima.

The mutual relationships between these sets and the set M of local minima are

summarized in Fig. 21.
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Equivalent Saddle Points Just as in the case of local minima it is useful

to collect Q-points into equivalence classes. There appear to be two natural

equivalence relations

Definition 18. Two Q-points x, y ∈ Q are

↔ weakly equivalent if f(x) = f(y) and x"
f(x)=f(y)

# y.

⇔ equivalent if they lie in the same connected component of the weak equiva-

lence classes.

We write Q∗ and Q(x) for the weak equivalence class and equivalence class of

Q-points that contains x belongs.

Note that this definition also applies to the local minima.

Lemma 19. (i) For all x ∈ M we have M(x) ⊆ S(x) and M∗(x) ⊆ S∗(x).

(ii) M(x) = M∗(x) = S(x) = S∗(x) if and only if M(x) is a valley.

Proof. (i) follows immediately from the fact that every local minimum is also a

saddle point.

(ii) Suppose M(x) is a valley, i.e., f(y) > f(x) for all y ∈ ∂M(x). Consider

a vertex z ∈ X \ M(x). Each walk p connecting u ∈ M(x) with z must pass

through a vertex q ∈ ∂M(x), hence f̂(u, z) ≥ minq∈∂M(x) f(q) > f(x), i.e.,

z 6" f(x) 6# u and hence z /∈ S∗(x). Thus S∗(x) ⊆ M(x).

The converse follows from (i).

In the remainder of this section we will show that barrier trees can be formulated

in terms of weak equivalence classes.

Formal definition of barrier trees

Let us write S = {S∗(x)|x ∈ S} and M = {M∗(x)|x ∈ M} for the sets of

weak equivalence classes of saddle points and local minima respectively. It is the

purpose of this section to show that the set U = M ∪ S of equivalence classes of

saddles and minima can be regarded in a very natural way as the vertex set of a

tree.
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We observe that the cost function f is by construction constant on each set

U ∈ U; hence we write f(U) instead of “f(x) for each x ∈ U”. Thus the notation

U ′
"

η
#U ′′ is also well defined. In the same vein we may write f̂(W,W ′) instead

of “f̂(w,w′) for each pair (w,w′) ∈ W ×W ′.

We will need the following subsets of U in our discussion:

U(W ) =

{

{W ′ ∈ U|W ′
"

f(W )
#W} for W ∈ S \ M

{W} for W ∈ M
(21)

The properties of this collections of sets is summarized in the following

Lemma 20. (i) For all W ′ ∈ U(W ) we have either (a) f(W ′) < f(W ), or (b)

W = W ′, or (c) W ′ ∈ M and W ′ ⊂ W .

(ii) {U(W )|W ∈ U} is a hierarchy.

(iii) For all W ′,W ′′ ∈ U there is a unique W ∈ U such that (1) W ′,W ′′ ∈ U(S)

and (2) if W ′′′ ∈ U(W ) and W ′,W ′′ ∈ U(W ′′′) then W = W ′′′. We have

f̂(W ′,W ′′) = f(W ).

Proof. (i) By construction W ′ is accessible from W at level f(W ). Thus f(W ′) ≤

f(W ). If f(W ′) < f(W ) then W ∩W ′ = ∅, i.e., none of (b) or (c) can holds.

Now suppose f(W ) = f(W ′). If W ∈ M then by construction U(W ) = {W},

i.e., (b) holds. If W ∈ S \ M then W is the saddle point set of a shoulder,

and hence it contains the minima set W ′ of the shoulder by lemma 19. Clearly

W "
f(W )

#W ′, hence alternative (c) is satisfied. Following the argument in

lemma 9 one easily verifies that {U(W )|W ∈ U} is a hierarchy. Hence for each

W ′,W ′′ ∈ U there is an W ∈ U such that W ′,W ′′ ∈ U(W ) because the graph

G is connected. The existence and uniqueness of the minimal element W is now

obvious. Clearly W is the set of saddle points connecting W ′ and W ′′, thus f(W )

is the height of these saddle points.

Recall that, given a collection A of sets, A ∈ A is a maximal subset of B if A ⊆ B

and there is no A′ ∈ A such that A ⊂ A′ ⊆ B.

The children of W ∈ U form the set

children(W ) =
{
W ′ ∈ U(W )

∣
∣U(W ′) is a maximal subset of U(W ) \ {W}

}
(22)

Let T(G, f) be the graph with vertex set U and a directed edge (W ′,W ′′) ∈ E if

and only if W ′′ ∈ children(W ′).
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Theorem 21. The graph T(G, f) is a rooted tree.

Proof. It follows directly from eq.(21) thatW ∈ U has a non-empty set of children

if and only if W /∈ M. Furthermore, lemma 20 implies that each W ′ is the child

of at most one W ∈ U. Lemma 20 also implies that either f(W ′) < f(W )

or W ′ ∈ M, in which case W ′ has no children. Thus T(G, f) is acyclic. The

hierarchy property ensures that T(G, f) is a rooted forest. Finally, since X is

finite and G(X,E) is connected we have x"
max f

# y, i.e., there is W ∗ ∈ U

such that U(W ∗) = U. Thus T(G, f) is a connected rooted forest, i.e., a rooted

tree.

We call T(G, f) the barrier tree of the landscape (G, f). If f is non-degenerate,

then each vertex of T(G, f) is a set consisting of a single local minimum or saddle

point. With each edge (W,W ′) of T(G, f) we associate the difference in the cost

function f(W ) − f(W ′).

Merging Graph Closely related to the barrier tree is the merging graph of

a landscape (figure 22). Its vertices are the local minima and the equivalence

classes Q(x) of saddle points. A local minimum y is connected to Q(x) if there

is z ∈ M and u ∈ Q(x) such that u is a merging point between z and y. The

merging graph is usually not a tree. For instance, there may be more than one

connected components of saddle points that merge the same two minima. Hence

merging graphs have in general more nodes than the corresponding barrier trees.

The calculation of degenerate landscapes (algorithm 2) is implemented similar

to the non-degenerate version (algorithm 1) with the difference that structures

are processed as sets of equal-energy structures (energy bands): A global list B

contains all local minima found during the procedure. C is the list of connected

components of the current energy-band11. Both B and C must be empty at the

beginning of the algorithm. The calculation starts from an energy-sorted list

of configurations that are processed in terms of energy bands (line 2). We will

further require a local list of minima, K as well as a temporary set Ctemp. For each

element of an energy band, d, all neighbor structures according to a predefined

11with respect to the move-set
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Figure 22: Energy Landscape of SL RNA of Leptomonas collosoma. We show the barrier trees

(l.h.s.) and the merging graphs (r.h.s.) for comparison. The example is restricted to 100 lowest

local minima.

move-set are calculated and stored on the neighbor-stack (line 7). The neighbor-

stack is then processed and a routine searches a hash if any neighbor of d has been

seen in a previous step of the computation. If this is true, the according basins are

stored in K. If y has the same energy as d, d is added to the component containing

y and c(y) is added to Ctemp (lines 12 and 13). There are two possibilities after all

neighbors y have been processed: Either Ctemp is empty, which means that a new

component containing d is opened (line 18). In case Ctemp contains elements, they

are merged with C (line 20) and the local list of basins that are connected by c(d)

is updated (line 21). After all elements d of the current energy-band have been

processed, K is checked if it is empty (indicating that d is a new local minimum)

and, if this is true, the global list of local minima is updated (line 25). Finally,

d is written to the hash (line 27). The last step of the algorithm is achieved by

merging basins connected by individual components c ∈ C.

Basins Let B(S) = {x ∈ X|x"
f(S)

#S and f(x) < f(S)}, and let B(S ′;S)

be the vertex set of the connected component of G[B(S)] that contains S ′. Thus

we have B(S ′;S) = ∅ if and only if S ′ /∈ U(S)\S. The set B(S ′;S) is the basin of
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Algorithm 2 Variant of barriers that generates saddle point components

Require: subopt, B, C

1: B ⇐ ∅

2: while D ⇐ read energy band() do

3: for all d ∈ D do

4: K ⇐ ∅

5: C ⇐ ∅

6: Ctemp ⇐ ∅

7: N ⇐ generate neighbors(d)

8: for all y ∈ N do

9: if b⇐ lookup hash(y) then

10: K ⇐ K ∪ b

11: if E(y) = E(d) then

12: c(y) ⇐ c(y) ∪ {d}

13: Ctemp ⇐ Ctemp ∪ {c(y)}

14: end if

15: end if

16: end for

17: if Ctemp = ∅ then

18: Ctemp ⇐ {{d}}

19: else

20: C ⇐ merge components(C, Ctemp)

21: K(c(d)) ⇐ K(c(d)) ∪ K

22: end if

23: end for

24: if K = ∅ then

25: B ⇐ B ∪ {d}

26: end if

27: write hash(d)

28: end while

29: for all c ∈ C do

30: merge basins(K(c))

31: end for
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S ′ in the subtree with root S. We have B(S ′;S) = B(S ′′;S) if and only if there

is S ′′′ ∈ U(S) \ {S} such that S ′, S ′′ ∈ U(S ′′′), i.e., if S ′ and S ′′ are connected by

a saddle S ′′′ within the basin below S. The basins at or below a node S of the

tree of course form a partition of the corresponding level sets and hence can be

used to define macro-states. Note that this definition is highly different from the

”valley V” in section 3.2. The problem with this approach is, however, that the

partition depends explicitly on the energy level; there does not appear to be a

natural way to extend such a partition of a level set to a partition of the complete

state space.

A second type of basin is defined by gradient walks. In locally invertible land-

scapes gradient walks are uniquely defined. Hence, for each starting point x ∈ X

there is a uniquely defined end point g(x) ∈ M. Naturally, we define for each

z ∈ M the associated gradient basin as B(z) = {x|z = g(x)}. Obviously

x ∈ B(x). Furthermore, the gradient basins form a natural partition of the

complete state space X. This partition is consistent with the barrier tree in the

following sense:

B(x) ∩ {y|f(y) < f(S)} ⊆ B(S ′;S) for x ∈ S ′ (23)

That is, the part of the gradient basin of x below the level f(S) is contained in

the basin B(S ′;S) of the minimum x within the subtree with root S.
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5 The protein folding problem

At this point we have established a framework that allows us to investigate the

energy landscape of biopolymers on a theoretical level. We have introduced

the fundamental concept of energy landscapes and presented tools for efficient

calculation of the features of energy landscapes, such as number of local minima,

sizes of basins of attraction and energy barriers separating those basins. A major

motivation for this thesis was the ability to investigate energy landscapes and

dynamics of proteins. More exactly, we wanted to address the question what

makes a protein fold to its native state and what are the forces that drive protein

folding? We will give an overview of past and present understanding of protein

folding in the following (see [34, 35, 136] for more details).

The tertiary structure of a protein is crucially determined by its amino acid

sequence. This was demonstrated by denaturation experiments showing that

denaturation of some proteins is reversible. Certain globular proteins that have

been denatured by heat, denaturing reagents or extremes of pH regain their native

structure and biological activity if they are returned to conditions in which the

native conformation is stable. This process, called renaturation, was first shown

by Anfinsen in the 1950ies. It provided first evidence that the amino acid sequence

of a polypeptide chain contains all information necessary to fold the chain to its

native, three dimensional structure.

When Pauling an Mirsky proposed that backbone hydrogen bonding is a promi-

nent driving force [112], a backbone-centric, helix-centric view of protein folding

was born. This view should be the major viewpoint for protein folding for almost

half a century, from the 1930ies to the 1980ies. In the same time period, folding

cooperativity was elucidated by an understanding of helix-coil transitions, see

e.g [134] . With cooperativity we mean that there is a dramatic transition from

denatured to native states upon only small changes in pH, solvent or temperature.

It became clear that helix-coil transition is driven by hydrogen bonding and φψ

propensities among near-neighbor groups along the chain. Another prominent

aspect arose within this view, namely that protein folding should be hierarchical:

the primary sequence leads to secondary structure (fast), which is then assem-

bled into tertiary structure (slower). Hydrogen bonding and φψ propensities were

seen as a large part of the explanation of the structures. Interestingly, hydropho-

bicity was seen as some ’nonspecific’ force that aided a polymer to collapse but
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otherwise had little interference in guiding a protein to its native state. Rather,

hydrogen bonding and helical propensities were seen as the major driving force.

Within the last 20 years, a different view arose, a side-chain-centric one. In this

view, the greater contribution to the free energy of folding is encoded in a more

delocalized ’solvation’ code rather than in propensities for nearest neighbor amino

acids to favor certain φψ values. The main idea behind this view is the fact that

only a small fraction of all possible conformations can bury nonpolar residues

to the greatest possible degree. It became evident that hydrophobic interactions

are among the strongest interactions among amino acids in water. Hence, hy-

drophobic forces are no longer seen as nonspecific ’glue’ as in the backbone-centric

view, but as a crucial, structure-determining force. In this view, folding coop-

erativity more closely resembles a process of polymer collapse than a helix-coil

transformation [34].

It still remains so specify which view is the more ’biological’ one as the true

balance between side-chain and backbone forces is not yet known. One one

hand, a simplified side-chain centric model can predict properties of globular

proteins, on the other hand not all proteins do collapse and it is still a φψ-based

model that explains this kind of behavior. Nevertheless, the side-chain-centric

view tends to be the more general one since helix and strand propensities are

believed to be rather weak. Further, experiments showed that protein folding

is not hierarchical, which means that secondary structure is not necessarily a

building block for tertiary assembly [67]

Much knowledge on the theoretical background of protein folding and dynamics

has been achieved within the last 30 years by a rigorous assessment of simplified

models (section 2.5). We will make use of the HP model for the protein case

throughout this thesis. For small sequences, reduced models like this allow not

only for an extensive exploration of the conformation space, but also provide a

reasonable means to calculate e.g. thermodynamic properties that could not be

calculated in any other way, but that can be tested by experiments.

Two key problems have often been reported in literature and should thus be

mentioned here12:

12though they are both titled ’Paradox’, polymer modeling demonstrated that they are nei-

ther paradox nor problematic.
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• The Blind Watchmaker Paradox: The probability to find natural pro-

teins by a random search in sequence space is vanishingly small.

• The Levinthal Paradox: The probability that a protein is able to find

its unique, native state by a random search through conformation space is

impossibly small.

In both cases, the key to impossibility is given by the vastness of the underlying

search space. Consider a polypeptide chain of length 100. Assuming there are

20 different amino acids, there are some 20100 = 10130 different sequences of

this length. Evidently it is impossible that nature could have searched through

such a sequence space to find a certain sequence. In fact, what is relevant for a

biologically relevant protein is its fold, not its sequence. It turned out that the

probability to find any sequence that folds to a specific structure from a large

ensemble soup (still considering our 100 residue-polypeptide) is nearly 100 orders

of magnitude larger (roughly 10−10 to 10−20) than finding a very specific sequence

(probability of about 10−130). This is due to an enormous ’degeneracy’ in sequence

space: many different sequences can fold to the same (native) structure. Within

the context of the simple HP model (assuming that the 3D structure is encoded

in the binary sequence) we can reduce our sequence space from 20100 to 2100 =

1030. Though these are still too may sequences to investigate exhaustively within

the currently available computational framework, a simple consideration suggests

that hydrophobic monomers are largely interchangeable within each other, as well

as polar monomers are. Moreover, studies in the 1990ies [25] showed that only a

fraction (1/3 referring to [34]) of monomers are essential for folding, those that

define a hydrophobic core of the model protein. So if one is only interested in

native model protein structures, the sequence space is again decreased from 2N

to 2N/3 (233 = 1010 for N = 100). The general view for the ensemble of sequence

space is that virtually all molecules are ”nearly” folded, i.e. a random chain of

length 100 is assumed to be highly compact in water, have considerable secondary

structure elements and is structured much like a ”molten globule”.

At this point is is necessary to state that native protein structures are not perfect

spheres. Globular proteins have hydrophobic cores and thus are highly, but not

maximally compact. In fact, the deviations from perfect compactness in global

shape, active sites and surface cavities are intrinsic to protein structure and

function. The HP model accounts for this as native states within this model
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are often not maximally compact. The shape of any state in the HP model is

dependent on its monomer sequence.

In the remainder of this section we will focus on some aspects of protein folding

that first appeared in literature in the late 1980ies and early 1990ies: The con-

cept of folding funnels [16, 36, 92] which has often been used for a qualitative

description of the protein folding process. Although the idea behind the concept

of folding funnels is appealing, a rigorous mathematical formulation for the model

is, to our knowledge, still missing.

When Levinthal proposed his thoughts in the late 1960ies [93], the general opin-

ion was that two - mutually exclusive - options should play an important role

in protein folding: On the one side thermodynamic control, indicating that a

protein should reach its global minimum energy via a pathway-independent fold-

ing mechanism (assuming the native structure is determined only by final native

conditions). On the other side, kinetic control which accounts for quick folding

due to pathway-dependence. Under kinetic control, intermediate states (whether

they are on- or off-pathway) should be responsible for a rapid formation of the

native state. Within the following years, the door was opened for many kinetic

experiments that were seen as the key to elucidating the ”folding code”.

Experimentalists often formulate their findings in protein kinetics in terms of

mass-action diagrams with arrows that connect certain states with each other:

D (denatured), I (intermediate) and N (native). These states do not correspond

to single structures of a (model) protein, but an ensemble (or macrostate). Such

schemes describe observed relaxation rates and amplitudes and are sometimes

denoted the ”old” or ”classical” view in protein folding. The classical view (also

known as ”sequential micropath view”) is based on simple phenomenological

kinetic models that are derived from single- or multiple-exponential time decays

of optical properties that monitor changes in the protein structure after a jump

to folding or unfolding conditions [36].

However, scientists were not quite satisfied with this level of description as it is

not capable of describing the process of protein folding on a microscopic level. It

rather explains the ’average’ behavior of a protein. Further, this model suggests

that all polypeptide chains must follow the same pathway to find its native state

(which is obviously not the case).

The solution to the problem was seen in introducing a novel view of protein fold-
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ing, namely an ”ensemble” view. Instead of trying to address protein folding

in terms of macroscopic states (see above), a different approach relying on the

whole ensemble of possible structures (based on statistical mechanic modeling)

was proposed. Within this view, literature argues (see e.g. [35]) that more atten-

tion is put into the question ’what molecules do’ - instead of ’what exponentials

do’. The ensemble view suggests that pathways of sequential events should be

replaced with a funnel concept of parallel events: Polymer chains are supposed to

fall energetically downhill, as when balls roll down bumpy funnels. Hydrophobic

collapse leads to many different compact chain conformations. According to [34],

the folding funnel arises because the ’drive to collapse is also a drive toward a

reduced ensemble of conformation’. In other words, there are many non-native,

high-energy states and only one (or at least not more than a couple of) native

states with very low energy.
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Figure 23: An idealized folding funnel.

Folding funnels are often illustrated as in figure 23. The vertical axis is said to

represent the energy of a given chain configuration: Torsion angle energies, ion

pairs, hydrogen bonds, hydrophobic and solvation energies etc. The horizontal
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axis is said to represent some sort of conformational entropy of the molecule. Each

conformation is represented by a point on a multidimensional energy surface and

(the most critical aspect): Conformations that are similar geometrically are close

to one another on the energy landscape. Local maxima correspond to unfavorable

high-energy conformations, valleys to more favorable low-energy conformations.

In fact, the notion of entropy on the horizontal axis is a problem since no rigorous

definition is given that would allow one to compute it actually.

The first investigations suggesting folding funnels were made by Bryngelson and

Wolynes [16] in the late 1980ies. They explored the bumpiness of protein folding

landscapes in simplified spin-glass models. Later, Leopold et al. [92] were the

first who described in some detail how the shape of the folding funnel depends

on the amino acid sequence by enumerating lattice heteropolymer conformations.

Within the folding funnel view, a protein is supposed to change its conformation

in ways that cause its energy to decrease. At the same time, the protein is of

course subject to Brownian motion and it is thus constantly converted into differ-

ent conformations. Uphill steps must also be taken into account. As mentioned

before, the lateral expansion of a folding funnel at a certain energy level repre-

sents its conformational entropy. According to funnel theory, this is consistent

with the assumption that the progress toward lower free energy conformations

is accompanied with diminished conformational freedom - finally resulting in the

native structure.

The ability of certain sequences to fold (or not to fold) to a native state has

often been addressed in terms of the topology of the underlying energy land-

scape. Within this context, one must differentiate between random and protein-

like heteropolymers. Random heteropolymers do not have a well-defined three-

dimensional ’native’ state, but a collection of completely different low-energy

structures. To illustrate this, imagine a reaction coordinate Q (defined e.g. as

the fraction of native tertiary contacts). It was proposed [118] that an ideally de-

signed folding sequence should have the ”energy of its conformations proportional

to Q plus some roughness introduced by nonnative contacts”. All stabilizing con-

tacts should be equally distributed throughout the structure - the system is said

to be ”unfrustrated”. This correlation between energy and structure should on

the one hand favor the native conformation, one the other hand proportionally

bias all non-native conformations and thus be responsible for the funnel shape

of the landscape. In contrast to that, a random sequence would not exhibit such
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correlation, leading to a rough landscape (figure 24).

Configurational Entropy

E
ne

rg
y

Figure 24: Energy landscape of a random heteropolymer. Different low-energy states are

not only possible, but may also exhibit completely different structures with different sets of

frustrated contacts.

The idea that real proteins need to minimize frustration was first proposed by

Bryngelson and Wolynes [16]. Due to them, fast folding would be impossible

on entirely rugged (frustrated) landscapes. Fast folding should only be possible

because of guiding forces that stabilize native interactions in way more than

one would expect by chance. Fast folding proteins are supposed to satisfy a

principle of minimal frustration. The same authors were also the first who gave

a hint that protein folding should be seen in terms of certain temperatures: A

folding temperature Tf , below which the lowest energy-state is supposed to be

stable. (Formally, folding temperature has been defined as the temperature where

the native state is occupied 50% of the time.) Protein folding landscapes were

known not no be perfect funnels. Due to this ruggedness, another temperature

below which the kinetics is controlled by ”long-lived low-energy traps” (and not a

straight bias toward a native conformation) was proposed. This temperature was

termed glass transition temperature Tg. Later, Socci and Onuchic [140] provided

an operational definition of Tg. Given that trapping were not a problem, lowering

the temperature should speed up folding because it favors collapse. Nevertheless,

as the temperature gets lowered, there is a point where a rapid slowdown of

folding happens. This temperature was called kinetic glass transition temperature

and is similar to the thermodynamic glass transition temperature proposed by

Bryngelson and Wolynes.

Much effort was put into investigation of foldability of protein-like heteropolymers

throughout the 1990ies, mainly using minimalist models (section 2.5). Camacho

and Thirumalai [18] studied kinetics of three different types of interaction poten-

tials using a two-dimensional lattice system with relatively short chain lengths.

They found both Tf and Tg as predicted by Bryngelson and Wolynes and argued

that proteins in the region Tf ≤ T ≤ Tg may correspond to a molten globule
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containing the bulk of the backbone native structure

Socci an Onuchic [140] investigated several different sequences of length 27 within

a maximally compact 3× 3× 3 cube on a simple cubic lattice. Studying kinetics

of collapse and folding, they found that folding time depends on the sequence (as

one would expect) and is related to the amount of energetic frustration in the

native state. Collapse times - in contrast - turned out to be sequence independent

within their model. The authors were able to identify two classes of sequences:

good folders with Tf > Tg and non-folders with Tf < Tg.

At this point is seems fair to formulate some critical remarks on the concept

of folding funnels: First, it is not evident that proteins really do have unique

ground states. A prominent example for this is the existence of chaperons, pro-

teins whose function is to assist other proteins in achieving proper folding (see

e.g. [158]). Originally detected as heat shock proteins, they play an important role

in protein-protein interactions such as folding and assisting in the establishment

of proper protein configuration and prevention of unwanted protein aggregation.

Prions [123] (short for proteinaceous infectious particle) are another group of -

pathologically relevant - proteins that contradict the assumption of unique ground

states. Prion proteins can occur in different conformations and their distorted

form has the ability to induce the ”normal” form to become distorted. Although

the exact mechanisms of action of these infectious self-reproducing protein struc-

tures is not yet known, it is now commonly accepted that they are responsible

for a number of diseases generally classified under transmissible spongiform en-

cephalopathy (TSEs) diseases, such as scrapie (a disease of sheep) and bovine

spongiform encephalopathy (mad cow disease). These diseases affect the struc-

ture of brain tissue and are all fatal and untreatable. There is strong indication

that the lethal human Creutzfeldt-Jakob Disease is caused by transmissible pri-

ons.

We mentioned earlier that a rigorous mathematical characterization of folding

funnels has not been given yet. However, we can state that the concept - in the

way it has been proposed in literature so far - seems insufficient. The fact that

some proteins have the ability to refold from one structure to another and thus

change their function gives rise to the assumption that energy barriers are indeed

necessary. In other words we could say that folding funnels do exist, but it is

not evident that they really look like the one shown in figure 23. Remember the
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vague definition of the horizontal axis, and the argument that ’drive to collapse

should also be a drive towards a reduced ensemble of conformations’. One possi-

bility to set up a reasonable scale for the lateral expansion of the folding funnel

would be to define some ”conformational entropy” as a function of the system’s

inner energy, i.e. Sconf = k lnN [E] with N [E] being a measure for the density

of states. However, even if this definition would be appropriate, it is not clear

whether the protein moves upwards or downwards on this (S,E) surface. An-

other point that must be considered is the question whether geometrically similar

structures are adjacent to each other in such a high dimensional funnel. As a

result, anyone could argue that the native state of a biopolymer is a certain point

on a hypersphere representing the energy landscape.

Much effort was put into investigations of protein folding funnels over the last

years. Nevertheless, the concept is still insufficient for predicting the exact folding

behavior or describing biopolymer dynamics qualitatively. On the other hand, it

is appropriate as a conceptual model to get a principal impression on molecular

driving forces.

For the purposes of this thesis we will rely on barrier trees, having a profound

mathematical foundation (given in the last chapter) rather than folding funnels.

We believe that barrier trees embody all the relevant quantitative information

about the multi-valley structure of an energy landscape and should thus be re-

garded as a reasonable representation of the energy landscape.
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6 Low-energy states of the energy landscape

We know from previous sections that it is necessary to have a list of all structures a

given sequence can fold into within a certain energy interval in order to apply the

algorithm presented in section 4.2. It was mentioned earlier that the situation is

different in the case of lattice proteins from the RNA case. Lattice protein folding

was shown to be NP-complete and hence there is no efficient algorithm available to

determine a lattice polymer’s ground state. It is further not possible to recursively

calculate a set of suboptimal lattice protein structures, as it is possible for RNA.

To escape the problem, we implemented a tool for exhaustive enumeration of all

SAWs of given length on a certain lattice (latticeSub, section 2.8).

A different approach to generate the low-energy portion of an energy landscape

was motivated by the poor results of the exhaustive enumeration technique ob-

tained for longer chains on 3D lattices (though the tool is readily applicable to

2D lattices as well). The main idea is simple: Start from a well-defined structure

on a certain lattice (if one wanted to investigate the lower part of the energy

landscape one would of course choose a low-energy or near-optimal structure, if

available) and, according to a pre-defined move set (section 3.1.2), generate all

neighbor structures. Then take the just generated neighbors and generate their

neighbors and so on. This procedure is repeated until a predefined amount of

structures has been found. More formally, we can select S0 as a start structure.

The first step is to generate all its neighbors N (S0) = (S0
1 , S

0
2 , S

0
3 , ..., S

0
n). An op-

tional constraint would be to define a certain energy threshold for the neighbor

structures. Any structure from N (S0) that has an energy lower than the thresh-

old is then a) written into a hash and b) a pointer to the just inserted hash entry

is added to a list of hash pointers. The next step of the algorithm is to process

the elements of the hash-pointer list. Similar to the initial step, all neighbors

of S1 = S0
1 , N (S1) = (S1

1 , S
1
2 , S

1
3 , ..., S

1
m) are calculated. After that, N (S1) is

processed and (given that its energy is below the threshold), each structure is

looked up in the hash if it has been seen before. If this is true, the structure is

thrown away and the next structure is processed. If the structure has not been

seen before, it is inserted into the hash and a pointer to the entry is put at the

end of the hash pointer list. After all structures from N (S1) have been processed,

the hash pointer list-entry for S1 is deleted and the procedure is repeated with
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Figure 25: Schematic representation of the latticeFlooder algorithm (left plot). Starting

from a certain conformation, all neighbor conformations are calculated repeatedly until all

conformations in a certain region of the energy landscape are found (note that the shape of

the energy landscape is not known at the beginning of the algorithm). Within this schematic

example, all conformations with an energy lower than Ep are generated. Starting from a

conformation in basin C, all conformations in basins B and A are found (illustrated by the

schematic barrier tree in the right plot). Basin D is not found with this method since its energy

is too high and it is thus not connected.

the last entry from the hash pointer list13 as initial structure. The end of the

algorithm is reached as soon as a) a predefined amount of structures has been

found (limited by the size of RAM, currently approximately 40 million struc-

tures can be generated on machines with 4GB RAM) or b) all structures that are

”reachable” from a distinct start-structure (constrained to an energy threshold)

are found.

Figure 26 shows the results of some benchmarking (SQ lattice and HPNX al-

phabet) we did to find out about time efficiency of the two tools. Evidently,

latticeSub is significantly faster for short sequences since its exhaustive search

routine is implemented as a recursion algorithm. So if we wanted to generate a

list of all SAWs of a short lattice protein, we would use latticeSub. On the

other hand, latticeFlooder has a major advantage: This tool allows us in prin-

13From the computational point of view, it does not make any difference with respect to time

efficiency whether to take the first, the last or any intermediate entry from the hash pointer

list as next start structure.
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Figure 26: Benchmark latticeSub vs. latticeFlooder of variable-length HPNX alphabets

of the SQ lattice. latticeSub is faster for short chains, latticeFlooder allows for a move

set-specific calculation of structures and examination of longer SAWs.

ciple to generate the whole low-energy portion of some conformation space X -

even for longer sequences, at the cost of more memory requirements. Another

advantage of latticeFlooder is that this tool can generate neighbor structures

according to a certain move set.

A typical application of latticeFlooder would be investigation of the often

referenced 27-mer on the SC lattice. Assuming a poly-H sequence, the ground

state is given by a 3 × 3 × 3 cube with 28 HH-contacts. However, there exist

103346 compact 3×3×3 structures (see e.g. [42]) and it would thus be inefficient

to investigate this problem with latticeSub. latticeFlooder, on the other

side, can generate a representative low-energy part of the energy landscape when

starting form a compact 3 × 3 × 3 conformation.

Figure 26 shows two series of latticeFlooder results, one for each move set

we implemented (section 3.1). Since the hashing routines in latticeFlooder

and barriers are the same, combined usage of these two tools yields not only

connected barrier trees (section 4.1) but it is also assured that the whole list

of structures can be handled computationally within a barriers run. In other

words, if latticeFlooder can handle some amount of structures, barriers can

handle it as well if the calculations were performed on the same machine.
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7 Dynamics of Biopolymers

We developed the framework for our further investigation of the dynamics of

biopolymer folding in the last sections. At this point, we have a reasonable rep-

resentation of the energy landscape at hand (barrier trees) and the next step is to

predict the folding behavior of biopolymers by numerical integration. Originally

developed for investigation of RNA folding kinetics (and published recently [162]),

this concept has been expanded to lattice proteins within the context of this

thesis. Before illustrating the coarse-grained description using the barrier tree

approach, we will illustrate our motivation by giving a short review of previous

work in the field of RNA folding kinetics and present the underlying model.

7.1 The Model

A valuable method for investigating time evolution of RNA secondary structures

was given by Flamm et. al. [47]. In this contribution, it has been shown that

a good approximation to the few available quantitative and qualitative data14

on RNA folding kinetics is obtained by modeling the conformational changes in

terms of elementary steps of opening and closing of base pairs. For the purposes of

this thesis, the tool has been adapted to lattice protein folding as well - pinfold

simulates kinetic folding of lattice proteins in terms of elementary steps. The

tools kinfold (RNA) and pinfold (lattice proteins) are capable of simulating

the whole kinetic folding process of RNA / lattice protein molecules using the

following model:

Let I be a sequence which specifies a set of structures with which it is compatible,

S(I) = {x0, x1, ..., xm} ∪ {0} (24)

where x0 is the minimum free energy (mfe) conformation, x1..xm are energetically

ordered suboptimal conformations and 0 is the denatured, open chain conforma-

tion. The set S(I) and the move set introduced in section 3.1.1 form the con-

formation space. A trajectory T (I) (as computed by kinfold) is a time-ordered

series of secondary structures in S(I). Because the conformation space of sec-

ondary structures is always finite, every trajectory will reach x0 after sufficiently

14In fact, very few experimental data are available at present to estimate transition rates

between different RNA secondary structures.
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long time. The folding time τ (associated with a trajectory) is defined as the first

passage time, that is, the time elapsed until S0 is encountered first. Due to the

fact that τ may well be too long for a computer simulation, one can distinguish

between trajectories that actually attain the ground state within the limits of

a simulation from those that are trapped in a thermodynamically suboptimal

conformation.

Translated into the language of chemical kinetics, the system is the biopolymer

chain and a state of the system is a certain conformation of the chain. Given

the move set, biopolymer folding can then be modeled as a Markov process in

conformation space. To do so, it is necessary to introduce a transition rate kyx

between two distinct states x and y, which is a small nonnegative real number

that determines how the probability of the transition from x to y increases with

time. The probability distribution P of structures as a function of time is ruled

by a set of forward equations, also known as the master equation

dPt(x)

dt
=
∑

y 6=x

[Pt(y)kxy − Pt(x)kyx]. (25)

Within this stochastic formulation, kyx∆t is the probability that a transition

from a distinct state x to another distinct state y occurs within the infinitesimal

time interval ∆t. For the solution of the last equation (in matrical form), it is

necessary to formulate a square intensity matrix (transition matrix) R = (rxy)

which contains the transition rates between different states of the system

rxy = kxy if x 6= y (26)

rxx = −
∑

y 6=x

kyx otherwise (27)

Thus, the master equation (i.e. the probability that the molecule has the sec-

ondary structure x at time t) can be written as

dPt(x)

dt
=
∑

y

Pt(y)rxy (28)

or rewritten in matrix form:
d

dt
Pt = RPt (29)

In principle, equation (29) can be integrated numerically. Tacker et al. [145] used

this technique to assess the feasibility of particular folding pathways of melting
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and refolding of tRNAphe. Breton et al. [13] proposed a rigorous model of a

sequential RNA folding process during transcription using this ansatz.

We are interested in calculating the temporal distribution vector Pt, which can

be calculated from the explicit solution of (29)

Pt = etRP0 (30)

where P0 is the initial distribution vector.

A fundamental requirement of this model is the concept of detailed balance, i.e.

the microscopic fluxes in one direction must equal the microscopic rates in the

other direction. In other words, microscopic reversibility must be guaranteed and

there exists a unique probability distribution of the Markov chain satisfying the

balance equations

πy =
∑

x

ryxπx (31)

for all y.

What still needs to be established is a rule for the transition rates rxy between

neighboring structures. The transition state model dictates an expression of the

form

ryx = r0e
−

E
6=
yx−E(x)

RT for x 6= y (32)

where the transition state energies E 6=
yx must be symmetric to assure detailed

balance, E 6=
yx = E 6=

xy. In the simplest case one can use

E 6=
yx = max{E(x), E(y)} (33)

which amounts to the Metropolis rule of simulated annealing. The parameter r0

could be used to gauge the time axis from experimental data, in the following we

simply use r0 = 1.

Other models for the transition rate between two states are possible as long

as detailed balance is satisfied. According to Kawasaki [84], the symmetric rule

evaluating the transition between the two states x and y connected by the reaction

channel α is formulated as:

kyx := e−
E
6=
yx−E(x)

2RT (34)

Note that the free energy difference ∆E between the two states x and y must

be divided by 2RT to get the detailed balance right. The Kawasaki dynamics
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approaches the Boltzmann distribution at equilibrium because it satisfies micro-

scopic reversibility [69]. For a detailed discussion of possibilities to formulate the

transition probabilities in the lattice protein case, see [26].

7.2 Barrier Tree Kinetics

In the last section, the general model for the kinetic folding of biomolecules was

presented with the RNA example. In a previous section it was shown that the

conformation space grows exponentially with the chain length of the biopolymer.

Due to the fact that the algorithm of kinfold/pinfold makes use of a stochastic

model, a great many trajectories have to be calculated to get a representative

impression on the real folding behavior of the molecule. Furthermore one has to

bear in mind that all legal structures of a biomolecule within a certain energy

interval must be considered in such a simulation. Thus, a realistic description of

the energy landscape or the dynamics of biopolymers based on all configurations

is very intensive in terms of time and computer resources. For RNA, this means

that it is not possible to simulate the kinetic folding of sequences with n > 500.

The situation is even worse for the lattice protein case. As a matter of fact

it is necessary to replace this stochastic model with a deterministic one: We

need to coarse-grain the representation of the energy landscape. But what states

should be considered within the new, restricted conformation space? A short

investigation leads us back to the concept of barrier trees. To be more precise,

we will map the original (huge) conformation space onto the barrier tree and

state that such a tree represents the energy landscape ’as-is’. Basins and saddle

points in the tree correspond to basins and saddle points of the folding landscape,

respectively (see below). With this model, it is interesting to find out about the

population probability of certain local minima on the barrier tree with respect to

the fact that they are separated by more or less high energy barriers. In fact, we

focus our investigations on the following questions:

• When starting the simulation at a specific local minimum of the tree (e.g.

the denatured, open chain conformation), how long does it take for the

system to reach an equilibrium state?

• To which extent are other local minima being populated on the way from

the start structure to the minimum free energy structure?
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• What are first passage times of specific local minima?

To investigate these questions we model the dynamics of a biopolymer as a contin-

uous time Markov chain. As mentioned before, the conformation space is reduced

in a way that we are only interested in local minima present in the barrier tree. In

our special case, the system is the biopolymer chain and a state is the population

probability of basins of the energy landscape.

Let Π be a partition of the state space X. For α, β ∈ Π define f [α, β] =

minx∈α miny∈β f [x, y], i.e. f [α, β] is the minimal saddle point energy connecting

between two points in the two different classes α and β of Π. It follows that

f [α, α] = minx∈α f(x).

Definition 22. The partition Π is

compatible with the energy landscape f if for all x ∈ α and y ∈ β with

f(x), f(y) ≤ f [x, y] holds x"
f [x,y]

# y.

strictly compatible with f if it is compatible and for all α, β ∈ Π

there is ηαβ < f [α, β] such that x, x′ ∈ α, f(x), f(x′) < f [α, β] implies

x"
ηαβ #x′.

Compatibility implies that the level sets of α and β are connected at the level of

their mutual saddle point energy, strict compatibility requires that the classes of

Π remain connected just below the saddle point energies. Trivially, the discrete

partition Π0 = {{x} | x ∈ X} is strictly compatible with f . A non-trivial example

are the gradient basins.

Lemma 23. Suppose f has unique gradient basins. Then the partition Πγ con-

sisting of gradient basins is strictly compatible with f .

Proof. Let x, y ∈ G(u). Then γ∞(x) = γ∞(y) = u, i.e. there are monotonically

decreasing paths connecting x and y ending in u. Therefore x"
max(f(x),f(y))

# y.

Let α, β be two gadient basins. Denote the corresponding local minima by uα and

uβ. Then uα "
E[α,β]

#uβ by definition. For x ∈ α with f(x) < E[α, β] and y ∈

β with f(y) < E[α, β] we have therefore x"
f(x)

#uα "
E[α,β]

#uβ "
f(y)

# y

and hence x"
E[α,β]

# y. Thus Πγ is compatible with f . Furthermore, set

ηαβ = max{f(x) | x ∈ α ∪ β and f(x) < E[α, β]}. We see immediately that

ηαβ < E[α, β] and x"
ηαβ #x′ for all x, x′ ∈ α with f(x), f(x′) < E[α, β]. Thus

Πγ is strictly compatible with f .
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We call the classes of a compatible partition macrostates.

Consider the partition ofX defined by the gradient basins B(z) of the local energy

minima (section 3.2). To each macrostate α we can assign the partition function

Zα =
∑

x∈α

e−E(x)/RT (35)

and the corresponding free energy

G(α) = −RT lnZα (36)

Let us now turn to the transitions between macrostates. Suppose we know the

transition rates ryx from x to y. Then

rβα =
∑

y∈β

∑

x∈α

ryxProb[x|α] for α 6= β (37)

where Prob[x|α] is the probability to occupy state x ∈ α given that we know

that the process is in macrostate α. The kinetics of the molecule in terms of its

macrostates is given by the master equation

dpα

dt
=
∑

β∈Π

rαβpβ(t) (38)

where pα(t) =
∑

x∈α px(t) and rαα = −
∑

β 6=α rαβ. Assuming (local) equilibrium

we have Prob[x|α] = e−E(x)/RT /Zα and hence

rβα =
1

Zα

∑

y∈β

∑

x∈α

ryxe
−E(x)/RT (39)

The point here is that we can compute rβα “on flight” while executing the

barriers program if two conditions are satisfied: (a) For each x we can ef-

ficiently determine to which macrostate it belongs and (b) the double sum in

Eq. (39) needs to be evaluated only for neighboring conformations (x, y) ∈ M.

Condition (b) is obviously satisfied in the landscape model since ryx = 0 by

definition unless x and y are neighbors.

Condition (a) is easily satisfied for each of the gradient basins: in each step of the

barriers algorithm all neighbors y of the newly added structures x that have

a smaller energy have already been processed. Hence, if their assignment to a

gradient basin is known, the assignment for x equals the one for its lowest energy



7.2 Barrier Tree Kinetics 86

neighbor. Initially, each local optimum forms the nucleus of new gradient basin,

hence the macrostate to which x belongs can be determined in O(δ) operations,

where δ is the maximum number of neighbors of a secondary structure.

We can use the transition state model to define the free energies of the transition

state G 6=
αβ by setting

rβα = r0e
−

G
6=
βα

−G(α)

RT (40)

A short computation then yields

G 6=
βα = −RT ln

∑

y∈β

∑

x∈α

e−
E
6=
xy

RT (41)

as one would expect. This allows us to redraw the barrier tree (which was given

in terms of the energies of meta-stable states and their connecting saddle points)

in terms of free energies of the corresponding macrostates and their transition

states. This approach will be denoted rates or macrostate process from now on.

Although the approximation just presented is suitable for routine calculations,

further coarse-graining can be achieved. The simplest and most straightforward

approximation for the folding dynamics is the Arrhenius law for transitions on

the barrier tree. Transitions occur only between local minima that are directly

connected by a saddle point, and the transition state energies are approximated

by the saddle point energy E[α, β]. If Π is the partition compatible with f then

E(α) = minx∈α f(x). Hence we can derive

r̃βα = e−
E[α,β]−E(α)

RT (42)

for the rates between macrostates α and β. This approximation (which we will

call the ”tree process” from now on) completely neglects entropic terms that arise

because there are many possible paths connecting two local minima. The rates

process can thus be viewed as ”tree process plus activation entropies”.

At this point it seems fair to say some words on the limitations inherent in the

just presented model: We assume that the dynamics of a folding biopolymer can

be modeled as dynamics on a highly simplified, coarse-grained state space. It is

necessary to mention that - in contrast to our model - the conformation space of

real biomolecules in vivo is not limited to some ’macrostates’ (represented by the

local minima of the landscape), i.e. the dynamics develops by making use of a

lot of states. This leads us to the question: What is the actual dynamic behavior
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of a biomolecule and how can we prove the correctness of our simulations? A

straightforward answer to that question would be to consider the whole confor-

mation space of the observed molecule within our simulations. It was shown in

section 3.1 that the number of structures X grows exponentially with sequence

length. Even for small molecules it becomes very soon very big, even as big as it

cannot be treated any more within a computer simulation. The limiting factor

concerning computer resources is RAM, as the transition matrix (section 7.1) has

to be stored as a whole during diagonalization. Nevertheless it is possible to cal-

culate the dynamic behavior for some reasonably small conformation spaces with

up to a few thousand structures on modern machines with reasonable amount of

RAM. We call this the full process - in contrast to the Arrhenius (tree) process

on the one and the rates process on the other hand within our model. Due to

the fact that the full process includes the entire conformation space of a given

biomolecule, it represents the ’real’ dynamic behavior of the sequence and hence

is an ideal reference for our simulations. We modified barriers to gather infor-

mation on the neighborhood relations among all configurations. Within the full

process it is possible to formulate transition rates between the different structures

using the Metropolis and the Kawasaki rule introduced in section 7.1.

The main problem is the calculation of population densities in terms of macrostates

of the state space, i.e. local minima of the barrier tree. The structure probability

distribution for the allowed local minima of the barrier tree can be calculated

recursively from equation 30. Unfortunately, R is a matrix of dimension n where

n is the number of local minima treated in the current simulation. Since it is very

difficult and inefficient to evaluate an expression like eR, similar to the right side

of equation (30), the calculations are performed in the eigen space of the system.

The transition matrix R is non-symmetric by definition and it is necessary to

symmetrize it by multiplying it with the equilibrium distribution vector π from

the left side and π−1/2 from the right side before applying a diagonalization al-

gorithm to it (see [161] for details). However, this is only possible when we are

interested in the equilibrium distribution of the Markov chain. The situation is

different when we are instead interested in refolding times (first passage times)

of certain states. In that case, one state is absorbing and it is thus impossible to

symmetrize the original transition matrix. Consequently, the usual diagonaliza-

tion routines for symmetric matrices cannot be applied in that case. Instead, we

use Schur decomposition [57] to diagonalize the non-symmetric transition matrix.
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Another point that has to be mentioned within this context is the fact that within

kinfold/pinfold simulations, we always concentrate on specific configurations

of a biomolecule. We are not interested in the equilibrium solution of the master

equation 25, but rather in computing the distribution of first passage times from

some initial state to the thermodynamic ground state. In other words, we define

certain start structures and are interested in the time that elapses until a specific

stop structure is reached. In this framework, the first passage time of course rep-

resents the folding time. Within the reduced description of the folding process,

we do not have specific structures any more, instead we deal with macrostates.

This implies a problem with direct comparison of kinfold and treekin simula-

tions. The solution is achieved by introducing an absorbing state Ω that is only

accessible from the macrostate ω containing the stop structure u with a rate

rΩω = r0e
−Eu/RT /Zω (43)

7.3 Computational Results

In the previous chapters the theoretical background as well as the underlying

models of this thesis were introduced. With knowledge of the fundamental prop-

erties of biopolymer chains, the move set, the landscape described by barrier

trees, and the deterministic formalism given in the last section we are now able

to investigate the dynamic behavior of biopolymers of moderate size, i.e. this

allows us to calculate the time-evolution of population probabilities of local min-

ima on the barrier tree. We will give some examples of our calculations in this

chapter - RNA dynamics on the one side as well as representative examples of

lattice protein dynamics on the other side. The upcoming sections are separated

in the following manner:

• We will give four examples of RNA dynamics. First a small molecule is

used to show the principal behavior of kinetic folding of RNA. Then, a

more sophisticated RNA chain with length n = 20 (and more appealing

dynamics) as well as a RNA switch are examined. Finally, we demonstrate

the capabilities of our tool with the well-known tRNAphe sequence.

• The dynamics of lattice proteins is illustrated with different lattices. Be-

ginning with a simple sequence on the SQ lattice we demonstrate kinetic
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aspects of biopolymer folding with degenerate energy landscapes. We will

further select a specific sequence and show the coarse-grained dynamics

of this artificial biopolymer on different lattices compared to exact Monte

Carlo simulations.

7.3.1 RNA Dynamics

As a first application of the algorithm we will analyze a short artificially designed

RNA chain with sequence UAUGCUGCGGCCUAGGC (called lilly) and length n = 17.

There are two reasons why we decided to chose this sequence: First, the whole

conformation space X consists of only 810 secondary structures and second, al-

though it has a very simple sequence, the molecule has two ground states with

equal energy (-0.7 kcal/mol). Figure 27 shows the barrier tree of lilly, which

gives an impression on the simple shape of the associated energy landscape15.

There are 14 local minima in the barrier tree that are used as macro-states for

our coarse-grained approach. The denatured, open-chain conformation is repre-

sented by local minimum 5 which is directly connected to local minimum 2 via

an energy barrier of 2.1 kcal/mol.
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Figure 27: The barrier tree of the artificially designed RNA sequence lilly without Shift-moves.

There are two ground states with equal energy (-0.7 kcal/mol). Local minimum 5 corresponds

to the denatured, open-chain conformation.

15Note that all RNA-related examples shown here - apart from the third (RNA switch) - are

calculated without ’Shift-moves’ (section 3.1.1) due to computational efficiency.
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The simplicity of this example allows us to directly integrate equation (25) and

compare it with the coarse-grained dynamics. Figure 28 shows how the pop-

ulation densities pα of the basins of attraction of some local minima α evolve

with time. We did these calculations for the tree, the rates and the full pro-

cess. Basin 5 was assigned a population probability of 1 in all three cases which

means that 100 percent of the population is situated in basin 5 at the beginning

of the simulation. The dynamics was simulated until an equilibrium popula-

tion distribution was reached. In other words, we started the simulation from

the open-chain conformation and let the system attain a stable thermodynamic

equilibrium distribution.

The upper plot in figure 28 shows the dynamics using the Arrhenius (tree) model,

the middle plot was calculated with the macrostate (rates) model and the lower

plot - as reference - illustrates the full dynamics without simplification and coarse

graining. For the full process, all 810 secondary structures of the conformation

space were considered for the simulation. Common to all three plots is the general

shape of the curves representing population probabilities of some local minima.

Population of the ’start’ basin 5 decreases rapidly and is at approximately 12-14

percent after 100 (arbitrary) time-steps. Beginning in the region of approximately

one time-step, other basins are populated significantly, basin 2 has its population

maximum in the region of approximately 50-100 time-steps with a probability

between 34 and 38 percent. Within this time-frame also the ground state (thick

curve in the plots) gets populated slightly. The final phase in time evolution of

this short example sequence starts at approximately 100 time-steps and this is

the region where A) the ground state is populated up to its equilibrium value of

28.5 percent and B) population probability of all other basins slightly decreases

down to their equilibrium value. The tree process is slightly faster in reaching the

equilibrium distribution (978 time units) than the rates process (2794 time units).

The full process shows the slowest dynamics (6949 time-steps). The greater time

consumption of the latter can be explained by the larger number of states that are

considered within the full (exact) process. See the table below for the equilibrium

probability distribution of the 6 lowest energy basins shown in figure 28. Note

that the remaining 2.35 percent to reach a total population probability of 1 is

shared among the remaining basins of the tree that are not shown in figure 28.



7.3 Computational Results 91

10-1 100 101 102 103

time

0

0.2

0.4

0.6

0.8

1

po
pu

la
tio

n 
pr

ob
ab

ili
ty

mfe
2
3
4
5
6

10-1 100 101 102 103

time

0

0.2

0.4

0.6

0.8

1

po
pu

la
tio

n 
pr

ob
ab

ili
ty

mfe
2
3
4
5
6

10-1 100 101 102 103

time

0

0.2

0.4

0.6

0.8

1

po
pu

la
tio

n 
pr

ob
ab

ili
ty

mfe
2
3
4
5
6

Figure 28: Dynamics of the short model RNA sequence lilly. Upper plot: tree process, middle

plot: rates process, lower plot: full process. See text for details.
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local minimum population probability secondary structure

1 0.2856 ...(((........)))

2 0.2755 .........((....))

3 0.1885 ...((....))......

4 0.1035 ((.((....)).))...

5 0.0947 .................

6 0.0287 ....(((.....)))..

Despite the simplicity of this sequence, it can be used as a representative example

to demonstrate the capabilities of our algorithm and its variants. Figure 28

illustrates good qualitative accordance of the coarse-grained approach compared

to the full process. The rates process yields somehow better results than the

Arrhenius approach since it considers all microscopic rates between neighboring

states in different basins and thus more closely resembles the real dynamics.

As a second example, we chose the sequence CUGCGGCUUUGGCUCUAGCC with length

n = 20 and a conformation space consisting of 3886 secondary structures. Fig-

ure 29 shows the barrier tree of this artificial RNA molecule which we will denote

xbix here. Neglecting shift-moves, the barrier tree has 34 local minima and the

open chain conformation is represented by basin 8. As in the previous example,

we used this macro-state as starting point for our simulation and let it run until

convergence to the thermodynamic equilibrium distribution.
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Figure 29: The barrier tree of the artificially designed RNA sequence xbix without Shift-moves.

Figure 30 shows the results of the simulation. Again, the moderate total number
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Figure 30: Dynamics of the artificial RNA sequence xbix. Upper plot: tree process, middle

plot: rates process, lower plot: full process. See text for details.
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of conformations allows for a direct integration of equation (25) of the micro-

scopic process and direct comparison with the coarse-grained dynamics. At a

first glimpse, all three plots in figure 30 exhibit qualitatively similar behavior.

Just like in the simple example before, the macrostate approach as well as the full

process tend towards a longer time-frame until the thermodynamic equilibrium

distribution is reached. Nevertheless, all three approaches reach an equilibrium

state within approximately the same time order of magnitude. Common to all

three plots is the fact that the population density of the start basin has disap-

peared almost entirely after less than 100 time-steps. Within the tree process,

local minima 4 and 5 (that are near neighbor states of local minimum 8) are popu-

lated at very early stages of the simulation. At the same time, also local minimum

2 (the direct father of 8) is populated. In contrast to the other approaches, local

minimum 4 has a distinct population maximum at approximately 16 time-units

and it is populated to a higher degree in the tree process than in the macrostate

and the full process. The major difference among tree and macrostate/full ap-

proach is the shape of the curve associated with local minimum 2. From the

upper plot in figure 30 we see that it is generally very smooth for the tree process

and has a distinct shoulder at approximately 40 time-units in the rates as well

as in the full process. We explain this by a different population probability of

local minimum 3 in the range between 10 and 1000 time-units: This macrostate

is populated more than twice as much in the rates/full process (approximately

33 percent) than in the tree process (approximately 15 percent) and thus gains

population probability at the expense of local minimum 2. The final stage of the

simulation is again common to all three processes. Basin 2 has a pronounced

population maximum (390 time units for the tree approach, approximately 104

time-units for the macrostate/full approach) and loses part of this population in

favor of the ground state. See the table below for a list of equilibrium probability

values of the local minima shown in figure 30.

local minimum population probability secondary structure

1 0.6233 ....((((........))))

2 0.2769 (((.(((....))).)))..

3 0.0540 ..........(((....)))

4 0.0288 ..(((((....)))...)).

5 0.0138 ....(((....)))......

8 0.0005 ....................



7.3 Computational Results 95

The xbix example illustrates that there is excellent agreement between the macro-

state approximation (middle plot in figure 30) and the full process (lower plot

in figure 30). The Arrhenius law gives a qualitatively correct description of the

process, although quantitative details are significantly different.

After illustrating the capabilities of our algorithm with two small artificial RNA

sequences we will now turn to a RNA molecule with a) a very large conformation

space and b) a very interesting behavior. To be more precise, we will focus our in-

vestigation on the bi-stable RNA switch lz04 with sequence CAUCAUUUCAGCCGUAA-

CCAUGAGAUGAUGGUUGCAACUAGUUCCCGUGAGGGAGUUUG with n = 59. Bi-stable RNA

molecules (also denoted RNA switches, see section 2.1) can fold into two or more

thermodynamically stable secondary structures that are separated by a high en-

ergy barrier, which means that besides the subtree containing the global mini-

mum, there are other dominating subtrees in the barrier tree. Figure 31 shows

the 50 local minima with lowest energy of the energy landscape that were used

as macro-states for the dynamics simulations. In our example, the two stable

conformations are separated by an energy barrier of 13.4 kcal/mol. Note that in

the left part of figure 31 there is another distinct energy barrier of 6.3 kcal/mol

between the subtree containing local minima 40 and 46 with the subtree con-

taining local minimum 2. We mention this because we used local minimum 46

as start point for the simulation (the denatured, open-chain conformation is not

represented by any of the 50 minima in figure 31 because its energy is too high).
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Figure 31: The barrier tree of an artificially designed RNA switch.

The large number of conformations X of this example sequence prohibits simula-
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tion of the full process without coarse graining. We rather show the macrostate

dynamics in figure 32. The major difference compared to the previous simulations

is that we are not interested in the time the system takes to reach a thermody-

namically stable equilibrium distribution, but rather the refolding time from a

selected start structure (local minimum 46 in the very left part of figure 31) to

the ground state (global minimum 1 on the right of figure 31). The simulation

starts with a rapid loss of population of local minimum 46 from 100 percent to

approximately 32 percent within the first 4 time-steps. At the same time, local

minimum 40 becomes populated and even after 1.7 time-steps both minima are

equally populated at 50 percent. Shortly after, the dynamics shows an inter-

esting behavior: The rapid rise of 40 and the rapid decline of 46 seem to stop

and both remain populated in a quasi-stable state within the time-frame of 10 to

100 time-units. We find that the population is exclusively shared among these

two local minima at times < 100. Looking at the barrier tree, this behavior

becomes clear: 46 is separated from 40 only by a small barrier of 0.7 kcal/mol,

whereas the barrier of 40 is 6.3 kcal/mol. So we can say that in the early stages

10-2 100 102 104 106 108

time

0

0.2

0.4

0.6

0.8

1

po
pu

la
tio

n 
pr

ob
ab

ili
ty

2
4
5
10
40
46
mfe

Figure 32: Macrostate Dynamics of the designed RNA switch lz04. The simulation is started

at local minimum 46 and the ground state 1 is made absorbing. Local minima 40 and 2 are

populated significantly during the simulation run. See text for details.

of the simulation, the population jumps back and forth between these two states.

Starting at approximately 100 time-steps, the molecule overcomes the first large

energy barrier and the way is open for population of energetically deeper local

minima. Interestingly, the population distribution after some 20000 time-steps

is completely different from that in the early stages of the simulation: 46 and 40

have completely lost their percentage of population in favor of the deepest local
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minima in the left subtree of figure 31. At this point, another quasi-stationary

population distribution has established that represents the population dynamics

in the (long) time-frame from 104 to 108 time-units.

By that time, local minimum 2 is populated almost at 55%, 4 at 12%, 10 at 10%

and 5 almost at 8%. Other local minima that are not shown in figure 32 are

also populated at rates of less than 5%. The quasi-stationary behavior of the

molecule in this period is a direct consequence of the high energy barrier of local

minimum 2 (13.4 kcal/mol). Finally, the molecule is able to overcome this high

barrier and the ground state is populated starting at approximately 106 time-

steps. The refolding process is finished with a 100% population of the absorbing

ground state after 2 × 109 time steps.

Figure 33 shows the complete refolding path consisting of 64 steps from local

minimum 46 to the ground state. The upper part of the image shows the energy

profile. Basin 46 is located at the very right corner of the plot, the ground state

at the left corner. Saddle points are labeled with a capital S, local minima on

the path are labeled with a capital L and an associate number from barriers.

Note that local minima numbers by far exceed the 50 lowest-energy minima from

the barrier tree in figure 31 because the refolding makes it necessary to open

favorable base-pairs. Starting from 46, local minimum 40 is visited first. After

that, the molecule must climb up a first high energy barrier of 6 kcal/mol. As one

would expect from the barrier tree, the refolding path includes local minimum

2 (after 13 elementary steps), which can be impressively seen as a deep valley

in the energy profile. After visiting the meta-stable structure, the molecule has

to overcome an ever higher energy barrier of 10.7 kcal/mol to escape the big

valley and first reach local minimum 400 after 22 steps. Several other high-

energy minima are visited afterwards on the path towards the ground state, the

structure with highest energy is the saddle between local minima 490 and 232

with an energy of -6.5 kcal/mol (after 32 elementary steps). The large number

of unfavorable high energy-intermediates can be explained by the fact that the

nucleation region started at step 24 is not yet optimal. Finally, after the high-

energy saddle between local minima 271 and 170 has been visited, the way is

open for formation of more favorable structures, finally resulting in the minimum

free energy structure. The whole refolding path and associated energies are given

in Appendix C for reference.
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Figure 34: The barrier tree of tRNAphe. Only the 100 lowest energy local minima are shown,

local minima 56 and 80 are the two left-most states (highlighted in gray).
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Figure 35: Refolding of a tRNA molecule: Macrostate simulation of the refolding event starting

at 80 and absorbing state attached to basin 56. Two different folding pathways are indicated

by the plateau of the curve associated with basin 56.

kinfold (see section 7.1). Computing the occupancy of each macro-state from

kinfold trajectories is very expensive in terms of computer resources, in partic-

ular because the time to equilibration becomes too long. Instead we have used

kinfold to compute first passage times by defining a stop structure in addition to

the start point of each trajectory. In order to compare the results from kinfold

with those of the macrostate process, we introduced the previously mentioned

additional absorbing state (equation (43) in section 7.2).

To demonstrate the dynamics of a realistic RNA molecule we decided to inves-

tigate the refolding from local minimum 80 to local minimum 56 (highlighted in
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gray at the very left of figure 34). The reason for choosing exactly these two

states is twofold: First, both have a high energy barrier (7.88 kcal/mol for 80,

8.81 kcal/mol for 56, respectively) and second, they are located in a different

subtree than the remaining low-lying local minima in the barrier tree. In order

to reach 56 from 80, the molecule must overcome this 7.88 kcal/mol barrier. The

interesting feature of this transition is the fact that once the molecule has over-

come the first barrier, there are only another 0.93 kcal/mol it has to ”climb up”

energetically to access the large subtree on the right. Hence, one can expect two

very different folding pathways from 80 to 56: A fast one indicating direct tran-

sition and a slower one indicating that the molecule crosses the highest saddle

point first, then falls down into the right subtree before climbing up again to

finally reach local minimum 56. We found exactly this behavior with the coarse-

grained approach (figure 35). Population of 80 decreases rapidly starting at 100

time steps and is equally zero after 5 × 104 time steps. Population of basin 56

begins at very early stages of the refolding process (thick curve in figure 35), the

initial phase is characterized by a rapid rise of population probability - up to

approximately 50 % at 2×104 time units. At this point, the absorbing curve gets

significantly smoother and forms a pronounced plateau at approximately 53 %

within the long time frame from 2× 104 up to approximately 6× 105 time steps.

This clearly illustrates a second, slower refolding pathway via the right subtree

in figure 34. Finally, after 2 × 108 time steps, the refolding process is complete.

Note that other local minima are not populated at rates of more than 15 % during

the refolding process. We show the population curves of the ground state and

local minimum 5 in figure 35. Figure 36 shows a cumulative distribution of first

passage times from a Monte Carlo run (average over 9000 kinfold simulations)

of the refolding from 80 to 56. As in the macrostate approach, a pronounced

plateau illustrates the two different folding pathways. It seems fair to say that

the macrostate approach is in reasonable agreement with the exact simulation.

The time scale of the macro-state process is shifted somewhat to shorter times

and the percentage of trajectories that fold directly is overestimated. This is

probably a consequence of the truncation of the energy landscape to 1000 states

which leads to incomplete sampling of high energy structures that are more likely

to lead outside the 56-80 subtree. For transitions with lower energy barriers the

agreement is generally better.

Nevertheless we can conclude that the coarse-grained approach has one major
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Figure 36: Refolding of a tRNA molecule: Monte Carlo (kinfold) simulation of the refolding

event from local minimum 80 to local minimum 56. The line shows a cumulative distribution of

first passage times to reach 56. A pronounced plateau indicated two different folding pathways.

advantage compared to the exact simulation, namely computational time require-

ments. The kinfold simulations for Fig. 36 required about 3 months of CPU time

on an Intel Pentium 4 running at 2.4 GHz under Linux. In the coarse-grained

model, the computational bottleneck concerning CPU and memory resources is

the diagonalization of the transition matrix R, necessary for the computation of

exp(tR). For 1000 states diagonalization takes on the order of 1 minute.

7.3.2 Lattice Protein Dynamics

After illustrating the capabilities of the coarse-grained dynamics for RNA in the

last section, we will focus on lattice proteins in the following and demonstrate

that the algorithm is readily applicable to lattice protein folding. We will give

representative examples of degenerate energy landscapes of small lattice proteins

and compare results from the coarse-grained approach to exact dynamics as cal-

culated with the Monte Carlo algorithm of pinfold.

As a first example, we will show the energy landscape and dynamics of a tiny

lattice protein (n = 10) with sequence HPPHNXHXPN (labeled v01) on the SQ lattice.

The conformation space16 X consists of 2034 structures, that is the number of

SAWs of length 10 on the SQ lattice after eliminating all structures that are

subject to rotation and translation. As one would expect, the associated energy

16We chose pivot moves as move set for this example.
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landscape is fairly simple, as illustrated in the barrier tree in figure 37. However,

even this simple example exhibits salient features of lattice protein barrier trees,

namely a large degree of degeneracy (we mentioned this earlier in section 4.1).

There are two ground states with an energy of -9 (arbitrary energy units). Local

12

3

45

6 7 8 9 10 11

-8.0

-6.0

-4.0

-2.0

0.0

Figure 37: Barrier tree of a short lattice protein on the 2D square lattice (SQ).

minimum 4 is directly connected to the two ground states. Local minimum 5

and its father 3 form another ”sub-tree”, whereas the remaining minima 6-11 are

degenerate at an energy level of -5.

We show here the refolding dynamics from 5 to 2, calculated with the Arrhe-

nius and macrostate approach (figure 38). A major difference among tree and

rates process is definitely the time scale. The tree process takes place at a region

between 10−2 and 5 × 104 time units, the macrostate process is shifted towards

shorter times at 2 orders of magnitude. Note that this behavior is in contrast to

the RNA case where Arrhenius approximations generally tend towards shorter

time scales. Within the tree process, basin 5 rapidly loses its fractional popu-

lation, whereas basins 1, 3 and 4 are populated within the first 100 time steps

at values of 21, 6 and almost 52 percent, respectively. Interestingly, the curve

of absorbing state 2 shows a distinct shoulder in the region between 102 and 103

time steps, indicating two folding pathways: A direct one and an indirect one via

basin 3. The indirect folding pathway is also supported by the broad shape of

the curve of basin 3 which means that - within the tree approach - it is not so

easy to escape from basin 3 in order to reach 2. Finally, 3 is de-populated and

absorbing state 2 is populated at 100 percent after approximately 5 × 104 time
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Figure 38: Refolding of a simple lattice protein on the SQ lattice. Arrhenius process (upper

plot) and macrostate process (lower plot). Local minimum 3 as well as the the ’non-absorbing’

states from 2 are populated noticeably during the refolding from 5 to 2.
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steps. The rates approach shows quite different dynamics. As expected, the first

region is dominated by a rapid loss of fractional population of basin 5 in favor

of its direct father, basin 3. Although the energy barrier between 5 and 2 has a

height of only 2 (arbitrary) units, basin 3 is populated up to 66 percent after a

(very short) time period of 1.6 time units. Nevertheless, basins 1 as well as the

non-absorbing states of basin 2 are also populated to a maximum of 33 and 10

percent, respectively at intermediate times. Population of state 2 starts early (1

time unit) and is already finished at 220 time units.

We show the results of a cumulative distribution of first passage times of the

refolding from 5 to 2 from a Monte Carlo run (average over 10000 pinfold sim-

ulations) in figure 39. This approach does not show a pronounced plateau in

the folding trajectory, which means that the refolding event happens directly

from 5 to 2 without involvement of state 3. Although the distribution of first

passage times rather resembles the tree than the macrostate approach, it seems

fair to argue that the Monte Carlo simulation lies somewhere in between the

coarse-grained approaches presented above. Neither tree nor rates process can

approximate the refolding event exactly.
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Figure 39: Refolding of the lattice protein v01: Monte Carlo (pinfold) simulation of the refold-

ing event from local minimum 5 to local minimum 2. The line shows a cumulative distribution

of first passage times to reach 2.

The complete refolding path from 5 to 2 is given in figure 40. Similar to figure 33,

the upper part illustrates the energy profile, state 5 is located on the very left, 2

on the right. The lower part shows associated SAWs in relative move notation as

well as corresponding structures. The first step leads to basin 3 via saddle point
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Figure 40: Energy profile of the refolding path from basin 5 to 2. Letter codes in the upper

part are analogous to those in figure 33. Relative moves of the SAWs and associated structures

are given below. Color code: H black, P blue, N green, X red. Basin 1 must be visited in

order to reach 2 from 5.

structure FLRRLLFFF. After that, it is interesting that the refolding process visits

basin 1 prior to reaching 2. The highest energy saddle that needs to be crossed

within this refolding event is FLLFFFFFF connecting 3 with 1.

The following set of examples is slightly different from the one given before. In-

stead of demonstrating lattice protein folding for each lattice we implemented we

choose one specific sequence from the HPNX alphabet and try to determine its

dynamic behavior using of different lattices. Although this sounds easy, the choice

of such a sequence is highly challenging. On the one hand we are constrained

to a short sequence length (since it is computationally impossible (at present) to

consider all SAWs of length 27 in order to explore the full energy landscape of

the often referenced 27-mer on the SC lattice), on the other hand we want to

choose a sequence that yields not more than 5 ground states on any lattice we will

observe. We decided to choose a sequence with n = 16, i.e. NNHHPPNNPHHHHPXP,

which we labeled kh68. Although this sequence is fairly short, it turned out to be

appropriate for our requirements. The table below lists the sizes of conformation

spaces of the lattices we used to model refolding kinetics.
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lattice total size of conformation space

SQ 802075

HEX 4982

TRI 963627597

TET 3079826

The following figures 41- 44 show the refolding dynamics from selected minima

of the barrier tree. For each example, we give the barrier tree showing the 50

lowest-energy states of the associated energy landscape. The middle plot on each

page displays the coarse-grained dynamics as approximated with the Arrhenius

process, the lower plots show the same transitions assuming macrostate dynamics.

Additionally we give the cumulative distribution of first passage times of each

transition as calculated by pinfold in the lowest plot (red curve). Investigation

of the plots yields the following results:

• The general shape and topology of the energy landscape (and hence the

barrier tree) is strongly lattice-dependent. Sequences that fold into a unique

ground state on one lattice may have several degenerate ground states on

another lattice.

• The coarse grained dynamics strongly depends on the chosen transition

criteria and this dependency is much stronger than for RNA. This fact

can easily be read off from figures 41- 44. We can state that not only the

population densities of interim populated states is different in the tree and

rates process, but also the overall refolding time.

• Direct comparison of the target structures’ trajectories with first passage

times from pinfold (lower plots) give rise to the assumption that the

coarse-grained macrostate approach is not as suitable in modeling the ki-

netics as it is for RNA. Note that we assume thermodynamic equilibrium

in each basin within our model. Since energy landscapes of lattice proteins

are extremely degenerate it seems fair to say it is hard to reach an equilib-

rium state within a flat landscape. We conjecture that this is the reason

for discrepancies detected here. Further investigation is thus necessary.
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Figure 41: Barrier tree and refolding dynamics of kh68 with the SQ lattice. We show the

refolding event from basin 21 to basin 5. Middle plot: Tree process. Lower plot: Macrostate

process and Monte Carlo distribution of first passage times of basin 5 (red trajectory).
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Figure 42: Barrier tree and refolding dynamics of kh68 with the HEX lattice. We show the

refolding event from basin 24 to basin 25 (the two leftmost minima in the barrier tree above).

Middle plot: Tree process. Lower plot: Macrostate process and Monte Carlo distribution of

first passage times of basin 25 (red trajectory).
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Figure 43: Barrier tree and refolding dynamics of kh68 with the TRI lattice. We show the

refolding event from basin 34 to basin 32. Middle plot: Tree process. Lower plot: Macrostate

process and Monte Carlo distribution of first passage times of basin 32 (red trajectory).
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Figure 44: Barrier tree and refolding dynamics of kh68 with the TET lattice. We show the

refolding event from basin 16 to basin 37. Middle plot: Tree process. Lower plot: Macrostate

process and Monte Carlo distribution of first passage times of basin 37 (red trajectory).
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8 Summary and Discussion

8.1 Summary of results

Biopolymers are necessary for the existence of all known forms of life. Amino

acids are building blocks for proteins, nucleotides form nucleic acids like DNA

or RNA. The ability of biopolymers to fold into a well-defined native state is

a prerequisite for biologically functional molecules. RNA secondary structures

provide a convenient form of coarse graining, hence their study yields information

useful in the prediction of the full three dimensional structure as well as in the

interpretation of the biochemical function of the molecules. A simple, yet exact

lattice model for proteins is the HP model. It distinguishes between hydrophobic

(H) and polar (P) residues and searches for a conformation with a maximal

packing of the hydrophobic amino acids.

A fundamental prerequisite in complexity studies of molecular systems is certainly

a thorough investigation of the energy surface on which the system dynamics

evolve. A detailed understanding of structural features of complex landscapes

thus lies at the heart of the biophysics of heteropolymers. Kinetics and structure

formation processes of biopolymers are crucially determined by the topological

details of the energy landscape, i.e. basins and barriers separating them. The

topology of an energy landscape is in turn dependent on a metric used to inter-

convert structures into each other, called move set. The most elementary move

set at the level of RNA secondary structures consists of removal and insertion of

a single base pair, a slightly more sophisticated move set enables additional base

pair shifts. For lattice proteins, the simplest move is achieved by selection of a

bead of the lattice chain (pivot point) and rotation of the remaining elements

of the chain around a certain angle. We call this inter-conversion pivot move.

Crankshaft-, corner- and end moves provide a different move set that has often

been used in literature.

A detailed analysis of RNA folding landscapes has become possible by means

of an algorithm that generates all RNA secondary structures within a certain

energy interval above the ground state. Investigation of lattice protein folding

landscapes is constrained to the fact that lattice protein folding is NP-complete.

This means that there is no efficient algorithm available to calculate the ground

state or a list of suboptimal lattice protein structures above the ground state. To
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overcome the problem of exhaustive enumeration of structures (which is evidently

constrained to very short chain lengths), we developed a tool, latticeFlooder,

that generates the lower part of the energy landscapes by means of application

of elementary moves starting from a low-energy state.

A computer program, barriers, to efficiently measure features of energy land-

scapes (from an energy-sorted list of conformations) such as the number of local

minima, the size distribution of basins of attraction or thermodynamic quantities

has been developed in our group within the last years. This tool is capable of

constructing a hierarchical order of conformations that can be represented com-

pactly in so called barrier trees. A barrier tree gives an impression on the shape

and ruggedness of the energy landscape and hence shows the distribution and

energy ratios of local minima. We described the algorithm of barriers and gave

a formal definition of degenerate energy landscapes.

Based on elementary steps in conformation space, a stochastic algorithm for the

simulation of kinetic folding of RNA has been extended to handle lattice proteins

as well (kinfold/pinfold). Having this tool for an exact Monte Carlo simulation

of folding kinetics of biopolymers at hand, an extended Arrhenius-type kinetics

can be formulated on the barrier tree. More precisely, this model allows us to

formulate a continuous time Markov process describing population probabilities of

different macro states, i.e. local minima of the barrier tree. A major advantage

of the so calculated coarse-grained dynamics compared to the exact stochastic

method is time efficiency. Investigations of refolding paths that last weeks or

months within the exact approach are feasible at a timescale of several minutes

within the macrostate approach. This two step strategy consisting of (i) the

construction of a barrier tree and (ii) modeling the reaction dynamics on the tree

can be carried over to any kind to discrete landscape.

8.2 Discussion and Outlook

At least for the RNA case, the marcostate (barrier tree) conformational kinetics

compared favorably with the results of the stochastic simulations. Deviations

can be interpreted by inspection of the details of the barrier tree, in particu-

lar through computation of the influence of multiple paths between metastable

conformations. The situation is different with lattice proteins. Evidently, the
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simplifications we introduced (i.e. fixed bond lengths and bond angles, drastic

reduction of the alphabet size) account not only for a dramatic bias towards

degenerate energy landscapes, but also influence the principal ability to model

biopolymer folding reasonably. These problems could be overcome by introducing

a larger alphabet, preferably with a size of around 10 different types of monomers.

However, the problem with bigger alphabets is the choice of a proper interaction

potential. Another possibility to circumvent degeneracies in lattice protein en-

ergy landscapes would be a choice of more realistic lattices, i.e. those with higher

coordination numbers. The drawback with this approach would be, however, a

dramatic increase of computational requirements (remember that we need a list

of all structures within an energy interval above the ground state in order to exe-

cute the algorithm from section 4.2). Studying lattice protein dynamics generally

showed different behavior for the coarse-grained (Arrhenius vs. macrostate) dy-

namics . Although some results are in reasonable agreement with results from

our Monte Carlo dynamics simulations, we cannot derive a general rule what

combinations of lattices, move sets or coarse grained approaches are more ap-

propriate for a given sequence. On the other side, we can conclude that the

general shape and topology of an energy landscape is strongly lattice-dependent.

In other words it is impossible to deduce kinetic folding properties of a certain

lattice protein sequence without a thorough investigation of energy landscapes

with different lattices. Note that this fact even applies to small lattice protein

sequences, as those that were used here. It is consequently fair to argue that

model studies for very distinct protein families that have been reported in litera-

ture (e.g. [29, 63, 142]) might exhibit completely different folding behavior when

applied to different lattices. In other words we postulate that it is necessary to

choose certain lattices for different kinds of protein models.

A challenging aspect in protein folding is definitely the partitioning between

”good” and ”bad” folders [149]. With good folders we mean sequences that

converge systematically towards a unique native conformation and do so within

reasonable time. Having lattice protein dynamics at hand, it would be interesting

to derive features that are specific for good/bad folders from the (macrostate)

dynamics. Within this framework, another fundamental aspect would be to find

out if there is correlation between the energy landscape on the one side and the

dynamics on the other, i.e. can one derive general rules for the dynamic behavior

with knowledge of the energy landscape’s topology. As a first approach one would
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try to calculate properties like the ratio Tf/Tg from the energy function.

We mentioned earlier that the concept of folding funnels needs further refine-

ment (chapter 5). Several approaches are within reach to address this prob-

lem. We could, for example, extend the level of coarse-graining on the barrier

tree. Remember section 7.1 where we chose gradient basins as macrostates. We

could of course constrain our macrostates to local minima of the barrier tree that

have a (predefined) minimum barrier height, leading from our original partition

Π = {α, β, γ, . . . } to a modified partition Π′ = {α′, β ′, γ′, . . . }. Increasing the

minimum barrier height reduces the number of macrostates and consequently in-

creases the entropy of each macrostate. Plotting minimum barrier height against

conformational entropy of the (still available) macrostates should thus yield a

step-function which, mirrored at the abscissa and rotated 90 degrees counter-

clockwise, should yield a modified ”folding funnel with well-defined lateral ex-

pansion”. However, this is just one possible approach towards a mathemati-

cal/thermodynamic foundation of folding funnels.
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Appendix A

Energy matrices for different alphabets:

HP

H P

H −1 0

P 0 0

HP′1

H P

H −3 −1

P −1 0

HPNX2

H P N X

H −4 0 0 0

P 0 1 −1 0

N 0 −1 1 0

X 0 0 0 0

YhHX1

h H Y X

h −2 −4 −1 2

H −4 −3 −1 0

Y −1 −1 0 2

X 2 0 2 0

1taken from ref. [10]
2taken from ref. [3] due to compliance and direct comparison to Backofen’s method
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Appendix B

A comprehensive list of energy terms generally used in force fields:

Bond - Energy:

The energy between two bonded atoms increases, when the bond is compressed or

stretched. The potential is described by an equation based on Hooke’s law for springs.

Ebond =
∑

bonds

kb(r − r0)
2

whereby kb is the force constant, r is the actual bond length and r0 the equilibrium

length. This quadratic approximation fails as the bond is stretched towards the point

of dissociation.

Angle Energy:

Energy increases if the equilibrium bond angles are bent. Again the approximation is

harmonic and uses Hooke’s law.

Eangle =
∑

angles

kθ(θ − θ0)
2

kθ controls the stiffness of the angle, θ is the current bond angle and θ0 the equilibrium

angle. Both, the force and equilibrium constant have to be estimated for each triple of

atoms.

Torsion Energy:

Intra-molecular rotations (around torsions or dihedrals) require energy as well:

Etorsion =
∑

torsions

Vn

2
(1 + cos(nω − γ))

Vn controls the amplitude of this periodic function, n is the multiplicity, and γ the

so-called phase factor, shifts the entire curve along the rotation angle axis ω. Again

the parameters Vn, n and γ for all combinations of four atoms have to be determined.

Non-bonding Energy:

The simplest potential for non-bonding interactions includes two terms, a Van der

Waals and a Coulomb term.

Enon−bonding =
∑

i

∑

j>i

(

Aij

r 6
ij

−
Bij

r 12
ij

)

︸ ︷︷ ︸

Van der Waals

+
∑

i

∑

j>i

qiqj

rij
︸ ︷︷ ︸

Coulomb

The Van der Waals term accounts for the attraction and the Coulomb term for elec-

trostatic interaction. The shown approximation for the van der Waals energy is of the

Lennard-Jones 6-12 potential type.
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Appendix C

The refolding path from local minimum 46 to the ground state of the RNA switch
lz04 from section 7.3.1. S denote saddle points, I intermediate structures and L
local minima.

.....((.(((((((...(....)...))))))).))....(((((....))))).... (-15.20) L0046

......(.(((((((...(....)...))))))).).....(((((....))))).... (-14.50) S

........(((((((...(....)...))))))).......(((((....))))).... (-15.60) L0040

........(((((((............))))))).......(((((....))))).... (-15.20) I

........((((((......(......))))))).......(((((....))))).... ( -9.80) S

........(((((......((......))))))).......(((((....))))).... (-10.00) L0322

........((((......(((......))))))).......(((((....))))).... ( -9.30) S

........(((......((((......))))))).......(((((....))))).... ( -9.60) I

........((......(((((......))))))).......(((((....))))).... (-10.70) L0242

........(......((((((......))))))).......(((((....))))).... (-10.00) S

........(......((((((......))))))........(((((....)))))...) (-12.00) I

...............((((((......))))))........(((((....))))).... (-14.80) I

..............(((((((......))))))).......(((((....))))).... (-15.60) I

.............((((((((......))))))))......(((((....))))).... (-19.90) L0002

..............(((((((......))))))).......(((((....))))).... (-15.60) I

...............((((((......))))))........(((((....))))).... (-14.80) I

................(((((......))))).........(((((....))))).... (-13.40) I

.................((((......))))..........(((((....))))).... (-12.40) I

.................(((........)))..........(((((....))))).... (-10.70) I

.................((..........))..........(((((....))))).... ( -9.20) I

.................(............)..........(((((....))))).... ( -6.80) S

..............................(......)...(((((....))))).... ( -7.20) I

.........................................(((((....))))).... ( -9.50) L0400

..............................(......)...(((((....))))).... ( -7.20) S

..............................((....))...(((((....))))).... ( -7.60) I

.............................(((....)))..(((((....))))).... ( -8.90) I

............................((((....)))).(((((....))))).... (-10.10) L0305

............(...............((((....)))).(((((....)))))...) ( -7.50) I

............(........)......((((....)))).(((((....))))).... ( -7.00) S

............((......))......((((....)))).(((((....))))).... ( -7.80) I

............(((....)))......((((....)))).(((((....))))).... ( -9.00) L0490

...........((((....))).)....((((....)))).(((((....))))).... ( -8.40) I

.........(.((((....))).).)..((((....)))).(((((....))))).... ( -6.50) S

........((.((((....))).).)).((((....)))).(((((....))))).... ( -9.30) I

.......(((.((((....))).).)))((((....)))).(((((....))))).... (-10.80) L0232

.......(((.((((....))).).))).(((....)))..(((((....))))).... ( -9.60) I

.......(((.((((....))).).)))..((....))...(((((....))))).... ( -8.30) I

.......(((.((((....))).).)))..(......)...(((((....))))).... ( -7.90) S

...(...(((.((((....))).).)))..)..........(((((....))))).... ( -9.40) I

.......(((.((((....))).).))).............(((((....))))).... (-10.20) L0299

...(...(((.((((....))).).)))..)..........(((((....))))).... ( -9.40) I

...(...(((.((((....))).).))).)...........(((((....))))).... ( -8.60) S

...((..(((.((((....))).).)))))...........(((((....))))).... ( -9.60) I

..(((..(((.((((....))).).))))))..........(((((....))))).... (-10.10) I

.((((..(((.((((....))).).))))))).........(((((....))))).... (-11.00) L0223

.(((((..((.((((....))).).))))))).........(((((....))))).... (-10.20) I

.((((((..(.((((....))).).))))))).........(((((....))))).... ( -8.90) S

.((((((....((((....))).)..)))))).........(((((....))))).... (-11.90) L0158

.((((((.....(((....)))....)))))).........(((((....))))).... (-11.40) I

.((((((.....((......))....)))))).........(((((....))))).... (-10.20) I

.((((((.....(........)....)))))).........(((((....))))).... ( -9.40) S

.((((((....(.........)....)))))).........(((((....))))).... (-10.00) I

.((((((...................)))))).........(((((....))))).... (-10.41) L0271

.((((((.....(........)....)))))).........(((((....))))).... ( -9.40) I

.((((((.(............)....)))))).........(((((....))))).... ( -8.60) S

.((((((.((..........))....)))))).........(((((....))))).... (-10.20) I

.(((((((((..........)))...)))))).........(((((....))))).... (-11.70) L0170

.(((((((((..........))))...))))).........(((((....))))).... (-11.00) S

.(((((((((..........)))))...)))).........(((((....))))).... (-11.20) L0205

.(((((((((..........))))))...))).........(((((....))))).... (-10.70) S

.(((((((((..........)))))))...)).........(((((....))))).... (-11.30) I

.(((((((((..........))))))))...).........(((((....))))).... (-11.80) I

.(((((((((..........)))))))))............(((((....))))).... (-17.70) I

((((((((((..........))))))))))...........(((((....))))).... (-20.60) L0001
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