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Zusammenfassung

In der Biochemie werden Kreis-Basen nicht nur bei der Betrachtung kleiner einfacher

organischer Moleküle, sondern auch bei Struktur Untersuchungen hoch komplexer

Biomoleküle, sowie zur Veranschaulichung chemische Reaktionsnetzwerke herange-

zogen.

Die kleinste kanonische Menge von Kreisen zur Beschreibung der zyklischen Struk-

tur eines ungerichteten Graphen ist die Menge der relevanten Kreis (Vereingungs-

menge aller minimaler Kreis-Basen). Die relevanten Kreise sind diejenigen, die nicht

als Summe kürzerer Kreise dargestellt werden können. Auf Grund fehlender Algo-

rithmen zur Berechnung der relevanten Kreise wurden in der chemischen Literatur

lange Zeit erweiterte minimale Kreis-Basen verwendet. Diese Erweiterungen sind

normalerweise nicht eindeutig. Wir verdeutlichen die Zusammenhänge zwischen den

am häufigsten verwendeten “Ring-Sets”.

Wir führen einen neuen, von Pfaden im Graphen aufgespannten Vektorraum ein, der

in der graphentheoretischen Untersuchung von chemischen Reaktionsnetzwerken ein

Anwendungsgebiet hat. Die Endpunkte dieser sgn. U -Pfade bilden eine Teilmenge

der Knotenmenge des Graphen. Diese Pfade spannen gemeinsam mit den Kreisen

wieder einen Vektorraum, den U -Raum, auf. Wir verallgemeinern den Begriff der

relevante Kreise auf diesen U -Raum.

Weiters stellen wir eine Partition der Menge aller relevanten Kreise vor, der Art, dass

Kreise aus einer Klasse nur durch Kreise aus der selben Klasse und echt kürzeren

dargestellte werden können. Jede minimale Kreis-Base enthält immer die gleiche

Zahl an Repräsentanten einer Klasse. Wir können eine Erweiterung dieser Partition

auf den U -Raum vornehmen. Diese Äquivalenzklassen sowie die Menge aller rele-

vanten Kreise und U -Pfade lassen sich mit unserem Algorithmen in polynomialer

Zeit ausrechnen.

Da beim Betrachten von chemischen Reaktionsnetzwerken, die Richtung des Flusses

eine wichtige Rolle spielt, übertragen wir das Konzept der relevanten Kreise auf

die relevanten Zyklen (gerichtete Kreise). Wie allgemein bekannt, hat jeder stark

zusammenhängende gerichtete Graph eine (gerichtete) Zyklen-Basis. Wir beweisen,

dass eine minimale Zyklen-Basis in polynomialer Zeit ausgerechnet werden kann.

Als Anwendung der mathematischen Konzepte, zeigen wir, dass jede

Äquivalenzklasse der relevanten Kreise jeweils ein einzelnes Strukturelement

der mit Pseudoknoten erweiterten RNA Sekundärstruktur darstellt.



Abstract

In chemistry cycle bases are not only suitable for the analysis of small simple organic

molecules, but also for structural studies of highly complex biomolecules and the

visualization of chemical reaction networks.

The smallest canonical set of cycles that describes the cyclic structure of a graph

is the union of all minimum cycle bases, the so-called set of relevant cycles. These

relevant cycles can not be represented as the sum of shorter cycles. Since no efficient

algorithm was known to calculate the set of relevant cycles, many investigators dealt

with the definition of extended minimum cycles bases. These sets are in general

not canonical, however. We clarify the mutual relationships of some of the more

frequently used ring sets.

We introduce a new vector space, spanned by paths of the graph. The endpoints

of these so called U -paths form a subset of the vertex set. This construction is of

interest in the context of chemical reaction networks. The U -paths and the cycles

of the graphs form an extended vector space, the U -space. This extended vector

space is the union of the well known cycle space and our new vector space. Thus we

generalize the notion of relevant cycles to the U -space and give a polynomial time

algorithm to calculate the relevant cycles and U -paths.

Furthermore, we introduce a partition of the set of relevant cycles, called inter-

changeability, such that each class contains cycles of the same length, which can

be represented through cycles of the same class and shorter ones. We show that

each minimum cycle basis contains the same number of representatives from each

class. In addition, we give a polynomial time algorithm to compute this partition.

Moreover, this partition is extended to the U -space.

When analyzing chemical reaction networks, the direction of the flux plays an im-

portant role. Therefore we extend the notion of the relevant cycles to the circuits.

It is well known that every strongly connected digraph has a circuit basis. We show

that a minimum circuit basis of a strongly connected digraph can be computed in

polynomial time.

Finally, we give a biochemical application of the mathematical concept of inter-

changeability. We can show that each interchangeability class corresponds to a

single structural element of the RNA secondary structure containing pseudo-knots.
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Chapter 1
Introduction

1.1 General Context

Figure 1.1. Reproductions of

chemical graphs studied by

Sylvester (1878).

The mathematization of chemistry has a long and col-

orful history extending back well over two centuries.

At any period in the development of chemistry the ex-

tent of the mathematization process roughly parallels

the progress of chemistry as a whole. Thus, in 1786

the German philosopher Immanuel Kant [85] observed

that the chemistry of his day could not qualify as one

of the natural sciences because of its insufficient degree

of mathematization.

It has frequently been remarked that mathematics

is a more effective tool in the natural sciences than

might be reasonably expected [164]. One of the func-

tions of a model in science is to replace the actual

elements in a given set by an idealized set of mathe-

matical abstraction that approximate these elements.

The closer the approximation, the better the model.

In the case of chemical compounds, for example, the

use of graph theoretical notions (node = atom, edge

= chemical bond) is a convenient first step in building the model.

Graph theory itself is one of the few branches of mathematics that may be said to

have a precise starting date. In 1736, Euler [44] solved a celebrated problem, known as

the Königsberg Bridges Problem. Since its beginnings, graph theory has been exploited

for the solution of numerous practical problems, and today still retains an applied

1



2 Introduction

character.

In the early days, important progress was made in the development of graph theory

by the investigation of some very concrete problems, e.g. Kirchhoff’s study of electrical

circuits [87], and Cayley’s attempts to enumerate chemical isomers [19]. Further details

on the history of graph theory may be obtained form the monograph by Biggs et al.

[12].

The term graph was introduced by Sylvester 1878 [131], referring to diagrams show-

ing analogies between the chemical bonds in molecules and graphical representations

of mathematical invariants (see Figure 1.1). For a mathematician, a graph is the appli-

cation of a set on itself (i.e. a collection of elements of the set, and of binary relations

between these elements). For a chemist, however, the geometrical realization of a graph

is more appealing, namely a collection of points (i.e. elements of the set) and of lines

joining some of these points either to other points or to themselves.

Since usually no specification is made as to the shape or length of lines, or to angles

between lines, graphs are topological rather than geometrical objects, having as the

most important feature the adjacency relationships between points.

Having chemistry as one of the breeding grounds, graph theory is well adapted for

solving chemical problems, both by the high degree of abstraction evidenced by the

generality of such concepts as points, lines and neighbors, as well as by the combina-

torial derivation of many graph-theoretical concepts which correspond to the essence

of chemistry viewed as the study of combinations between atoms.

1.2 Chemical Applications of Graph Theory

Mainly, two kinds of correspondence between graphs and chemical categories have

found numerous applications: (i) a graph corresponds to a molecule or group of

molecules, i.e., points symbolize atoms and lines symbolize chemical covalent bonds

(structural or constitutional graphs, Fig. 1.2), and (ii) a graph corresponds to a reac-

tion mixture, i.e., points symbolize chemical species and lines symbolize conversions

between these species (reaction graphs, Fig. 1.5). The former type of graph gave Cayley

the incentive to develop a procedure for counting the constitutional isomers of alka-

nes [19]. Reaction graphs play an ever increasing role in explaining and rationalizing

rearrangements. The methods of graph theory were used for the first time in kinetic

studies in the works of Vol’kenshtein and Gol’dshtein (see [150, 151, 152, 153]).
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Figure 1.2. Organic carbon compounds may exhibit elaborate polycyclic structures. The

example shown here is Compound 8 from [84] (aromatic “double bonds” are indicated by

thick lines).

1.2.1 Ring Perception

The identification of cyclic substructures from connectivity information is a critical as-

pect in the solution of problems as diverse as the analysis of electrical circuits, analysis

of communication networks, and analysis of chemical structures. Chemical applications

of ring identification algorithms are also quite diverse. Software for the prediction of

physical and chemical properties, suggestion of synthetic strategies, chemical database

management, substructural searching, structure elucidation and three-dimensional co-

ordinate generation all require a fast and accurate method for identification of the

“chemically meaningful” rings among the potentially large number of cyclic subgraphs

embedded in the molecular structure.

Ring identification methods can be classified into three categories of increasing

complexity:

(i) Ring detection: identification of a basis set of the “ring space” of the structure

(ii) Ring perception: identification of a minimal basis set of the ring space of the

structure (i. e., a Smallest Set of Smallest Rings, an SSSR)

(iii) Canonical ring perception: identification of the “preferred” SSSR based upon a

collection of application-dependent ring properties

A simple ring detection method may be sufficient in some cases but the vast majority

of applications requires a ring perception or a canonical ring perception method.

In 1957, Gould [58] noticed that the cycles of a graph generate a finite-dimensional

linear space closed with respect to the Boolean sum (exclusive-OR) of their edges.

Welch [159] recognized the need for a ring detection method that would identify a
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basis set of the ring space, thus allowing the exhaustive generation of all possible

cycles in a structure [53]. Although other investigators have presented methods for the

direct identification of all the rings without an intermediate ring detection step [4, 142],

all of these exhaustive algorithms suffer from the very serious intrinsic inefficiency of

generating and storing a very large number of rings. To overcome this problem, several

investigators explored more compact and efficient models for representing the ring

space: The “maximum proper covering set of rings” [28], the “synthetically significant

rings” [27], the “chemically interesting rings” [166], and the “extended set of smallest

rings” [37, 38] are just a few of the empirical models proposed in the chemical literature

to minimize the use of computer resources while providing the ring information needed

in various types of chemical applications.

Quite interestingly, all of these models essentially describe small supersets of the

“smallest set of smallest rings” originally used in The Ring Index [110] and by the

Wiswesser line notation [126]. The commonly accepted, although imprecise, definition

of SSSR as “a basis set of rings which consists of the smallest rings that can form a

basis set” [166] is equivalent to Balducci’s abstract definition of a “minimal basis set

of the ring space” [5] and, in most cases, is also equivalent to the graph-theoretical

definition of the “fundamental cycles of a minimal spanning tree” [30] - although, in

general, not every SSSR corresponds to a minimal spanning tree. The SSSR concept, by

any definition, minimizes the usage of computer resources while providing an accurate

description of the cyclic nature of the structure and, consequently, is the most widely

accepted ring model for general purpose applications.

More extensive reviews on the subject of ring perception have been published by

Gray [60] and by Downs et al. [37], revealing that virtually all the ring perception

algorithms make use of some combination of the following two basic approaches:

(i) graph-theoretical techniques, using a graph representation of the structure, for

sequential exploration and manipulation of nodes and edges walking along con-

nected paths (breadth-first [30, 79] or depth-first [121] searches, graph reversals

[52, 79] etc.), and

(ii) linear-algebraic techniques, using a matrix representation of the structure, for

non-sequential exploration and manipulation of structural features (column or

row exchanges to reorder the structural elements [73, 79], linear independence

tests [77], etc.).

For complex ring systems, such as multiply-bridged systems and cage structures, a

wide range of cycles can be perceived, starting from the minimum number necessary

to include all vertices and edges to the maximum number of cycles in the ring system.

This range varies in terms of the number, size and atom/bond composition of the
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cycles. Different applications have different requirements, and so a variety of ring sets

(the particular sets chosen from within the wide range available) have been defined

(see Chapter 4).

Figure 1.3. Cubane

The problem then becomes one of choosing a ring set that

is in some way “optimum” for the particular application. The

main factor is usually that the ring set should be unique for a

given structure and invariant, i. e., processing or ordering the

graph in a different way should not produce a different set, or

a choice between several sets. Given the large number of rings

that could be included in a set, a general aim is to include

the minimum number of rings necessary to describe the ring

system and also to include sufficient rings to describe the ring

system adequately for a given application.

For instance, in cubane, Fig. 1.3, there are 28 cycles, 14 chordless cycles, 6 chordless

faces, 6 relevant cycles (see section 3.4), the dimension of the cycle space is 5 and all

edges and vertices can be included by using just four of the relevant cycles.

1.2.2 Biopolymer Graphs

Biopolymers, such as RNA, DNA, or proteins form well-defined three dimensional

structures. These are of utmost importance for their biological function. The most

salient features of these structures are captured by their contact graphs which have

the atoms of small molecules or the monomers of a biopolymer as their vertices, and

edges that connect spatially adjacent objects. While this simplification of the 3D shape

obviously neglects a wealth of structural details, it encapsulates the type of structural

information that can be obtained by a variety of experimental and computational

methods.

Biopolymers share a number of common features distinguishing them from other

classes of the molecular contact graphs. In particular, they have a spanning path T
corresponding to the covalent backbone. The remaining non-covalent bonds B = E \T
then determine the “fold” or three-dimensional structure of the molecule. Nucleic acids,

both RNA and DNA, form a special type of contact structures known as secondary

structures.

A particular type of cycles, which is commonly termed loops in the RNA literature,

plays an important role for RNA (and DNA) secondary structures: the energy of a

secondary structure can be computed as the sum of energy contributions of the loops.

This secondary structures are outerplanar graphs G; hence these loops form the unique

minimum cycle basis B(G) of the contact graph [93]. Experimental energy parameters
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are available for the contribution of an individual loop as a function of its size, of

the type of bonds that are contained in it, and on the monomers (nucleotides) that

it is composed of [49, 99]. Based on this energy model it is possible to compute the

secondary structure with minimal energy given the sequence of nucleotides using a

dynamic programming technique [156, 171]. Two public domain program packages are

available [75, 170] on the internet.

The RNA secondary structure prediction problem can be rephrased as minimizing

the energy function E(G) =
∑

C∈B(G) E(C) over the class of secondary structure graphs

(i.e., the sub-cubic outerplanar graphs satisfying a few further restrictions, see e.g.

[128, 156] for details).

Figure 1.4. Two RNA secondary structures with a pseudo-knot. The only difference be-

tween the two structures is the exact location of the “middle stem” consisting of the three

base pairs that connect the two hairpin loops. The energy contribution for the “pseudo-knot

formation” should be attributed to the relevant cycle(s) associated with the “closing pair”

of the “middle stem”, indicated by a thick line.

On the l.h.s. there is a unique relevant cycle (indicated by the dashed line) associated with

the “closing pair” of the middle “stem”. In the example on the r.h.s. we find ten relevant

cycles that differ by the ring sum of one or more of the 4-cycles of the rightmost “stem”. It

seems natural therefore to associate an energy contribution not with an individual relevant

cycle, but rather with an equivalence class of cycles, in this case with the class of equal

length cycles indicated by the dashed lines on the r.h.s.

In recent years, however, there has been increasing evidence that so-called pseudo-

knots play an important role, see e.g. [61]. These structural elements violate outerpla-

narity and — in the simplest case — lead to the bisecondary structures introduced in

[128]. The minimum cycle basis is not unique for most graphs, including most non-

trivial bisecondary structures, Figure 1.4. The set R of relevant cycles, i.e., the union

of all minimum cycle bases [149] seems to be a good candidate for extending the energy

model. However, as the example in Figure 1.4 shows, sometimes there is a large class
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of relevant cycles associated with what biophysically is a single structural element. It

seems natural therefore to average over contributions of an equivalence class of cycles

of the same length or to define the energy parameters in such a way that all cycles of

this class contribute the same energy.

1.2.3 Reaction Graphs

Metabolic networks form a particular class of chemical reaction networks, i.e. the graph

in Fig. 1.5 represents the reactions in the planetary atmosphere of the Jovian satellite

Io (datas from the book [167]).

2O

2
+O

SO2
+

SO2

NaO +

Na2O
+

Na2S
+

Na2
+

NaO 3

NaO
Na Na+

Na2O
Na2

NaS 2

NaS
NaO 2

S

S2

S+

SO

+SO
O+

O

Na2S

O(1D)

SO3

Figure 1.5. Chemical network of the planetary atmosphere of the Jovian satellite Io.

Because it is germane to the functional analysis of the metabolic networks, we first
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point out a nexus between graph representations of metabolic network, and metabolic

flux analysis (MFA), the most generic framework to analyze the biological function of

metabolic networks.

The key ingredient of MFA is the stoichiometric matrix S. Its entries are the

stoichiometric coefficients skr, i.e., the number of molecules of species k produced

(skr > 0) or consumed (skr < 0) in each reaction r. Reversible reactions are entered as

two separate reactions in most references. In general, additional “pseudo-reactions” are

added to describe the interface of the metabolic reaction network with its environment.

The dynamics of the concentration of metabolite k may be generally described by

dck

dt
=
∑

r

skrJr − υ(t)ck (1.1)

where the flux Jr through reaction r depends on the kinetic properties of the partici-

pating enzymes, on the concentrations of metabolites and on environmental parameters

such as temperature and pH. The enzymes are generally subject to complex regula-

tions by inhibition and activation. The assumption of a steady state and neglecting

the dilution fluxes υ(t)ck as a consequence of low concentrations of intermediates yields

the homogeneous, time-independent system of linear equations

SJ = ~o (1.2)

for the flux vector J . Consequently, the steady state flux vectors are elements of the

null-space Null(S). Using the constraint that we have must have Jr ≥ 0 for each

reaction r, we see that J is a steady state flux vector if and only if

J ∈ Null(S) ∩ R|V |
+ . (1.3)

The extremal rays of this cone are usually called the elementary flux modes and are

closely associated with the relevant metabolic pathways, see e.g. [26, 41, 45, 72, 120,

122] for further details on MFA.

It is not hard to see that, if all reactions are mono-molecular, then S is the incidence

matrix of a directed graph: skr = 1 for the single product k formed in reaction r and

skr = −1 for the single metabolite used in reaction r, i.e., S is the incidence matrix

of the digraph G whose vertices are the chemical species and whose edges denote the

reactions. Such networks were studied already in the 1960s [3]. It is well known that

x is an element of the cycle space of G if and only if Sx = ~o, i.e., the circuit space of

G is Null(S) [14]. The stationary flux vectors are therefore cycles of G.

In general, S represents a directed hypergraph [169]. Equivalently, one may use a

bipartite graph in which one class of vertices represents the substrates and the other
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class of vertices denotes the reactions. Arcs point from the educts to the reaction

node and from the reaction node to the products, Fig. 1.6. A very simple graph

representation of chemical networks, which is sufficient for our purposes, is the substrate

graph Σ introduced in [154]. Its vertices are the molecular compounds (substrates);

two substrates k and l are adjacent in Σ if they participate in the same reaction r.

The substrate graph is a straight-forward approximation of the directed hypergraph

representing S: a directed hyper-edge is replaced by a clique on the same set of vertices.

As a consequence, the stationary flux vectors are closely related to the cycles of the

substrate graph.

2NO 2NONO3 NO3

O3 O2 O3 O2

Figure 1.6. Representations of the reaction NO2 + O3 → NO3 + O2 in hypergraph form

drawn as the equivalent directed bipartite graph (l.h.s) and as part of a substrate graph

(r.h.s).

The undirected substrate graphs are considered in some applications, because di-

rected graphs would not properly represent the propagation of perturbations: even

for irreversible reactions the product concentration may affect the reaction rate, for

instance by product occupancy of the enzyme’s active site; this in turn affects the sub-

strate concentration. Thus, perturbations may travel backwards even from irreversible

reactions. A similar argument for considering undirected graphs can be derived from

metabolic control theory [123]. A number of more complicated graph representations

for chemical reaction networks are discussed e.g. in the book [138].

The matrix S does not identify the input and output metabolites. This information

is added in the form of additional “I/O-vertices” and “pseudo-reactions” representing

flux in and out of the reaction network in MFA applications, see e.g. [45]. The corre-

sponding extension of the cycle space of the network graph is the vector space spanned

by all cycles of the reaction network and all paths connecting pairs of “I/O-vertices”.

The generalization of the notion of relevant cycles to this extended vector space was

explored in a different context by Hartvigsen [66] and will be explored further in chap-

ter 5.
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1.3 Organization of the Thesis

In chapter 2, we give a brief introduction of the most important concepts of graph

theory that will be used throughout this thesis. Furthermore, the relation between

graphs, vector spaces and the matroid theory are explained, because some of our main

results make use of these connections.

Our main interest concerns the cyclic structure of graphs, representing biopolymers

on the one hand and chemical networks on the other hand, so chapter 3 deals with this

topic. Naturally, short cycles are particularly useful for the purpose of the description

of cycles structures. We will discuss the different types of cycles and their relation to

each other.

Minimum cycle bases are of particular practical interest because they encapsulate

the entire cycle space in concise manner. The energy model of RNA secondary struc-

ture is established on the cycles of the minimum cycle bases. For the most structures

with pseudo-knots the minimum cycle basis is not unique. The union of all minimum

cycle bases, on the other hand, does not really fit with biophysically structural ele-

ments. these shortcoming can be overcome by introducing a partition of this cycle set

(chapter 6).

Till Vismara’s thesis [148], no efficient algorithm for calculating the relevant cycles

was known. Hence, a many investigators dealt with extended minimum cycles bases.

We give a brief summary of what chemists call “ring sets” in chapter 4 and reveal some

faults in the chemical literature.

When analyzing chemical networks [56] the cycles of the network graphs do not hold

any informations about the input and output of the network. This information is added

in the form of “I/O-vertices” and “pseudo-reactions”. In chapter 5 we introduce the

corresponding extension of the cycle space of the network graph and the generalization

of the notion of relevant cycles to this extended vector space.

In metabolic flux analysis one is mostly concerned with the propagation of mass

through the network. In this case directionality is crucial and directed graph models

are required. In particular, the directed circuit bases produces our interest. Therefore,

in chapter 7 we extended the cycle space of undirected graphs to a circuit space of

directed graphs.

All algorithms presented here are implemented and part of a ANSI C++ program,

which will be briefly discussed in chapter 8. Furthermore, this chapter gives some

biochemical examples as applications of the mathematical concepts introduced before.

Since, our starting motivation for these graph theoretical contribution arises from the

search for a suitable energy model for RNA secondary structure computations in the

presence of pseudo-knots, the results of chapter 6 - the partitioning of the set of relevant
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cycles - will be discussed on two well studied examples of RNAs with pseudo-knots:

tmRNA and RNaseP RNA.

On the other hand chemical reaction networks found our interest. In section 1.2.3 we

have briefly outlined the relationship between the cycle structure of a reaction network

and the Chemical Flux Analysis. In section 8.3 the distribution of triangles and longer

relevant cycles is discussed for uncorrelated random graphs as well as for small world

models. In the following section, we compare two classes of chemical reaction networks

here: (1) Metabolic networks in which all reactions are mediated by specific enzymes,

and (2) the reaction networks of planetary atmospheres which lack specific catalysis.

Surprisingly, their global structure is quite similar.

A discussion of our results and open problems concludes this work.



Chapter 2
Basic Definitions

2.1 Graphs

Intuitively speaking, a graph is a set of points, and a set of arrows, with each arrow

joining one point to another. The points are called the vertices of the graph, and the

arrows are called the edges of the graph.

2.1.1 Basic Definitions

A graph G is a pair (V, E) of a set of vertices V and a set of edges E together with two

maps i : E 7→ V and t : E 7→ V assigning to each edge e ∈ E its initial vertex i(e) ∈ V

and its terminal vertex t(e) ∈ V . The number n of vertices is the order of G, and the

number of edges is denoted by m.

A loop is an edge of the type (x, x). Two edges are called parallel or multiple edges,

if they have common endpoints and are not loops. If this graph G does neither contain

multiple edges nor loops, it is called a simple graph. For this work, a graph G is always

a simple graph.

In graphs without multiple edges we can regard E simply as a subset V × V with

edges being pairs of vertices e = (i(e), t(e)). We distinguish undirected graphs, where

edges are non-ordered pairs of vertices and directed graphs where edges are considered

as ordered pairs. More formally, a digraph G(V, A) consists of a finite non-empty set

V of elements called vertices and a finite set A of distinct ordered pairs of distinct

elements called arcs. A simple digraph is a digraph with no loops or multiple arcs.

The degree deg(v) of a vertex v is the number of edges with v as an endpoint, the

out-degree outdeg(v) is the number of arcs of the form (v, w), and the in-degree indeg(v)

is the number of arcs of the form (w, v).

12
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A subgraph of G = (V, E) is a graph H = (V ′, E ′) such that V ′ ⊆ V and E ′ ⊆ E.

If V ′ = V , then H is a spanning subgraph of G. If W is any set of vertices in G, then

the subgraph induced by W is the subgraph of G obtained by joining those pairs of

vertices in W that are joined in G. An induced subgraph G[W ] of G is a subgraph that

is induced by some subset W of V .

If G is a digraph, then the underlying graph G◦ of G is the graph obtained from

G by replacing each arc by an undirected edge joining the same pair of vertices and

removing the multiple edges.

2.1.2 Paths, Circuits, Trees and Cuts

The following definitions can be used for both the directed and undirected graph, for

the undirected graph we use edge instead of arc.

A chain in G is a sequence

c = (x0, e1, x1, e2, x2 . . . , eq−1, xq−1, eq, xq) (2.1)

of vertices and arcs such that xk is an end-vertex of both the preceeding arc ek and

the succeeding arc ek+1. The vertices x0 and xq are the initial and terminal vertex

of the chain, respectively. A chain that does not encounter the same vertex twice is

called elementary. If it does not contain the same arc twice it is called simple. An

elementary chain is of course simple. The length |c| of a chain is the number q of its

arcs. The concatenation c′ ∗ c′′ of a chain c′ with initial vertex x and terminal vertex

x′ and a chain c′′ with initial vertex x′ and terminal vertex x′′ is defined in the obvious

way. Any chain can therefore be regarded as the concatenation of its individual steps

(xi, ei+1, xi+1).

A walk is a chain in which ek = (xk−1, xk) ∈ E for all k, i.e., in which each arc is

traversed in forward direction. A path is a simple walk, which in the undirected graph

is the same as a simple chain.

A simple chain is closed, if the endpoints are the same vertex. A close simple chain

is called a cycle, a closed path is called a circuit, which in an undirected graph is the

same as a cycle. A cycle or circuit C is proper if (x, y) ∈ C implies (y, x) /∈ C. Proper

cycles therefore have length |C| ≥ 3. A circuit of length 2 is also called a double edge.

A cycle C is elementary if each vertex has degree 2. A (generalized) cycle is an

arc-disjoint union of elementary cycles. A chord of C is an edge e = {x, y} ∈ E such

that e /∈ C, but both x and y are vertices of C. A cycle C is simple or chordless if it is

elementary and has no chord. A cycle C is tied if it is elementary and has exactly one

chord.
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2.1.3 Distance

The distance d(x, y) is the minimum length of a path connecting x and y. It satisfies

(D0) d(x, y) = 0 implies x = y.

(D1) d(x, x) = 0 for all x ∈ V .

(D2) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality) for all x, y, z ∈ V

(D3) d(x, y) = d(y, x) for all x, y ∈ V .

(D3) holds in general only for undirected graphs.

A subgraph H of G is isometric if dH(x, y) = dG(x, y) for all vertices x, y ∈ VH .

A graph G is connected if there is a chain joining each pair of vertices of G. Every

disconnected graph can be split into maximal connected subgraphs called components.

Similar definition can be given for digraphs.

A digraph G(V, A) is weakly connected, if the underlying undirected graph G◦(V, A◦)

is connected.

A digraph G(V, A) is strongly connected if for all x, y ∈ V there is a path from x to

y and a path from y to x. It is well known that G(V, A) is strongly connected if and

only each arc is contained in a circuit [10].

2.1.4 Trees and Cuts

A graph is said to be acyclic if it has no circuits. A tree is a connected acyclic graph.

A forest is defined to be a graph whose connected components are trees.

A spanning tree of a graph G is a tree of G having all the vertices of G. A cospanning

tree T ∗ of a spanning tree T of a graph G is the subgraph of G having all the vertices

of G and exactly those edges of G that are not in T . The edges of a spanning tree T
are called the branches of T , and those of the corresponding cospanning tree T ∗ are

called links.

An edge is a cut edge, if its removal disconnects the graph and increases the number

of components; hence it cannot be part of a cycle. Similarly, a vertex is a cut vertex,

if its removal increases the number of components. Obviously each vertex incident to

a cut edge is a cut vertex, but a cut vertex can also be part of a cycle.

The union of two graphs G1 and G2, denoted as G1 ∪ G2, is the graph G3 = (V1 ∪
V2, E1 ∪E2); that is, the vertex set of G3 is the union of V1 and V2, and the edge set of

G3 is the union of E1 and E2.

The intersection of two graphs G1 and G2, denoted as G1 ∩ G2, is the graph G3 =

(V1 ∩ V2, E1 ∩ E2); that is, the vertex set of G3 consists of only those vertices present

in both G1 and G2, and the edge set of G3 consists of only those edges present in both

G1 and G2.
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The ring sum or symmetric difference of two graphs G1 and G2, denoted as G1⊕G2,

is the induced graph G3 on the edge set E1 ⊕ E2 = (E1 − E2) ∪ (E2 − E1).

It can be verified easily that the three operations (∪,∩,⊕) defined above are asso-

ciative and commutative.

2.2 Vector Spaces

Identifying the algebraic structure associated with a set of objects has been found to

be very useful since the powerful and elegant results relating to the algebraic structure

can then be brought to bear upon the study of such a set. We gave here a very brief

introduction to some elementary algebraic concepts and results that will be used later

are given. For more detailed discussions of these concepts and related results in linear

algebra see [63, 76, 95].

2.2.1 Groups and Fields

Let S be a nonempty set with a binary operation denoted by +. Then S is called a

group if the following axioms hold:

1. Closure: (a + b) ∈ S for all a, b ∈ S.

2. Associative law: a + (b + c) = (a + b) + c for all a, b, c ∈ S.

3. Identity element: There exists a unique element e called identity in S such that

a + e = e + a = a for all a in S.

4. Inverses element: For each element a in S there exists a unique element i called

inverse such that a + i = i + a = e. Clearly the identity element e is its own

inverse.

A group is said to be abelian, if the commutative law holds, i.e. if a + b = b + a for all

a, b ∈ S.

A common example of a group is the set Z of all integers, with + defined as the

usual addition operation. Due to the missing inverse element, the set Z with the

multiplication operation is not a group.

A set F with two operation + and ·, called addition and multiplication, is a field if

the following postulates are satisfied:

1. F is an abelian group under +, with the identity element e.

2. The set F − {e} is an abelian group under ·.
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3. Distributive law of · over +: a · (b + c) = (a · b) + (a · c) = (b + c) · a for all

a, b, c ∈ S.

As an example, consider the set Zp = 0, 1, 2, ...p− 1 of integers with modulo p

addition and modulo p multiplication as the two operations. Zp is an abelian group

under modulo p addition, with 0 as the identity element. It can be shown that the set

Zp− 0 is a group under modulo p multiplication if and only if p is prime. Also the fact

that modulo p multiplication is distributive with respect to modulo p addition may

be easily verified. Thus the set Zp is a field if and only if p is prime. The field Zp is

usually denoted as GF(p) and is called a Galois field. A field that is of special interest

is GF(2), the set of integers modulo 2.

2.2.2 Vector Space

A vector space over the field F with elements called scalars is a set V of elements called

vectors together with an operation � : V × V 7→ V called addition and an operation

∗ : F × V 7→ V called scalar multiplication such that

1. V is an abelian group under �.

2. (a � b) ∗ v = (a ∗ v) � (b ∗ v) and a ∗ (v � w) = (a ∗ v) � (a ∗ w) for all a, b ∈ F
and for all v, w ∈ V.

3. (a · b) ∗ v = a ∗ (b ∗ v) for all a, b ∈ F and for all v ∈ V.

4. 1 ∗ s = s for all s ∈ S and 1 as the multiplicative identity in F .

If an element v in V is expressible as v = (a1 ∗ v1) � (a2 ∗ v2) � · · · � (aj ∗ vj),

where vi’s are vectors and ai’s are scalars, the v is said to be a linear combination of

v1, v2, . . . , vj. The elements v1, v2, . . . , vj in a vector space are linearly independent if

no vector in this set is expressible as a linear combination of the remaining vectors in

the set, otherwise the vectors are linearly dependent.

2.2.3 Bases of Vector Spaces

Vectors v1, . . . , vk from a basis in the vector space V, if they are linearly independent

and every vector in V is expressible as a linear combination of these vectors, which are

called basis vectors.

It can be shown that the representation of a vector as a linear combination of basis

vectors is unique for a given basis. The following basic property of vector spaces will

be used later.
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Proposition 1. [24] Let B be a basis of a vector space V. If any vector v in B is

replaced by the sum of v and a linear combination of the vectors in B \ {v}, then the

resulting set of vectors is again a basis of V.

A vector space may have more than one basis. However, it can be proved that all

the bases have the same number of vectors, called the dimension of the vector space

V, denoted as dim(V).

2.2.4 Subspaces

If V′ is a subset of the vector space V over F , then V′ is a subspace of V if V′ is also

a vector space over F .

The direct sum V1 � V2, of two subspaces V1 and V2 of V is the set of all vectors

of the form v1 � v2, where v1 ∈ V1 and v2 ∈ V2 and is again a subspace of V. The

dimension is given by dim(V1 � V2) = dim(V1) + dim(V2)− dim(V1 ∩V2).

Let V and V′ be two n-dimensional vector spaces over a field F . Then V and V′

are said to be isomorphic if there exists a one-to-one correspondence between V and

V′ such that the following holds true.

1. If the vectors v1 and v2 of V correspond to the vectors v′
1 and v′

2 of V′, then the

vector v1�v2 corresponds to the vector v′1⊕v′
2, where � and ⊕ are corresponding

operations in V and V′.

2. For any α in F , the vector α ∗ s corresponds to the vector α⊗ s′ if s corresponds

to s′, where ∗ and ⊗ are corresponding operations in V and V′.

All vector spaces (over the same field F) of the same dimension are isomorphic.

2.2.5 Vector Space over GF(2)

Proposition 2. [24] Let {v1, . . . , vk} be a basis of a vector space V over GF(2) and let

{u1, . . . , uk} be another basis of V. Then, there exists a permutation Θ of {1, . . . , k}
such that for i = 1, . . . , k each uΘ(i) can be written as the sum of vi and a linear

combination of {v1, . . . , vk} \ {vi}.

Define the length of a vector v over GF(2), denoted by |v|, to be the number of

1’s that it contains. The shortest basis of a vector space V is a basis B in which the

sum of the lengths of all vectors in B is minimized. Chickering [24] showed that the

length-distribution of the vectors equals for all shortest basis:
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Proposition 3. [24] Let {u1, . . . , uk} and {v1, . . . , uk} each be a shortest basis of a

vector space over GF(2) having length |u1| ≤ |u2| ≤ · · · ≤ |uk|, and |v1| ≤ |v2| ≤ · · · ≤
|vk|, respectively. Then, for i = 1, . . . , k, |ui| = |vi|.

Let L(B) denote the length of the longest vector in a basis B. A basis of V with

minimum longest vector is a basis B′ such that L(B′) is minimized over all bases of V.

Chickering further proved that every algorithm that finds a shortest basis also finds a

basis with the minimum longest vector [24].

Proposition 4. [24] Let B be a shortest basis of a vector space V over GF(2), L(B)

denote the length of the longest vector in B and let B′ be a basis of V with minimum

longest vector with length L(B′). Then, L(B) = L(B′).

2.2.6 Vector Spaces on a Graph

A vector space can be associated with a graph G(V, E) in the following way [59, 124]:

Let P(E) denote the collection of all subsets of E, including the empty set ∅. It is

easy to see that P(E) is an abelian group under ⊕, the ring sum operation (“exclusive

or”) between sets. Furthermore, for any D ∈ P(E), D ⊕ ∅ = D and D ⊕D = ∅. The

multiplication ∗ of an element of the field GF(2) and an element D of P(E) is defined

as follows: For any D ∈ P(E), 1 ∗ D = D and 0 ∗ D = ∅. One easily verifies that

(P(E),⊕, ∗) is a vector space, [59, 124].

If E = e1, e2, . . . , em, then the subsets {e1}, {e2}, . . . , {em} will constitute a basis

for P(E). Hence the dimension of P(E) is equal to m, the number of edges in G.

Since each edge-induced subgraph of G corresponds to a unique subset of E, and by

definition the ring sum of any two edge-induced subgraphs corresponds to the ring sum

of their corresponding edge sets, it is clear that the set of all edge-induced subgraphs

of G is also a vector space over GF(2), if the multiplication operation ∗ is defined as

follows: For any edge-induced subgraph Gi of G, 1 ∗ Gi = Gi and 0 ∗ Gi = ∅, the null

graph having no vertices and no edges. This vector space will also be referred to by

the symbol P(E).

Proposition 5. [141] For a graph G with m edges P(E) is an |E|-dimensional vector

space over GF(2).

The following subset of P(E) is also a subspace of P(E) and there for also a vector

space over GF(2):

Proposition 6. [141] C, the set of all cycles (including the null graph ∅) and unions

of edge-disjoint cycles of G, is a subspace of the vector space P(E) of G.
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C will be referred to as the cycle space of the graph G.

Proposition 7. [141] The dimension of the cycle space of G is equal to |E|− |V |+k =

ν(G), the nullity or the cyclomatic number or first Betti number of G, where k is the

number of components.

It is obvious that the cycle space of a graph is the direct sum of the cycle spaces of

its 2-connected components. It will be sufficient therefore to consider only 2-connected

graphs throughout of this work.

In chapter 7 we discuss the circuit space of a digraph as a vector space over R, the

propositions 5 and 7 remain valid.

2.3 Matroids

Matroids were introduced by Whitney [163] in 1935, with the aim of capturing the

fundamental properties of dependence that are common to graphs and matrices. A

matroid consists of a collection of subsets of a finite set which, loosely speaking, behave

like a finite collection of vectors. Matroids also arise naturally from matrices and

projective geometries. A matroid may be defined in many different but equivalent

ways, several of which were described in Whitney’s original paper.

Definition 8 (Independence Axioms). [163] A matroid M is a finite set S and a

collection
�

of subsets of S (called independent sets), such that (I1)-(I3) are satisfied.

(I1) ∅ ∈ �
.

(I2) If X ∈ �
and Y ⊆ X then Y ∈ �

.

(I3) If X, Y ∈ �
with |X| = |Y |+ 1 there exists x ∈ X \ Y such that Y ∪ x ∈ �

.

A basis of M is a maximal independent subset of S, the collection of the bases is

denoted by � (M) or simply � .

A subset of S not belonging to
�

is called dependent.

The rank function ρ of M is a function: ρ : 2S 7→ Z, defined by

ρ(A) = max (|X| : X ⊆ A, X ∈ �
).

The rank of the matroid is the rank of the set S.

A subset A ⊆ S is closed or a flat or a subspace of the matroid M, if for all

x ∈ S \ A hold ρ(A ∪ x) = ρ(A) + 1. In other words no element can be added to A

without increasing its rank.

A circuit of M is defined as a minimal dependent subset of S. The collection of

circuits is denoted by � (M) or � .

The dual M∗ of a matroid M is defined as followed:
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Proposition 9. [163] Let � be the set of bases of a matroid M on a set S. Then

� ∗ = {S \ B | B ∈ � } is the set of bases of the dual matroid M∗.

The cocircuit of M is a circuit of M∗.

The knowledge of the bases or circuits or rank function is sufficient to uniquely

determine the matroid. Hence it is not surprising that there exists axiom systems for

a matroid in terms of each of these concepts:

Proposition 10 (Basis axioms). [163] A non-empty collection � of subsets of S is

the set of bases of a matroid on S if and only if it satisfies the following condition:

(B) If B1,B2 ∈ � and x ∈ B1 \ B2, ∃ y ∈ B2 \ B1 such that (B1 ∪ y) \ x ∈ � .

Proposition 11 (Circuit axioms). [145] A collection � of subsets of S is the set of

circuits of a matroid on S if and only if condition (C1) and (C2) are satisfied.

(C1) If X 6= Y ∈ � , then X * Y .

(C2) If C1, C2 are distinct members of � and z ∈ C1∩C2, there exists C3 ∈ � such

that C3 ⊆ (C1 ∪ C2) \ z.

Two matroids M1 and M2 on S1 and S2 respectively are isomorphic - denoted by

M1 wM2 if there is a bijection φ : S1 → S2 which preserves independence. It is clear

that equivalently φ is an isomorphism if and only if it preserves the rank function,

circuits and so on.

2.3.1 Independent Sets, Bases and Circuits

It is clear that if a subset A is independent there exists a basis B such that A ⊆ B.

The following stronger result is used extensively.

Proposition 12 (Augmentation Theorem). Suppose that X, Y are independent in

M and that |X| < |Y |. Then there exists Z ⊆ Y \ X such that |X ∪ Z| = |Y | and

X ∪ Z is independent in M.

An immediate consequence of this is the following result, which extends the well

known property of bases of a vector space.

Corollary 13. All bases of a matroid on S have the same cardinality, which is the

rank of S.

For graph theorist the most natural way to define a matroid is by its circuit axioms

(theorem 11). This is the approach used by Tutte [145].
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Proposition 14. [145] If A is independent in M, then for x ∈ S, A ∪ x contains at

most one circuit.

Corollary 15. [145] If B is a basis ofM and x ∈ S then there exists a unique circuit

C = C(x,B) such that X ∈ C ⊆ B ∪ x.

This circuit C(x,B) is called the fundamental circuit of x in the basis B. In fact

there is a stronger result.

Proposition 16. [145] If M is a matroid on S, and B is a basis of M, then for any

x ∈ S \ B, (B \ y) ∪ x is a basis of M if and only if y ∈ C(x,B) or y = x.

A much stronger statement than theorem 11 (C2) can be made about the circuits

of a matroid:

Proposition 17. [145] If C1, C2 are distinct circuits of a matroidM and x ∈ C1∩C2,

then for any element y of C1\C2 there exists a circuit C such that y ∈ C ⊆ (C1∪C2)\x.

Whitney [163] used the following condition (C3) and theorem 11 (C1) as his circuit

axioms, where (C3) is what is sometimes known as the strong circuit axiom. The

equivalence of these with the apparently weaker (C1) and (C2) was proved by Lehman

[92].

(C3) If C1, C2 are distinct members of � and y ∈ C1 \ C2 then for each x ∈ C1 ∩ C2,

there exists C3 ∈ � such that y ∈ C3 ⊆ (C1 ∪ C2) \ x.

The following two results of Tutte [145] are very useful.

Proposition 18. [145] Let � be a collection of non-null subsets of S such that for any

two distinct members X, Y of � such that x ∈ X ∪ Y, y ∈ X \ Y , there exists Z ∈ �
such that y ∈ Z ⊆ (X ∪ Y ) \ x.

Proposition 19. [145] Let � be a family of subsets satisfying the hypotheses of theo-

rem 18. Then if a ∈ W ∈ � there exists V ∈ � such that a ∈ V ⊆ W .

2.3.2 The Cycle Matroid of a Graph

Let G be an undirected graph with vertex set V and edge set E.

Proposition 20. If G is a graph, the cycles of G are the circuits of a matroid M(G)

on the edge set E.

This matroid M(G) is call the cycle matroid of G (or in Tutte’s work [145] the

polygon matroid of G).

By definition a maximal subgraph of G which contains no cycle is a spanning forest.

Hence following basic properties of M(G) can be listed:
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1. If G is disconnected, the bases of M(G) are the spanning forests of G.

2. If G is connected, the bases of M(G) are the spanning trees of G.

3. A set X of edges of G is independent inM(G), if and only if X contains no cycle,

that is, iff X is a forest.

4. The rank of the matroid M(G) is |V | − k, where k is the number of connected

components of G.

5. For any subset A ⊆ E the rank of A inM(G) is given by ρ(A) = |VA|−kA, where

kA is the number of components in the subgraph generated by A.

However despite the power of matroid theory as a tool in the clarification of certain

graphical ideas, many problems of graph theory cannot even be posed in matroid

language. Crudely this is because there is no simple exact counterpart of a vertex

in a matroid. Also, non-isomorphic graphs may have isomorphic cycle matroids (see

Fig. 2.1).

G G’
Figure 2.1. The two graphs G and G ′ are clearly non-isomorphic, however it is easy to check

that the map x→ x′ is an isomorphism betweenM andM′.

A matroid M on S is called graphic, if it is isomorphic to the cycle matroid of a

graph G.

2.3.3 Binary Matroids

Whitney was the first who considered the problem of finding necessary and sufficient

conditions for a matroid to be graphic. An obvious starting point is to find properties

of graphic matroids which do not hold for matroids in general. A definitive solution of

the problem of ”when is a matroid graphic” was given by Tutte [144], who introduced

the concept of a binary matroid as a matroid determined by a chain group over the

field GF(2) of integers modulo 2.

It turns out that there are many equivalent ways of defining a binary matroid. In

view of the adjective ”binary” probably the most appropriate is to define M to be

binary if it is representable over the field GF(2).
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Proposition 21. [145] A matroid M is binary if and only if its dual M∗ is binary.

Proposition 22. [92, 102, 145] The following statements about a matroid M are

equivalent.

(i) For any circuit C and cocircuit C∗, |C ∩ C∗| is even.

(ii) The symmetric difference of any collection of distinct circuits of M is the union

of disjoint circuits of M.

(iii) If C1, C2 are distinct circuits ofM, the symmetric difference C1 ⊕C2 contains a

circuit C.

(iv) For any basis B and circuit C of M, if C \ B = {e1, . . . , ei} and if Ci = C(ei,B)

is the fundamental circuit of ei in the basis B, then C = C1 ⊕ · · · ⊕ Ci.

(v) M is binary.

Let M be a binary matroid on S, |S| = n and let V be the vector space of rank n

over GF(2). The circuit space of M is the subspace of V generated by the incidence

vectors of the circuits of M. Similarly the cocircuit space of M is the subspace of V

generated by the cocircuits of M.

Proposition 23. [102] The rank of the circuit space � (M) of the binary matroid M
is ρ(M∗) and the incidence vectors of the set of fundamental circuits of any basis of

M form a basis of the circuit space.

Definition 24. An element C of the circuit space of M is elementary, if it coincides

with the incidence vector of a fundamental circuit of some basis of M.

For graphs, these elementary elements of the circuit vector space � (M(G)) of the

cycle matroid M(G) of G are exactly the elementary cycles.

2.3.4 The Greedy Algorithm

The best-known algorithmic property of matroids is their intimate relationship with

what has been termed the “greedy algorithm”. Loosely speaking the greedy algorithm

makes maximum improvements in an objective function at each stage and never back

tracks.

The basic idea for graphs is a will known result of Kruskal [89]. The extension

to matroids was first carried out by Rado [116], but Edmonds [40] and Welsh [160]

independently also developed an algorithm for the formation of a minimal basis of a

matroid, known as the above mentioned greedy algorithm.
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Consider a set S whose elements si have been assigned nonnegative weights w(ei).

The weight of a subset of S is defined as equal to the sum of the weights of all the

elements in the subset. Let
�

be a collection of subsets of S.

The problem is to find a subset Xopt of S such that Xopt ∈
�

is minimum (or

maximum) over all elements of S. Just call this problem (
�

, w). The greedy algorithm

for the problem (
�

, w) is an automatic routine for selecting a minimal neighbour of�
. It proceeds as follows:

Algorithm 1 The Greedy Algorithm

1: Sort S by weight such that w(xi) ≤ w(xj) for i < j.

2: B ← ∅
3: for all k = 1, . . . , |S| do

4: if B ∪ {xk} ∈ J then

5: B ← B ∪ {xk}

Proposition 25. Let
�

be a collection of subsets of S with the property that A ∈�
, B ⊆ A⇒ B ∈ �

. Then the greedy algorithm works for (
�

, w) for all non-negative

weight functions w only if
�

is the collection of independent sets of a matroid on S.

Notice that proposition 25 gives the following useful characterization of matroids.

Proposition 26. A non-empty collection
�

of subsets S is the set of independent sets

of a matroid on S if and only if

(i) X ∈ �
, Y ⊆ X ⇒ Y ∈ �

,

(ii) for all non-negative weight functions w : S → R+
0 , the greedy algorithm selects a

member A of
�

with ∑

e∈A

w(e) ≥
∑

e∈B

w(e)

for all members B of
�

.



Chapter 3
Cycle Bases of Undirected Graphs

To each cycle C in a graph G we associate an incidence vector x, where xe = 1 if e is

an edge of C and xe = 0 otherwise. The vector space over GF(2) generated by these

incidence vectors of cycles is called the cycle space of G (see chapter 2.2.6) with the

dimension ν. A collection of cycles whose incidence vectors forms a basis for the cycle

space of a graph is called a cycle basis [29].

A cycle basis is used to examine the cyclic structure of a graph. For example, many

algorithms use cycle bases to list all simple cycles in a graph [98, 134] or look for the

longest cycle [33]. Cycle bases have been also used to solve electrical networks since the

time of Kirchhoff [25]. Brief surveys and extensive references can be found in [70, 77].

Proposition 27. If B is a cycle basis for a graph, C is a cycle in B, and C = C1⊕C2,

then either B \ {C} ∪ {C1} is a cycle basis or B \ {C} ∪ {C2} is a cycle basis.

3.1 Fundamental Cycle Bases

A fundamental cycle set is used by the organic chemists interested in the coding of ring

compounds (see Chapter 1.2.1).

Whitney [163] introduced the following definition (in the more general setting of

matroids).

Definition 28. [163] Let G be a graph and let ν be the dimension of its cycle space.

Then a collection of cycles 	 in G, where | 	 | = ν, is called fundamental, if there

exists an ordering of the cycles in 	 such that

Cj \ (C1 ∪ · · · ∪ Cj−1) 6= ∅ for 2 ≤ j ≤ ν. (3.1)

If every ordering is fundamental, 	 is called strictly fundamental.

25
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A well-known special case of a fundamental collection 	 of cycles for a graph

G = (V, E) is the following definition, introduced by Kirchhoff in 1847:

Definition 29. [87] Let T = (V, E ′) be a maximal spanning forest for G and let the

cycles in 	 consist of the unique cycles in e ∪ E ′ for each e ∈ E \ E ′. 	 is called a

Kirchhoff cycle basis.

These Kirchhoff cycle bases are exactly the cycle bases corresponding to the fun-

damental circuits of the matroid M(G).

Sys lo [133] proved that a cycle basis is Kirchhoff iff each cycle in the basis contains

an edges that is in no other cycle of this basis. Hartvigsen [67] showed:

Proposition 30. [67] A cycle basis 	 is strictly fundamental iff it is Kirchhoff.

It is a simple observation that a fundamental collection of cycles for a graph G is

a cycle basis for G, but not every cycle basis is strictly fundamental (see Fig. 3.1).

Furthermore the graph in Fig. 3.1 shows not every graph has a strictly fundamental

cycle basis. Hartvigsen et al. [71] gave a characterization of those graphs for which

every cycle basis is fundamental. An example of a non-fundamental minimum cycle

basis is discussed in section 4.2 (Fig. 4.1).

Figure 3.1. The minimum cycle basis of this planar

graph consists of the three triangles C1 through C4 and

the central square C5. The ordering (C1, C2, C3, C4, C5)

does not satisfy the equ.(3.1): in fact, C5 ⊆ C1 ∪ C2 ∪
C3 ∪ C4 = E. Alternatively one easily checks directly

that no spanning tree generates the minimum cycle basis

(from [78]).

3.2 Isometric, Short, Shortest, Edge-Short Cycles

Definition 31. A cycle C is called short, if for every pair of nodes u and v in C a

shortest path from u to v or a shortest path from v to u in G is contained in C.

A cycle C is called isometric, if for any two of its vertices u and v, it contains a

shortest path from u to v and a shortest path from v to u.

A cycle C in a graph G is called edge-short, if G contains a node w, an edge

e = (u, v), a shortest path from u to w and a shortest path from v to w such that C is

the edge disjoint union of e and the two paths.

A cycle C is strictly edge-short, if for each vertex x of C there is an edge e =

(u, v) ∈ C, such that C consists of e, a shortest path from x to u and a shortest path

from v to x.
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These definitions for undirected graphs can be used in digraphs as well. One simple

has to replace the word “edge” by “arc”, see section 7.5.

Theorem 32. In an undirected graph a cycle is isometric if and only if it is short.

Proof. From the definition follows directly that an isometric cycle is short. Suppose C

is short. We know that for every pair of vertex x 6= y, x, y ∈ C there exists a shortest

path from x to y or in the other direction. In undirected graphs a shortest path P

from x to y is also a shortest path from y to x. Thus C is isometric.

Theorem 33. Every strictly edge-short cycle is edge-short. A cycle is short if and only

if it is strictly edge-short.

Proof. From the definition follows directly that a strictly edge-short cycle is edge-short.

Horton [77] showed that every short cycle is also strictly edge-short. Thus it remains

to show that strictly edge-short and short is equivalent.

For two distinct vertices x 6= y in C, we denote the path from x to y in C by C′

and C ′′. Furthermore we write Sxy for a path from x to y in G that is shorter than C ′

or C ′′. We call Sxy a shortcut from x to y.

Suppose C is not short. We show that C is not strictly edge-short. If C is not

short then there are two vertices x 6= y such that there exists a shortcut Sxy from x

to y. Then it is impossible to find an edge e = (u, v) ∈ C such that there is neither a

shortcut Sxu nor a shortcut Sxv. Suppose u ∈ C ′, such that the path P from x to u is

contained in C ′. Then the shortest path from x to v must contain Sxy. Hence C is not

strictly edge-short.

The converse that every edge-short cycle is also strictly edge-short is not true,

Fig. 3.2 gives a counterexample.

Definition 34. A cycle C is shortest in G if there is an edge e = (x, y) ∈ C such that

C is a shortest cycle containing e, i.e., C = e ∪ P e
xy where P e

xy is a shortest path in

G \ e, the graph obtained from G by deleting the edge e. The set of all shortest cycles

is denoted by S(G) or just S.

1
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4 3

Figure 3.2. Consider the edge-short pentagon C. For

vertex 2, it is impossible to find an edge e, such that the

shortest paths from both endpoints of e are contained

in C. Besides C is not chordless.

However, as the graph in Fig. 3.4 shows, the shortest cycles do not convey the

complete information about the graph. The hexagon (bold edges in Fig. 3.4) cannot
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be reconstructed from the collection of triangles, but determines the diameter (maximal

distance between two vertices) of the graph. It is crucial for the network structure since

the local information conveyed by the twelve triangles does not allow the reconstruction

of the hexagonal overall-structure.

Figure 3.3. The hexagon (bold) is a

chordless cycle, but it is impossible to

find a vertex x and an edge e such that

the shortest oaths from both endpoints

of e are contained in the hexagon.

Figure 3.4. The hexagon (bold lines) is a

short cycle, but is is not a shortest cycle

through any of its edges (from [56]).

The diagram in Fig. 3.5 shows the relationships between the different types of cycles,

in undirected graphs. Below the one-sided arrows, standing for one-sided implications,

the number of the figure of counterexample for the inversion is given. For the definition

of relevant and essential cycles see section 3.4 and 3.6.

unique shortest essential

shortest relevant

strictly edge−short short isometric

edge−short

chordless

//

Fig. 3.1

��

Fig. 3.10

��

Fig. 3.10

//

Fig. 3.4

��

Fig. 3.6

oo //

��

Fig. 3.2

//oo

Fig. 3.2 Fig. 3.3

Figure 3.5. The relations be-

tween the different type of cy-

cles. Two-sided arrows implies

an iff relation. Below the one-

sided arrow the number of the

figure of the counterexample

for the reverse implication is

given. The dotted line stands

for a “no implication” with the

number of the counterexam-

ples.
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3.3 Minimum Cycle Bases

The length of a cycle is the number of its edges. In terms of the vector representation

we have |C| = ∑a |Ca|. For each collection B of cycles we define the length

`(B) =
∑

C∈B

|C|. (3.2)

A minimum cycle basis (MCB) is a cycle basis with minimum length.

The problem of finding an MCB was first considered by Stepanec [129] and Zykov

[172]. They proposed an algorithm that generates an independent set of cycles which

are minimum length cycles through various edges in the graph, i.e., a set of shortest

cycles. Hubicka and Sys lo [78] showed that this algorithm does not always produce an

MCB. The shortest cycle through an edge is always in a minimum cycle basis [78]. Deo

[30] showed that the problem of finding a strictly fundamental cycle basis of minimal

length is NP complete, but the graph in Fig. 3.1 shows that not every fundamental

cycle basis is minimal.

Finally in 1987, Horton [77] presented a polynomial time algorithm (O(|E|3|V | =

O(d3|V |4) with d as maximum vertex degree) for finding an MCB in a non-negative edge

weighted graph. In 1991, Hartvigsen and Mardon [67] gave an algorithm for finding

an MCB in a simple planar graph in O(|V |2 log |V |) times. Balducci and Pearlman

[6] presented an algorithm for finding an MCB with at most order O(d3|V |2 log |V |),
where d is the maximum vertex degree, but Vismara [148] showed that this performance

estimate is wrong. In fact, the worst case performance is O(µ(G)|E|2|V |d).

The problem of finding an MCB for a graph is a matroid optimization problem over

the set of cycles of the graph. If the edges weights were restricted to be non-negative,

then we could state this equivalently as a matroid optimization problem over the entire

cycle space since, in this case, an optimal solution would still consist of (elementary)

cycles. In either case, an MCB can be found using the greedy algorithm. We restate

this fact in the following form:

Proposition 35 (Matroid Property). Let Q be a set of cycles containing a minimum

cycle basis. Then a minimum cycle basis M can be extracted from Q by a greedy

procedure in the following way: (i) Sort Q by cycle length and set M = ∅. (ii)

Traversing Q in the established order, set M ← M ∪ {C} whenever M ∪ {C} is

linearly independent.

MCBs have the property that their longest cycle is at most as long as the longest

cycle of any basis of the cycle space [24]. An MCB therefore contains the salient

information about the cyclic structure of a graph in its most compressed form. It

appears natural to consider the cyclic structure of a graph in terms of its MCBs.
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In general, graphs do not have unique MCBs. In fact, the known classes of graphs

with unique MCB have a very simple structure: they are outerplanar [93], Halin graphs

[127], or certain series-parallel graphs [100]. However, the distribution of cycle sizes is

the same in all MCBs of a graph G. In fact, we can restate proposition 3 in the form:

Corollary 36. Suppose M is an MCB of G containing nk cycles of length k. Then

every MCB of G has exactly nk cycles of length k.

David Hartvigsen and Russel Mardon considered the minimum cycle basis problem

for graph with perturbed edge weights w(e), e ∈ E which are chosen such that any two

distinct edge-(multi)sets have different total weights [68, 69]. In this setting the MCB

becomes unique for all graphs. Translated to unweighted graphs, this means that no

two minimum cycle bases contain all edges in the same number of cycles. Hence, given

a minimum cycle basis M of G, there is a perturbed edge weighting such that M is

the unique MCB of the edge-weighted version.

3.4 Relevant Cycles

The main shortcoming of minimum cycle bases for the characterization of graphs is the

fact that the minimum cycle basis is not unique in general. A natural way to avoid

ambiguities is to consider the union of all minimum cycles bases.

Definition 37. [115] A cycle C is relevant if it cannot be represented as an ⊕-sum of

shorter cycles.

We write R or R(G) for the set of relevant cycles.

Proposition 38. [149] A cycle C is relevant if and only if it is contained in a minimum

cycle basis.

Proposition 39. [129, 172] If C is shortest, then it is relevant. Moreover, any mini-

mum cycle basis must contain some shortest cycle through e for each e ∈ E.

As an immediate consequence of Proposition 39 the shortest cycles through an edge

are relevant, i.e., S ⊆ R.

Horton [77] showed that the cycles in a minimum cycle basis satisfy a very simple

necessary condition. This allows one to polynomially compile a list of cycles that must

contain a minimum cycle basis. Then a solution can be extracted from this list with

the greedy algorithm.

Proposition 40. [77] If C is contained in an MCB then it is short.
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Figure 3.6. A counterex-

ample to the converse of

Proposition 40 (from [77]).

Note that not all short cycles belong to a minimum cycle

basis. A counterexample from [77] is given in Fig. 3.6. The

minimum cycle basis consists of all ten triangles. However, the

quadrangle satisfy the condition of Theorem 40, nevertheless

it is not contained in any minimum cycle basis.

Vismara [148, 149] proposed an algorithm for computing R
that works by first extracting so-called prototypes (see below)

from a set of short cycles similar to Horton’s algorithm for

finding one MCB [77]. The computation of the prototypes

requires O(d4|V |4) operations, where d is the maximum vertex

degree. The set R is then obtained by a backtracking procedure from the prototypes

with O(|V | |R|) operations.

Figure 3.7. The set of relevant cycles of this graph contains 2
|V |
4 cycles with 3|V |

4
vertices

and all |V |
4

quadrangles (from [149]).

For some classes of graphs |R| grows exponentially with |V |, i.e., Fig 3.7. However,

in section 8.3.1 we report computational evidence that, typically, |R| is not too much

larger than the minimum possible value ν(G) (Fig. 8.12).

Lemma 41. If G contains K4 as a subgraphs then R is dependent, i.e., |R| > ν(G).

Proof. K4 contains four triangles, each of which is a relevant cycle of any graph con-

taining the K4. From ν(K4) = 3 we conclude immediately that one of them is the

⊕-sum of the other three.

y

x

Figure 3.8.

A double claw

Further, the question arises, how well is R approximated by the

shortest cycles S. We briefly mention two infinite classes of graphs for

which R = S.

Theorem 1.2 of [69] characterizes the perturbed graphs for which

the MCB consists only of shortest cycles as the planar graphs without

a dual containing a double claw. A double claw with ends x and y is

a subgraph that consisting of three internally node disjoint paths from

x to y (see Fig. 3.8). In the unweighted case this implies:

Corollary 42. If G planar and none of its duals contains a double claw, then S = R.
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The converse is not true. For instance, all triangles in a complete graph (which for

|V | > 4 is not planar) are relevant, and of course they are shortest cycles.

A graph is null-homotopic [15, 39, 81] if it has a cycle basis consisting only of

triangles. This is the case for instance for chordal graphs (in which every cycle C of

length |C| ≥ 4 contains a chord.), and in particular for complete graphs Km, m ≥ 3.

Trivially, if G is null-homotopic, then R = S.

3.5 Vismara’s Prototypes of Relevant Cycles

Vismara [149] describes an algorithm for constructing the set of relevant cycles R that

makes use of a partitioning of R into cycle families. Let � be an arbitrary ordering

of the vertex set V of G and P̆rx denotes for a shortest path between r and x, that

only passed through vertices preceding r in the ordering �. Set Vr = {x ∈ V |x �
r and ∃ P̆rx} and Ur = { arc (y, z)|(y, z) ∈ P̆ry}.

Proposition 43. [149] Let C be a relevant cycle, and let r be the vertex of C that is

maximal w.r.t. the order �. Then there are vertices p, q ∈ Vr such that C consists of

two disjoint shortest paths (r . . . p) and (r . . . q) of the same lengths linked by the edge

{p, q} if |C| is odd or a path (p, x, q), x ∈ Vr, if |C| is even.

Definition 44. [149] Let Cr
pqx be a cycle as described in proposition 43. The cycle

family F r
pqx consists of all cycles C satisfying the following conditions:

(i) |C| = |C r
pqx|;

(ii) C contains the vertex r as well as the edge {p, q} or the path (p, x, q);

(iii) There are two shortest paths (p . . . r) and (q . . . r) in C that pass only through

vertices �-smaller than r, i.e., that are contained in Vr.

p

q
xr

p

q
r

C
C’even cycle odd cycle

Note that the cycle families Fr
pqx explicitly depend of the order � on V . Vismara

shows that {F r
pqx|Cr

pqx is relevant} forms a partition of R for any order � on V .

The algorithm Vismara proposes to compute cycle prototypes Cr
pqx is based on

the converse of proposition 43. This converse is not necessarily true but it gives a
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Algorithm 2 Calculation of initial set C′I
1: for all r ∈ V do

2: Compute Vr and ∀t ∈ Vr find a shortest path P̆rt from r to t

3: Ur ← ∅
4: for all y ∈ Vr do

5: S ← ∅
6: for all z ∈ Vr such that z is adjacent to y do

7: if d(r, z) + 1 = d(r, y) then

8: S ← S ∪ {z}
9: Ur ← Ur ∪ {(y, z)}

10: else if d(r, z) 6= d(r, y) + 1 and z � y and P̆ry ∩ P̆rz = {r} then

11: Add to C ′I the odd cycle C = P̆ry + P̆rz + (z, y)

12: for any pair of vertices p, q ∈ S such that P̆rp ∩ P̆rq = {r} do

13: Add to C ′I the even cycle C = P̆rp + P̆rq + (p, y, q)

Algorithm 3 Extraction of prototypes P from C′I
1: sort the cycles of C′I by length

2: k = 3; M< ← ∅; M= ← ∅; P ← ∅;
3: for all C ∈ C′I do

4: if |C| 6= k then

5: k ← |C| M< ←M< ∪M=; M= ← ∅;
6: if |M<| = ν then

7: stop, when complete MCB is found

8: if M< ∪ {C} is independent then

9: P ← P ∪ {C}
10: if M< ∪M= ∪ {C} is independent then

11: M= ←M= ∪ {C}

Algorithm 4 ListPaths(r, x, P )

1: P ← P ∪ {x}.
2: if x = r then

3: Return(P ).

4: else

5: Result← ∅
6: for all z ∈ Vr such that (x, z) ∈ Ur do

7: Result← Result ∪ ListPaths(r, z, P )

8: Return(Result)
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strong condition on cycle relevance. In the first step the set C′I including one cycle for

each triple r, p, q (or quadruple r, p, q, x) satisfying the condition of proposition 43 is

calculated (see Algorithm 2), then in the second step the relevant cycles are extracted

from C ′I by using a greedy algorithm (Algorithm 3).

For the greedy algorithm during processing of a cycle C,M< andM= denotes the

subsets of cycles in the current sub-basis whose length are less than C and equal to C,

respectively.

From this set of prototypes P the set of relevant cycles R can easily be listed. To

generate the cycle family Fr
pqx, the digraph Dr = (Vr, Ur) associated with the vertex r

has already been calculated in Algorithm 2.

To list all the paths from x to r in Dr, a backtracking function which is based

on a deep first search from x is used (see Algorithm 4). To compute Fr
pqx, first the

path (p . . . r) in Cr
pqx is replaced by each one of the paths returned by the call of

ListPaths(r, p, ∅). Then, in each cycle generated this way, the path (r . . . q) is again

replaced by each one of the paths resulting from ListPaths(r, q, ∅). So each cycle in

F r
pqx corresponds to a pair of paths (p . . . r), (q . . . r).

3.6 Essential Cycles

Definition 45. [55] A cycle C in G is essential if it is contained in every minimum

cycle basis of G.

Therefore, the set J (G) or short J of essential cycles is the intersection of all

minimum cycles bases. Note that J can be empty. As an example consider the

complete graph K4, see Lemma 41. Similarly, J = ∅ for larger complete graphs. Not

surprisingly, J can be computed rather easily from R.

Lemma 46. Let M be a minimum cycle basis of G,

Mk = {|C| ∈ M : |C| < k}, Rk = {|C| ∈ R : |C| = k} and C ∈ Rk.

Then C ∈ J if and only if rank[Mk ∪Rk \ {C}] < |Mk+1|.

Proof. By definition, C ∈ J if and only if R \ {C} does not contain a cycle basis.

If |C| = k, it follows from the matroid properties of the cycle space that we have to

consider only cycles up to length k. With R≤k =
⋃

j≤kRj we have C ∈ J if and

only if rank[R≤k \ {C}] < rank[R≤k]. The lemma now follows from rank[R≤k] =

rank[Mk ∪Rk].

The algorithm for computing J from R is summarized in Algorithm 5. Its worst

case complexity is determined by the |ν(G)| rank computations in step 7, which in
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Algorithm 5 Extract essential from relevant cycles

Input: R
1: k = 3; M← ∅; R= ← ∅; J ← ∅;
2: repeat

3: C ← cycle with minimal |C| in R; R ← R \ {C}.
4: if |C| > k or R = ∅ then

5: r = |M| /∗ Rank of {C ∈ MCB : |C| ≤ k} ∗/
6: for all C ′ ∈ M= do

7: if rank[(M∪R=) \ {C ′}] < r then

8: J ← J ∪ {C ′}
9: k ← |C|; R= ← ∅; M= ← ∅;

10: if R = ∅ then

11: return J
12: R= ←R= ∪ {C};

/∗ Extract an MCB ∗/
13: if M∪ {C} independent then

14: M←M∪ {C}; M= ←M= ∪ {C};
15: until

practice can be divided into two parts. Let M=k = Mk+1 \ Mk denote the set of

cycles with length k in the minimum cycle basis. For each length k it suffices to

perform a Gaussian elimination onMk ∪ (Rk \M=k) once. This step requires at most

O(|R| |M| |E|) operations. The ranks can now be computed by performing Gaussian

elimination on the union of the result of the first step (which has only O(|M|) rows)

and M=k \ {C} for each C ∈ M=k. For each C, this can be done with no more than

O(|M|2|E|) steps. In the worst case, hence, J can be obtained in O(|R| ν(G)2 |E|)
operations.

Since the cycles in S are not independent in general (Fig. 3.10), it seems natural to

consider the set

S∗(G) = {C | ∃ e ∈ E : C is the unique shortest cycle containing e}

instead. For short we write S∗ instead of S∗(G). As each cycle C in S∗ is the unique

shortest cycle for any perturbed edge weighting the discussion in [69] implies that C

is contained in all minimum cycle bases, i.e., S∗ ⊆ J . Trivially, if S∗ is a cycle basis,

then the MCB is unique and S∗ = J = S = R. This provides a sometimes convenient

way to establish the uniqueness of the MCB, see Figure 3.9.

However, uniqueness of the minimum cycle basis, i.e., J = R, in general does not

imply that S∗ = J . The example in Figure 3.4 is outerplanar and hence has a unique
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Figure 3.9. G is a subdivision of K3,3, hence ν(G) = 4. Since S∗ contains the four marked

cycles, G has a unique minimum cycle basis. For each of these cycles, an edge for which the

cycle is the unique shortest one, is indicated by a circle.

MCB, but S∗ contains only the four triangles. In a more restricted setting, however,

which includes secondary structure graphs, we have

Lemma 47. Let G be sub-cubic 2-connected outerplanar graph. Then S∗ is the mini-

mum cycle basis.

Proof. G has a unique Hamiltonian H cycle which forms the boundary of the planar

embedding [132]. The minimum cycle basis is given by the cells of planar embedding

[93]. For each edge e ∈ H there is unique shortest cycle, namely the cell in which it is

contained. Since the vertex degree is at most 3, each cycle |C| must contain at least

one boundary edge e, i.e., S∗ is the collection of all cells, and hence the MCB.

Figure 3.10. All four triangles

of the tetraeder are shortest cy-

cles, but none of them is a unique

shortest one.

Biopolymer graphs of nucleic acid, represented by sec-

ondary structures, bisecondary structures, or even more

elaborate models, do not contain triangles. Furthermore,

the only class of quadrangles is formed by so-called base-

pairing stacks, along which edges from T and B alter-

nate. It is easy to verify that each quadrangle is the

unique shortest cycle for each of the two backbone edges

e, e′ ∈ T . Thus S∗ contains all base-pairing stacks which

correspond to the stabilizing structural elements.

Lemma 48. Let G be a planar graph with a unique minimum cycle basis. Then S∗ 6= ∅.

Proof. By [93, Cor.13], any MCB of a planar graph is fundamental and hence there is

an edge e that is contained in exactly one cycle C. Since all shortest cycles containing

e are contained in R by Prop. 39, we conclude from the uniqueness of the MCB that

C is the unique shortest cycle containing e, i.e., C ∈ S∗.
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The lemma immediately generalizes to graphs with a unique MCB that is funda-

mental. Not all graphs has this purpose as the example Fig. 4.1 shows. We conjecture

that uniqueness of the MCB implies S∗ 6= ∅.



Chapter 4
Ring Sets for Chemical Applications

Until Vismaras’ paper [149] no efficient algorithm was known to find all relevant cycles.

Not surprisingly therefore many investigations deal with the definition of extended

minimum cycle bases which are generally not canonical. This section covers the main

ring sets used in applications processing chemical structure graphs, for further details

see [37] and references there.

A plane graph Ĝ consists of a set V of points in R2 and a sets E of line segments in

R2 connecting exactly two points in V such that two lines intersect only in the points

that they connect. A graph G is planar if there is a plane graph Ĝ that is isomorphic

with G. We say that Ĝ is an embedding of G in the plane. The connected components

of R2 \ Ĝ are the regions of Ĝ. There is exactly one infinite region, all other regions

are finite. Planar embeddings are equivalent to embeddings on the surface of a sphere

S. Here all regions are of course finite. Each region of the spherical embedding can

be made to the infinite region of the plane embedding. If Ĝ is 2-connected then the

regions are delimited by a unique cycle in G which we call a face. Note, that the planar

embedding is usually not unique.

Since each edge of Ĝ appears in exactly two faces the ⊕-sum of all faces is 0. The

set of all faces except one, on the other hand, are a basis of the cycle space. In other

words, the faces belonging to the finite regions of every planar embedding of G are a

cycle basis for G.

4.1 All Cycles and Simple-Cycles

The set of all cycles, and its related subset of all chordless cycles, is unique for a given

structure, but generally contains far more cycles than are necessary to describe the ring

system. For complex ring systems, processing to find the number of cycles can grow

38
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exponentially with the number of vertices. The most recent algorithm is by Hanser et

al. [64], which uses graph reduction to make the processing fast and easy to implement.

Owing to the large number of cycles to be found in complex ring systems, in the

worst case processing will be slow. However, for certain applications, such as structure

display optimization and the automatic generation of chemical names, the set of all

cycles or all chordless cycles is required to ensure complete description of a ring system.

4.2 Smallest Set of Smallest Rings (SSSR)

Originally, the Smallest Set of Smallest Rings was defined as a minimum length Kirch-

hoff basis [124, 159]. In 1982 Deo et al. [30] showed that the problem of finding a strictly

fundamental cycle basis with minimum length is NP complete. In the more recent lit-

erature [6, 47, 111] the term SSSR is used mostly as another word for minimum cycle

basis. This discrepancy seems to stem from the wide-spread misconception that every

cycle basis or at least every minimum cycle basis is strictly fundamental.

Every elementary cycle appears in some Kirchhoff-fundamental cycle basis of G. The

term “fundamental cycle” which frequently appears in the ring-perception literature

therefore simply means “elementary cycle”, when used without reference to a particular

spanning tree G.

Not all cycle bases of a graph are fundamental [71]. It is shown in [93, Cor.13],

however, that every minimum cycle basis of a planar graph is fundamental. Cubane

(Fig. 1.3) is a chemical example. Nevertheless, there are planar graphs, such as the

one in Fig. 3.1, that do not have a strictly fundamental minimum cycle basis, i.e., for

which no minimum cycle basis can be derived from a spanning tree.

For non-planar graphs an even stronger negative result holds: There are graphs

with non-fundamental minimum cycle bases. A non-fundamental MCB of the complete

graph K9 is described in [93]. The example in Fig. 4.1, which is due to Champetier

[21], has a unique minimum cycle basis consisting entirely of triangles.

A number of polynomial-time algorithms for computing minimum cycle bases have

been published in recent years. Their worst-case complexity is rather high. Never-

theless, the average performance on problems of practical interest seem to be much

more favorable. In Table 4.1 we summarize the performance bounds of some of these

approaches for general graphs and for planar graphs, where |E| ≤ 3|V | − 6.

For chemical applications the main problem with the SSSR is, that it is not unique

[119, 168]. Clearly this fact introduces a potential ambiguity in the definition of which

SSSR is selected to model the ring of a particular structure. Many applications may just

ignore this problem and use whatever SSSR is first perceived, implicitly depending upon

the ordering of the connectivity data used by the ring perception algorithm. In some
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A
BCA

B

C

D

D

Figure 4.1. Champetier’s graph [21]:

Note, that in the graph G the vertices with

the same label are identified, thus the bold 4-

cycle and the bold line are the same cycle in

the real graph.

G is null-homotopic (i.e., it has a cycle ba-

sis consisting exclusively of triangles) and all

triangles are part of the unique minimum cy-

cle basis. Each edge is contained in two tri-

angles with the exception of the edges of the

4-cycle ABCD which are contained in 3 trian-

gles. Thus there is no ordering of the triangles

satisfying equ.(3.1).

Table 4.1. Worst Case Behavior of some Minimum Cycle Basis Algorithms.

The maximum vertex degree is denoted by d, the cyclomatic number is ν = |E| − |V |+ 1.

Algorithm general planar

Horton [77] O(ν2|E||V |) O(|V |4)
Balducci & Pearlman# [6] O(dν|E|2|V |) ≤ O(|V |5)
Hartvigsen (planar) [70] — O(|V |2 log |V |)
Vismara∗ [149] O(µ|E|3) O(|V |4)

∗ Vismara’s algorithm computes “prototypes” for the set of all relevant cycles

and produces a minimum cycle basis as by-product.
# The estimate of the worst case complexity in [6] is incorrect. We give here the

bound derived in [148]. The planar estimate is obtained by setting |E| = O(|V |)
and ν = O(|V |) and d = O(|V |).

cases, however, it is necessary to make an “intelligent” decision regarding which SSSR

to use in further processing based upon specific (application dependent) properties of

the rings involved. This ambiguity presents the implementor with three options when

there is more than one SSSR:

1. Compute an arbitrary minimum cycle basis.

2. Select the minimum cycle basis with a preferred ordering of the cycles, e.g. by

using an ordering of the vertices that is inspired by the chemical intuition for

algorithm 2.

3. Include more rings to find a superset of the SSSR.
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4.3 K-rings

The set of K-rings was defined by Plotkin [115] and is the set containing all possible

SSSR rings. The set of K-rings avoids arbitrary exclusions of rings when there is more

than one SSSR for a structure. With the current usage of SSSR the K-rings are the

set R of relevant cycles.

4.4 β-ring

Figure 4.2.

Norbornane

The set of β-rings [107] is one of the earliest attempts to extend the

SSSR to include the hexagon of norbornane (Fig. 4.2) but without

including much larger ”envelope” rings.

A β-set is obtained from the length-sorted list of all chordless

faces in the same way as the relevant cycles, except that (i) all

three and four-cycles are in β irrespective of linear dependence,

and (ii) the test for the linear independence of the set M< ∪ {C}
is replaced by checking whether {C, C′, C ′′, C ′′′} is independent for

some {C ′, C ′′, C ′′′} ⊆ β< in algorithm 2. The problem here is that

not all planar graphs have a minimum cycle basis consisting of

faces. Hence β-rings as defined here does not always contain a minimum cycle basis

(Fig. 4.4).

The variation β∗ of the definition of β-rings that uses all chordless cycles instead

of only the faces in a particular embedding in the plane, clearly is a super-set of

the relevant cycles because linear independence of M< ∪ {C} implies the three-cycle

condition. Thus R ⊆ β∗.

4.5 Essential Set of Essential Rings (ESER)

The Essential Set of Essential Rings was defined by Fujita [50, 51] specifically for

use with the imaginary transitions structure construct for representing reaction-site

changes during organic reactions. Depending on atom types cycles are classified by the

atoms that they contain as carbon, heteroatom (N, O, S, P), and abnormal (all other

atoms). The definitions below are a rephrasing of those given in the review [37] and in

Vismara’s dissertation [148], respectively.

For each simple cycle C define 
 [C] as the set of all tied cycles C′ belonging to

the same atom-type class as C with at most the same number of heteroatoms and

abnormal atoms, respectively, as C, that satisfy (i) |C ′| ≤ |C| and (ii) C ′ ∩ C 6= ∅. If
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(ii) is replaced by the stronger condition (iii) 2|C ′ ∩ C| ≥ |C ′|, i.e., at least half of the

edges of C ′ are in C, we write 
 ∗[C].

A simple cycle C is ESER-dependent if there is a subset 
 ′ ⊆ 
 ∗[C] such that

C ⊆ E[ 
 ′]. The reviews [35, 37] give a slightly different definition: A simple cycle C

is DESER-dependent if there is a subset 
 ′ ⊆ 
 [C] such that (i) C ⊆ E[ 
 ′], i.e., 
 ′

covers C, (ii) 2|C| < |E[ 
 ′]|. Finally, ESER(G) (DESER(G)) is the set of all simple

cycles in G that are not ESER-dependent (DESER-dependent).

G’ G’’

Figure 4.3. DESER and ESER are unrelated. The outer hexagonal H (bold) of the graph

G′ is ESER-dependent and DESER-independent. The situation is reversed in G ′′. The

hexagon H (bold) is relevant for G ′ and G′′, hence neither ESER nor DESER is a superset

of an SSSR in general. For details see text.

Consider the outer hexagon, H, of the graph G′ in Figure 4.3. This example is

taken from [148, p.78]. The set 
 [H] consists of the 3 squares. The only subset of


 [H] that covers H is 
 [H] itself. Furthermore 
 ∗[H] = 
 [H]. Each square has

two of its edges in common with H, hence H is ESER-dependent. On the other hand,

|E[ 
 [H]]| = 3× 4 = 12 6> 2|H| = 12, hence H ∈ DESER(G).

Now consider the outer hexagon, H, of the graph G′′ in Figure 4.3. The set 
 [H]

now consists of the two tied squares Q1 and Q2 and the tied pentagon P . We have

|E[ 
 [H]]| = 2 × 4 + 5 = 13 > 2|H| = 12, thus H is DESER-dependent. However,


 ∗[H] = {Q1, Q2} does not cover H, hence H ∈ ESER(G).

Thus the definitions of ESER and DESER give unrelated cycle sets. Downs [35]

mentions that “the ESER is in general always a superset of an SSSR”. Similarly, Fujita

[51, Fig.2] claims that ESER(G) contains the SSSR. This is incorrect as the G′ shows

for ESER and G ′′ shows for DESER. The relevant cycles of G′ are the 6 triangles (all of

which are essential) and all 23 = 8 interchangeable hexagons (of which one is contained

in every minimum cycle basis). The relevant cycles of G′′ are the 5 triangles and the

square contained in P (each of these cycles is essential), and the 22 = 4 hexagons (one

of which is contained in every minimum cycle basis). Thus, neither ESER(G′) nor

DESER(G ′′) contain a minimum cycle basis.
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4.6 Minimal Planar Cycle Bases

Some authors focus entirely on planar graphs in the context of chemical ring perception,

see e.g., [42, 38]. Let us call a cycle basis of G planar if it consists of the faces belonging

to the finite regions of a planar embedding of G. A planar cycle basis has minimal length

if and only if the length of face F∞ belonging to the unbounded region is maximal.

This is true because `(B) = 2|E| − |F∞| for any planar cycle basis.

Planar embeddings can be computed in O(|V |) time, see e.g., [23, 125]. Unfortu-

nately, the embedding of a planar graph on the sphere S is in general not unique, unless

G is tri-connected [162]. Algorithms are available that can produce all embeddings of

G on the sphere [18]. The computation of one or all minimal planar cycle bases can be

achieved e.g. by the integer linear programming approach outlined in [104].

We denote by Faces(G) the set of all possible faces in G, i.e., the set of all cycles

that are faces in some embedding on S.

1

2

3 4

5

6

78

Figure 4.4. Two examples of planar graphs for which the minimal cycle basis is non-planar.

The l.h.s. example is taken from [93]: No planar embedding has the face Q = (1, 2, 6, 5). A

minimal cycle basis contains Q and two of the cycles (2, 3, 4, 5, 6), (1, 2, 6, 7, 8), (1, 2, 3, 4, 5),

and (1, 5, 6, 7, 8) and hence has length ` = 14. The planar bases have length 15.

The bold square Q in the shortest cycle in the r.h.s. graph, which is taken from [38, Fig.12],

and hence contained in every minimal cycle basis. It cannot appear as a face, however.

It is well known that Faces(G) in general does not contain a minimal cycle basis.

In Fig. 4.4 we give two examples.

4.7 Extended Set of Smallest Rings (ESSR)

The Extended Set of Smallest Rings was introduced by Downs et al. [38] as an

approach to design an optimal ring set for retrieval purposes. ESSR by definition is

limited to planar graphs. Paraphrasing the original definition, a cycle C is in ESSR(G)

provided it satisfies at least one of the following conditions:

(i) There is a planar embedding of G such that C is a face.
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(ii) C is a shortest cycle through at least one of its edges.

(iii) There is a planar embedding of G such that |C| ≥ |C ′| for all faces C ′ adjacent

to C, and there is at least one adjacent face C ′′ for which |C| = |C ′′|.

An algorithm for computing the ESSR is described in [36]. Downs at al. [38, p.192]

claims that ESSR(G) = Faces(G) ∪ R(G). The graph G in Figure 4.5, which is used

to give an example of a ”tertiary cut-face” in [38, Fig.16] and [35, Fig.7], however,

provides an example of a graph for which R(G) 6⊆ ESSR(G).

N

P1

P2

P3

P4

P5

P6

Figure 4.5. Not all relevant cycles are in ESSR.

The graph G has |E| = 24, |V | = 18, i.e., µ(G) = 7.

The relevant cycles are the six pentagons Pi, i =

1, . . . , 6, which form S(G) and the octagon O shown

in bold. O is obviously linearly independent from

the pentagons and it is the next-shortest cycle in G.
On the other hand, there is no planar embedding

in which O is face and O does not have an adjacent

octagon. Thus O 6∈ ESSR(G).

This restriction to planar graphs is much to restrictive, since there exits also non-

planar graphs in the organic chemistry (Fig. 4.6 and Fig. 4.7).

O

O O

O

O

O

O

O

Figure 4.6. The Kuratowski-Cyclophan†† [22] (r.h.s.) contains the K3,3 (l.h.s.) as structural

element.

††This Cyclophan was named after Casimir Kuratowski, who firstly proved, that K5 and K3,3 are

fundamental non-planar graphs and that each non-planar graph has to contain at least one of them.

[91]
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Figure 4.7. Centrohexaindan [90] was the first synthesized hydrocarbon with a non-planar

molecule structure.

4.8 Set of Elementary Rings (SER)

The Set of Elementary Rings was defined by Takahashi [135] and based on the notion of

θ-graphs. A θ-graph consists of two vertices x and y and three disjoint paths connecting

x and y, i.e., a double claw. The SER is calculated as followed: Start with SER=MCB

(or SSSR). For C1, C2 construct the subgraph induced by C1 ∪ C2. If this is a θ-graph

then add C1 ⊕ C2 to SER. Iterate until no such cycles can be found any more.

In the table in Fig. 4.8 the different cycles of cubane and the membership in the

ring sets are given.

AE

B

C

D

cycle type length chordless relevant β-rings SSSR

A,B, C, D,E 4 x x x x

A ⊕ B ⊕ C ⊕ D ⊕ E 4 x x x -

A ⊕ B etc. 6 - - - -

A ⊕ B ⊕ C etc. 6 x - - -

A ⊕ B ⊕ C ⊕ D etc 6 - - - -

E ⊕ A ⊕ C 8 - - - -

cycle type length K-rings ESSR ESSR SER

A,B, C,D,E 4 x x x x

A ⊕ B ⊕ C ⊕ D ⊕ E 4 x x x x

A ⊕ B etc. 6 - x - x

A ⊕ B ⊕ C etc. 6 - - x x

A ⊕ B ⊕ C ⊕ D etc 6 - - x x

E ⊕ A ⊕ C 8 - - - -

Figure 4.8. The ring sets of cubane, partly taken from [38].



Chapter 5
U -Bases

A uv-path P in G is a connected subgraph that has exactly two degree-one vertices,

u and v, called its end-nodes, while all other vertices, called the interior vertices of P

have even degree. A uv-path is elementary if all its interior vertices have degree 2. One

can easily check that a uv-path is an edge-disjoint union of an elementary uv-path and

a collection of elementary cycles. Obviously, a uu-path is a cycle through u.

Let U ⊆ V and consider the vector space U∗ generated by the incidence vectors

of the uv-paths with u, v ∈ U . This construction is of interest for example in the

context of chemical reaction networks, where a subset U of all chemical species V is

fed into the system from the outside or it harvested from the system. The uv-paths

hence correspond to productive pathways [45, 56, 138]. Hartvigsen [66] introduced the

U -space U(G) as the union of U∗ and the cycle space C(G). He gives an algorithm

for computing the a minimum length basis of U(G), a minimal U-basis for short, in

polynomial time that extends a previous algorithm by Horton [77] for minimum length

bases of the C(G).

5.1 Dimension of the U-space U(G)

The dimension of the cycle space C(G) is the cyclomatic number

Theorem 49. If G is connected then dim (U(G)) = ν(G) + |U | − 1.

Proof. Let C = C1 ⊕ C2 ⊕ · · · ⊕ Ck. Then for any vertex x ∈ V the degree of x in

C is even if and only if
∑k

i=1 degCi
(x) is even. In particular, the ⊕-sum of two paths

between two vertices x and y is a cycle.

We proceed by induction on the number of vertices in U . Trivially, if |U | = 1 then

U(G) = C(G). Hence assume U = {x, y}. To construct a basis for U, we need a path

46
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P (x, y) in addition to the cycle basis, since all paths from between x and y are obtained

as ⊕-sums of the path P (x, y) and some cycles. Hence dim (U) = ν + 1.

Now assume the proposition holds for U ⊂ V and consider U ′ = U ∪ {v} for some

v ∈ V \U . Since there is no path with endpoint v in the basis of U the degree of v is even

for every ⊕-sum of elements in U. Thus dim (U′) > dim (U). To obtain a basis for U′ we

have to add a path P (v, x) for some x ∈ U to the basis of U. Clearly, P (v, x)⊕P (x, y) is

the edge-disjoint union of a path P (v, y) and a (possibly empty) collection of elementary

cycles. All other paths from v to y ∈ U can now be obtained as the ⊕-sum of the path

P (v, y) and an appropriate set of cycles. Hence dim (U′) = dim (U)+1 and the theorem

follows.

We immediately find the following

Corollary 50. If G is a simple connected graph G and U ⊂ V is non-empty, then

dim (U) = |E| − |V |+ |U |.

Notice that this result also holds for graphs G that are not connected provided that

each component of G contains at least one vertex of U .

5.2 Minimal U-Bases

A minimum U-basis is a U -basis of minimum length. Horton’s [77] algorithm, the first

polynomial algorithm to find a minimum cycle basis, is based on a very simple neces-

sary condition, that cycles must fulfill to belong to minimum cycle basis (see 3.3 and

proposition 40). From this set of cycles a minimum cycle basis can be extracted with

the greedy algorithm. Hartvigsen [66] also found a very simple necessary condition that

U -paths and cycles in a minimum U -basis must satisfy, by generalizing proposition 40

from Horton. This allows to polynomially compile a list of U -paths and cycles from

which a minimum U -basis can be extracted with the greedy algorithm.

For short P is called a shortest uv-path if it is a shortest path from u to v. In the

weighted situation, P is a shortest uv-path if it is a path of minimum weight connecting

u and v. We reserve the symbol Pxy for a shortest path between x and y, while P (x, y)

may be any path between x and y.

If p and q are vertices in the path P , we write P [p, q] for the subpath of P connecting

p and q. Note that Puv is a shortest uv-path if and only if P [x, y] is a shortest xy-path

for all vertices x and y in P .

Definition 51. A uv-Path P is short if for every vertex w in P , P [u, w] is a shortest

uw-path or P [v, w] is a shortest vw-path.
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Definition 52. A uv-path P is edge-short if there is an edge e = {x, y} such that both

P [u, x] is a shortest ux-path and P [y, v] is shortest yv-path.

Lemma 53. A uv-path P is short if and only if it is edge-short.

Proof. This result is given without proof in [66]. We give the simple proof for com-

pleteness.

Suppose P is edge-short. Since each w in P is contained either in P [u, x] or in

P [v, y], there is a wu- or a wv-shortest subpath of P for each w in P , and hence P is

short.

Suppose P is short. Suppose P [u, x] is a shortest ux-path, and y is a vertex in

P [u, v]; then P [u, y] is a shortest uy-path. Thus there is a maximal vertex x such that

P [u, x] is a shortest ux-path and a maximal vertex y such that P [v, y] is a shortest

vy-path. Since P is short, every vertex w in P is contained in at least one of P [u, x]

and P [v, y]. Thus x and y are either (i) separated by the single edge e = {x, y}, (ii)

x = y, or (iii) P [u, x] and P [v, y] contain at least one common edge. Clearly, in each

case P is edge short.

5.3 Relevant U-Paths

Proposition 54. [66] A U-path P can be relevant only if it is short.

We denote the union of all relevant cycles and U -paths UR and follow Vismara’s

approach [149] for the initial set of CR further.

Definition 55. Let u, v ∈ U and let Puv be a short uv-path. Puv is called balanced if

either

(even) there is a vertex w in Puv such that |Pu,w| = |Pw,v| and Pu,w and Pv,w are

shortest uw- and wv-paths, respectively, or

(odd) there is an edge e = {x, y} ∈ P such that |Pu,x| < 1
2
|P | and |Pv,y| < 1

2
|P |, and

Pu,x and Pv,y are shortest ux- and vy-paths respectively.

even balanced odd balanced

v

u w

v

u

y

x

y

x
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Theorem 56. Any relevant U-path P consists of two disjoint shortest paths (u . . . x)

and (v . . . y) of the same length, linked by the edge (x, y) if P is odd balanced or by the

path (x, w, y) if P is even balanced.

Proof. We know that P must be short if it is relevant (see proposition 54). Suppose P

is short but not balanced.

In the even case, either Pu,w or Pv,w is therefore not a shortest path. W.l.o.g. we

assume that Pu,w is not uw-shortest and write therefore P [u, w]. Let Q be a uw-shortest

path. Then |Q| < |P [u, w]| = 1
2
|P |.

Set C = Q ⊕ P [u, w]. Clearly C is a cycle or an edge disjoint union of cycles and

|C| ≤ |Q|+ |P [u, w]| < |P |. Now consider the path P ′ = Q⊕Pw,v; it is a short U -path

satisfying |P ′| = |Q|+ |Pw,v| < |P [u, w]|+ |Pw,v| = |P |. We have

P = P [u, w]⊕ Pw,v = P [u, w]⊕Q⊕Q⊕ Pw,v = C ⊕ P ′ (5.1)

Hence P can be written as ⊕-sum of strictly shorter elements of the U -space, hence it

cannot be relevant.

In the odd case either Pu,x or Pv,y is not shortest. W.l.o.g. we assume that Pu,x is

not ux-shortest, write then P [u, x] and consider a shortest ux-path Q. In this case we

have |Q| < |P [u, x]| < 1
2
|P |.

Set C = Q ⊕ P [u, x]. Clearly C is a cycle or an edge disjoint union of cycles and

|C| ≤ |Q|+ |P [u, x]| < |P |. Now consider the path P ′ = Q⊕ e(x, y)⊕Py,v; it is a short

U -path satisfying |P ′| = |Q|+ |e(x, y)|+ |Py,v| < |P [u, x]|+ |e(x, y)|+ |Py,v| = |P |. We

have

P = P [u, x]⊕ e(x, y)⊕ Py,v = P [u, x]⊕Q⊕Q⊕ e(x, y)⊕ Py,v = C ⊕ P ′ (5.2)

Hence again P can be written as ⊕-sum of strictly shorter elements of the U -space and

therefore cannot be relevant.

In other words:

Corollary 57. If P is a relevant U-path, then it is a balanced short U-path.

5.4 U-Path Prototypes

We are now in the position to construct prototypes of relevant U -path P uv
xwy in the

same manner as Vismara’s prototypes of relevant cycles. For any relevant U -path Puv
xwy

including the vertices x, y and eventually w, as defined in theorem 56, we define the

U-path family associated with P uv
xwy as follows:
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Definition 58. The U-path family Fuv
xwy of the balanced U-path prototype P uv

xwy with

endpoints u, v and middle piece (x, y) or (x, w, y), respectively, is:

Fuv
xwy =





P ′ ∈ UR

∣∣∣∣∣∣∣∣∣

|P ′| = |P uv
xwy| and P ′ consists of:

• the vertices u and v

and the edge (x, y) or the path (x, w, y)

• two shortest paths (u . . . x) and (v . . . y)





v

u

y

x

v

u

y

x
w

P
P’even U−path odd U−path

Hence, two U -path P uv
xwy and P ′ belonging to Fuv

xwy only differ on the shortest paths

from u to x and from v to y that they include. It is clear that replacing any one of the

two shortest paths (u . . . x) or (v . . . y) in definition 58 by an alternative one leads to

another balanced short U -path P ′ differing from the original ones by Cab = Pab ⊕ P ′
ab,

which is a cycle or a disjoint union of cycles. By construction each of the paths Pab

is strictly shorter than P{. . . }/2, whence |Cab| < |P{. . . }|. Thus lemma 27 implies

P{. . . } is a relevant U -path either for all choices or for no choice of the shortest paths

(u . . . x) or (v . . . y) in definition 58.

Theorem 59. The set of all the relevant cycle and U-path families defines a partition

of UR.

Proof. The proof for the relevant cycle families is given in [149].

By definition 58, the U -path family associated with a relevant U -path prototype

P uv
xwy is determined by the two U -nodes u and v, the two shortest paths (u . . . x) and

(v . . . y) and the edge (x, y) or the pair of edges (x, w) and (w, y), respectively. Replac-

ing one of the two shortest paths leads to the other relevant U -paths contained in this

family. Since by theorem 56 each relevant U -path is uniquely defined of his endpoints

u and v and the pair (x, y) or triplet (x, w, y) respectively, it is contained in exactly

one family.

Vismara [149] showed that the number of relevant cycle families is always polyno-

mial, this is also true for the U -path families.

The algorithm to compute the U -path prototypes is based on the converse of theo-

rem 56. This converse is not necessarily true but it gives a strong condition on U -path

relevance.
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Algorithm 6 Calculation of the initial set UI
1: for all (u, v) ∈ U do

2: ∀x ∈ V find ux- and vx-path

/∗ calculate even prototypes: ∗/
3: for all w ∈ V do

4: if |Puw| = |Pvw| then

5: for all x ∈ V adjacent to w do

6: for all y ∈ V adjacent to w do

7: if |Pux|+ |Pxw| = |Puw| and |Pvy|+ |Pyw| = |Pvw| then

8: P{u, v; w, x, y} = Pux ⊕ {x, w} ⊕ {w, y} ⊕ Pyv

/∗ calculate odd prototypes: ∗/
9: for all e = {x, y} ∈ E do

10: if |Pux|, |Pvy| < (|Pux|+ |Pxy|+ |Pyv|) then

11: P{u, v, x, y} = Pux ⊕ {x, y} ⊕ Pyv

12: if |Puy|, |Pvx| < (|Puy|+ |Pyx|+ |Pxv|) then

13: P{u, v, y, x} = Puy ⊕ {y, x} ⊕ Pxv

The set UR are calculated in the following way:

• compute the initial set U ′
I (see Algorithm 6),

• compute the set C′I (see Algorithm 2)

• extract the prototypes from U ′
I ∪ C′I using a greedy procedure (see Algorithm 3)

• generate the set UR with a backtracking procedure (see section 3.5 and Algo-

rithm 4).

To generate the U -paths from the U -path prototypes P uv
xwy, first the path (u . . . x)

in P uv
xwy is replaced by each one of the resulting paths from ListPaths(u, x, ∅) (Al-

gorithm 4). Then, in each of the resulting U -path, the path (v . . . y) is replaced by

each one of the paths returned by the call of ListPath(v, y, ∅) (Algorithm 4). So each

U -path in Fuv
xwy corresponds to a pair of paths (u . . . x), (v . . . y).

The prototypes for the relevant U-elements can be computed by augmenting Vis-

mara’s algorithm 1 by Algorithm 6. The following greedy step on the collection of

all balanced cycles and U -paths remains unchanged. Vismara [149] showed that the

relevant cycle families can be computed in O(|E|2|V |) steps. There are at most |U |2|E|
families of relevant U -path, hence the algorithm remains polynomial. The relevant

cycles and U -paths can be generated from the prototypes as described in [149].



Chapter 6
Interchangeability of Relevant Cycles

6.1 A Partition of R
In order to simplify the notation we shall write

⊕
X

=
⊕

C∈X

C (6.1)

for X ⊆ P(E). For a given length l we define R< = {C ∈ R
∣∣|C| < l} and R= = {C ∈

R
∣∣|C| = l}.

Lemma 60. For each relevant cycle C ∈ R, exactly one of the following statements

holds:

(i) C is essential, or

(ii) There is a cycle C ′ ∈ R, C ′ 6= C, and a set of relevant cycles X ⊆ R \ {C, C ′}
such that X ∪ {C ′} is linearly independent, |C| = |C ′|, |C ′′| ≤ |C| for all C ′′ ∈ X , and

C = C ′ ⊕⊕X .

Proof. Let Y = {C ′′ ∈ R
∣∣ |C ′′| ≤ |C|}. If rank (Y) > rank (Y \ {C}) , then C is

contained in every minimum cycle basis as an immediate consequence of the matroid

property (Theorem 35). In other words, C is essential.

Now assume rank (Y) = rank (Y \ {C}) . Hence C =
⊕

Z for some Z ⊆ Y \ {C}.
Without loss of generality we may assume that Z is an independent set of cycles. By

the relevance of C, Z cannot consist only of cycles that are all strictly shorter than C,

thus there is C ′ ∈ Z such that |C ′| = |C|, and we can write

C = C ′ ⊕
⊕

Z\{C′}
. (6.2)

52
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It remains to show that C is not essential in this case: Adding C ⊕C′ to both sides of

equ.(6.2) yields C ′ = C ⊕⊕Z\{C′}. Thus we may extract two different minimum cycle

bases from R one of which contains C but not C ′, while the other contains C ′ but not

C, simply by ranking C before or after C ′ when sorting R. Thus neither C nor C′ is

essential.

Definition 61. Two relevant cycles C ′, C ′′ ∈ R are interchangeable, C ′ ↔ C ′′, if (i)

|C ′| = |C ′′| and (ii) there exists a minimal linearly dependent set of relevant cycles that

contains C ′ and C ′′ and with each of its elements not longer than C ′.

Theorem 62. Interchangeability is an equivalence relation on R.

Proof. Trivially, we have C ↔ C; symmetry follows immediately from the proof of

lemma 60.

Let us fix a length l. Then two cycles Cj1 and Cj2 of length l are interchangeable if

and only if the equation

x1C1 ⊕ · · · ⊕ xMCM ⊕ · · · ⊕ xj1Cj1 ⊕ · · · ⊕ xj2Cj2 ⊕ · · · ⊕ xNCN = 0 (6.3)

has a solution with xj1 = xj2 = 1 and with the following properties:

(1) {C1, . . . CM} is the intersection of R< with an arbitrary but fixed minimum

cycle basis, and {CM+1, . . . , CN} = R=. The fact that instead of R< we can restrict

ourselves to a subset of a minimum cycle basis follows from the matroid property

(Theorem 35).

(2) The solution is minimal in the following sense: if we take any strict subset of the

coefficients with xk = 1 then there is no solution with exactly these coefficients being

nonzero. This is equivalent to the fact that we have a minimally linearly dependent

set of cycles.

Let A = (C1, . . . , CM , CM+1, . . . , CN) be the (|E| × N)-matrix with the cycles Ck

represented as column vectors. A can be transformed into the reduced row echelon

form Ã by Gauß-Jordan elimination. Then exactly the first R = rank (A) rows of Ã

are nonzero. Notice that the upper-left M×M -matrix of Ã is the identity matrix since

{C1, . . . , CM} is a subset of a cycle basis by construction, see Tab. 6.1.

We introduce a coloring of the columns M + 1, . . . , N of Ã:

(1) Two columns j′ and j ′′ (> M) have the same color if there exists a row i such that

Ãij′ = Ãij′′ = 1.

(2) Use as many colors as possible.

Definition 63. Two relevant cycles C ′, C ′′ ∈ R are color-related, if (i) |C ′| = |C ′′|
and (ii) they have the same color (as described above).
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It is clear from the definition that color-related is an equivalence relation. The

definition of color-relatedness, however, depends explicitly on a prescribed ordering

of the cycles CM+1, . . . , CN . We proceed by showing that color-relatedness is in fact

independent of this ordering and that it is equivalent to interchangeability.

C1 CM Cj1 Cj2

1 0 0 0 0 0 0 0 0 1 1 0 0 0

0 1 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 1 0 0 0 0 0 0 1 1 0 1 0

0 0 0 1 0 0 0 0 0 1 0 1

0 0 0 0 1 0 0 0 0 0 1 1 1

0 0 0 0 0 1 0 0 0 1 0 0

1 0 0 0 1 0 1 0

0 1 0 1 1 0 0 0

0 0 0 1 1 0 0 1 0 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1

1 0 0 1 1 0

0 0 0 1 0 0 1 1

0 0 1 1 1 1

Table 6.1. Example of a reduced echelon form Ã for the special case where the cycles of

each color-equivalence class are consecutive in the chosen ordering. For the general case the

situation is analogous with columns and rows permutated.

Lemma 64. If two cycles Cj1 and Cj2 are interchangeable w.r.t. any ordering of the

cycles then Cj1 and Cj2 are color-related.

Proof. Fix an arbitrary ordering of the cycles and assume that two interchangeable

cycles Cj1 and Cj2 are not color-related. Let J1 and J2 such that {Ci : i ∈ J1} and

{Ci : i ∈ J2} are the respective color-equivalence classes of Cj1 and Cj2 . Then there is

no row r in Ã with two coefficients Ãrk1
= Ãrk2

= 1 such that k1 ∈ J1 and k2 ∈ J2,

see Tab. 6.1.

Now suppose Cj1 and Cj2 are interchangeable. Then there exists a minimal solution

of equ. (6.3) with xj1 = xj2 = 1. Set xk = 0 for all k ∈ J2 in this solution (this includes

xj2 = 0). If the resulting vector (x′
i) is a solution of equ. (6.3), the original solution

was not minimal, contradicting the assumption that Cj1 and Cj2 were interchangeable.

Hence we assume that the resulting vector (x′
i) may not be a solution any more.

This happens when there is a row r with an odd number of coefficients Ãrn for which

x′
n Ãrn = 1. In this case, however, we must have r ≤M and x′

r Ãrr = 1. Hence we can

set x′
r = 0, since the upper-left M ×M -matrix is the identity matrix. Since this holds

for every such row r we end up with a new solution (x′′
i ) of equ. (6.3) with x′′

j1
= 1
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and x′′
j2

= 0. Again the original solution (xi) was not minimal, a contradiction to our

assumption.

Lemma 65. If two cycles Cj1 and Cj2 are color-related w.r.t. a given ordering of the

cycles, then Cj1 and Cj2 are interchangeable.

Proof. Assume Cj1 and Cj2 are color-related and let J denote the set of indices of the

cycles Ci in the color-equivalence class of Cj1. Then there exists a sequence σ = {j1 =

k0, k1, . . . , km = j2} ⊆ J , such that for each i = 0, . . . , m − 1 there exists a row r

with Ãr,ki
= Ãr,ki+1

= 1 (otherwise the cycles Cki
would not be color-related). Assume

that our sequence is minimal (in the sense that no other sequence connecting j1 and

j2 consists of fewer elements).

Set all xki
= 1 for ki ∈ σ and xp = 0 for all other p > M . Then for each row

r > M there are only two (or zero) columns with xk Ãrk = 1 (i.e., 6= 0). If there were

more such columns, say at k1, k3, k9, then σ would not be minimal, since we could then

remove k2, . . . , k8 from σ. By the same argument there are at most two columns with

xk Ãrk = 1 for r ≤ M . For the rows r ≤ M with only one such column we set xr = 1

and xr = 0 otherwise. Thus (xi) is a solution of equ. (6.3). Moreover (xi) has the

property that for each row r there are either 2 or 0 columns with xk Ãrk = 1 and for

each column k there are either 2 or 0 rows with xk Ãrk = 1.

Now we show that this solution is minimal. If we change one of these xk from 1

to 0 then we obtain a row r with an odd number of coefficients with xk Ãrk = 1, i.e.,

we do not have a solution any more. Thus, if we want to construct a new solution

(x′
i) of equ. (6.3) by changing xj from 1 to 0 we have to change the other xi in row r

with xi Ãri = 1 from 1 to 0 as well. If we still find a row r′ with an odd number of

coefficients with xn Ãr′n = 1 we have to repeat this procedure. As a consequence, if

Ãr,ki
= Ãr,ki+1

= 1 and xki
= xki+1

= 1 then any modified solution (x′
i) must satisfy

x′
ki

= x′
ki+1

and therefore all coordinates xk for k ∈ σ must be equal, i.e., either

(x′
i) = (xi) or (x′

i) is the trivial solution. Hence the original solution was minimal.

It follows that color-relatedness is independent of the ordering the cycles and the

particular reduced echelon form Ã that we have obtained by Gauß-Jordan elimina-

tion. Furthermore, color-relatedness and interchangeability are equivalent. Hence the

theorem follows.

Remark. The proofs of lemmata 64 and 65 explicitly uses the properties of a vector

space over GF(2).

Corollary 66. A relevant cycle C is essential if and only if it is not↔-interchangeable

with any other cycle.
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Remark. We cannot assume that for the set X ⊂ R in lemma 60, X ∪{C′} is a subset

of a minimum cycle basis. Figure 6.1 gives a counter-example. In what follows let CF ,

C ′
F , CG and C ′

G denote the relevant cycles of length 6 through F and G, respectively,

and let CO be the cycle {O1, . . . , O6}. Z always denotes an independent subset of

R \ {CF , C ′
F , CG, C ′

F , CO}. Then CF = CG ⊕ (C ′
G ⊕ C ′

F ⊕
⊕

Z), where the right hand

side is linearly independent, i.e., CF ↔ CG. However, the r.h.s. contains both CG and

C ′
G and hence it is not a subset of a minimum cycle basis. Moreover, CF cannot be

expressed as an ⊕-sum of an independent subset of relevant cycles that contains CG

but not C ′
G.

The graph in figure 6.1 also demonstrates, that we cannot define a “stronger”

interchangeability relation,↔s, by replacing the condition that X∪{C ′} is independent

by “X ∪ {C ′} is a subset of a minimum cycle basis” in definition 61. The relation ↔s

is not symmetric: We find CF = CO ⊕ (C ′
F ⊕

⊕
Z), where the r.h.s. is a subset of a

minimum cycle basis, i.e., CF ↔s CO. However, we always have CO = CF ⊕(C ′
F ⊕
⊕

Z)

where the r.h.s is not a subset of a minimum cycle basis.

1O

O2

O4

O5 O3

O6

F

G

Figure 6.1. The set of relevant cycles of this

graph consists of all triangles, all 4-cycles, two

6-cycles through F , two 6-cycles through G

and the seven 6-cycles through at least one of

the edges Oi. The three inner hexagons (thick

lines) are not relevant, because they are the

sum of triangles and 4-cycles. Notice that all

3- and 4-cycles are essential. Moreover, every

minimum cycle basis contains exactly one 6-

cycle through F and G, respectively, and six of

the seven 6-cycles through at least one of the

edges Oi. Moreover, no 6-cycle is essential.

Lemma 67. Let C be a relevant cycle such that C =
⊕

X for a linearly independent

set X of cycles with length less or equal |C|. Set X= = {C ′ ∈ X
∣∣|C ′| = |C|}. Then

C ′ ↔ C for each cycle C ′ ∈ X=.

Proof. By corollary 66 C ↔ C. Assume there exists a C ′ ∈ X= \ {C}. Then C ′ =

C ⊕⊕X=\{C}, i.e., C ′ ↔ C as proposed.

Lemma 68. LetM be a minimum cycle basis and let W be an ↔-equivalence class of

R. Then M∩W 6= ∅.

Proof. Suppose there is a minimum cycle basisM and an↔-equivalence class W such

that W ∩M = ∅. Choose C ∈ W. By the matroid property there is an independent
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set of cycles Q = Q= ∪ Q< ⊆M such that C =
⊕

Q. By lemma 67 we have Q= ⊆ W
which contradicts M∩W = ∅ unless Q= = ∅. Thus C =

⊕
Q<

and hence C /∈ M by

proposition 38.

Theorem 69. Let M and M′ be two minimum cycle bases and let W be an ↔-

equivalence class of R. Then |M ∩W| = |M′ ∩W|.

Proof. Consider an ↔-equivalence class W consisting of cycles of length l. Define

M= = {C ∈ M
∣∣|C| = l}, M< = {C ∈ M

∣∣|C| < l}, and analogously for the second

basis M′. Assume |M′ ∩W| > |M ∩W| and set W ∩M = {C1, . . . , Cj}, W ∩M′ =

{D1, . . . , Dj, . . . , Dk}. By lemma 68, j > 0. As a consequence of the matroid property

we may assumeM′
< =M< and we may write each Di as a linear combination of cycles

from M< ∪M=. Moreover by lemma 67 this linear combination cannot contain any

cycles fromM= \W. Since there are more than j cycles Di there is a non-trivial linear

combination

F =
⊕

i∈I

Di =

[
⊕

i∈J

Ci

]
⊕
⊕

X⊆M′

<

with I ⊆ {1, . . . , k} and J ⊆ {1, . . . , j} such that
⊕

i∈J Ci = 0. Thus

[
⊕

i∈I

Di

]
⊕
⊕

X⊆M′

<

= 0

and hence {Di| ∈ I} ∪ X ⊆ M′
= ∪ M′

< is linearly dependent, contradicting the as-

sumption that M′ is a basis.

As an immediate consequence of theorem 69 we recover the well known fact [24,

Thm. 3] (see Chapter 3.3), that any two minimum cycle bases contain the same number

of cycles with given length.

Definition 70. LetM be a minimum cycle basis and let W be an ↔-equivalence class

of R. We call knar (W) = |M ∩W| the relative rank of W in R.

Corollary 71. Let W be an ↔-equivalence class such that knar (W) = k. Then each

C ∈ W can be written as C =
⊕

Y ⊕
⊕

Z where Z consists only of cycles shorter than

|C| and Y ⊆ W \ {C} has cardinality |Y| ≤ knar (W) .

6.2 Some Examples

Complete graphs. The relevant cycles of a Kn, n ≥ 3, are its triangles. It follows

immediately that all triangles are ↔-equivalent.
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Outerplanar graphs. Outerplanar graphs have a unique minimum cycle basis [93],

i.e., each relevant cycle is essential. Thus there are ν(G) interchangeability classes

consisting of a single cycle.

Triangulations. For each triangulation of the sphere all relevant cycles of the cor-

responding graph are triangles. Moreover, The ⊕-sum of all triangles equals 0, while

any proper subset is independent. Thus there is a single ↔-equivalence class with

knar (W) = |R| − 1.

If we change the situation a little bit, such that there is exactly one face cycle C of

length l > 3, i.e., the graphs corresponds to a triangulation of the plane but not the

sphere, then C is the ⊕-sum of all triangles and hence not relevant. Thus all triangles

are essential, i.e., we have |R| ↔-equivalence classes, all of knar (W) = 1. This example

demonstrates that partitioning into ↔-equivalence classes — similar to number and

length of minimum cycle bases — can be very unstable against small changes in the

geometry of graphs.

Chordal graphs. The next example shows that there are rather “irregular-looking”

examples for which all relevant cycles are contained in the same ↔-equivalence class.

A graph is chordal (also called triangulated or rigid circuit) if all cycles of length |C| ≥ 4

contain a chord, i.e., an edge connecting two of its non-adjacent vertices.

Let G be connected and let A be a minimal separating vertex set. Then there are

two connected graphs Gi = (Vi, Ei), i = 1, 2 such that V = V1 ∪ V2, E = E1 ∪ E2, and

A = V1 ∩ V2. If Σ = (A, E1 ∩ E2) is a complete graph, G1 ∪ G2 is called a simplicial

decomposition of G at A. This procedure can be repeated until no further separating

complete graphs can be found. It can be shown that the resulting indecomposable

subgraphs are independent of the order of the decomposition [140, Prop.4.1]. The

resulting components are the simplicial summands of G. A graph is chordal if and only

if all its simplicial summands are complete graphs [32].

Lemma 72. If G is a 3-connected chordal graph then R consists of a single ↔-

equivalence class.

Proof. Since C ∈ R only if it is chord-less, it follows that all relevant cycles of a chordal

graph are triangles. If G is 3-connected, the minimum separating clique Σ contains a

triangle. Let G1 and G2 be the two adjacent simplicial summands. Then all triangles

in G1 are contained in a single ↔-equivalence class; the same is true for all triangles in

G2. Since the intersection of G1 and G2 contains at least one triangle by assumption,

all triangles of their union are contained in the same ↔-equivalence class, and the

lemma follows by induction.

Lemma 73. Let F ⊆ R be a relevant cycle family, and let M be a minimum cycle

basis. Then for all C, C ′ ∈ F there is an independent set Y ⊆ M such that C ⊕ C ′ =
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⊕
Y and |C ′′| < |C| = |C ′| for all C ′′ ∈ Y.

Proof. Let P, P ′ and Q, Q′ be the paths connecting (r, p) and (r, q) in C and C ′, re-

spectively. Then each of the combinations of paths {P, Q}, {P ′, Q}, {P, Q′}, {P ′, Q′}
belongs to a (possibly generalized) cycle in F , which we denote by C = CPQ, CP ′Q,

CPQ′, and C ′ = CP ′Q′ as outlined in [149]. Explicitly we have CPQ = P⊕Q⊕{p, q} if |C|
is odd and CPQ = P⊕Q⊕{p, x}⊕{x, q} if |C| is odd, etc. Note that the cycles CP ′Q and

CPQ′ are not necessarily connected. Since P and P ′ have the same end points, their sum

P⊕P ′ is an edge-disjoint union of cycles, which we denote by A. Thus C = CP ′Q⊕
⊕

A

and analogously we obtain C ′ = CP ′Q′ = CP ′Q ⊕
⊕

A′, and thus C ′ = C ⊕⊕A4A′ .

Since each cycle C′′ ∈ A4A′ satisfies |C ′′| ≤ 2d(r, p) = 2d(r, q) < |C|, it follows from

the matroid property that C ′′ can be written as an ⊕-sum of basis elements taken from

Y.

Corollary 74. For each relevant cycle family F there is an ↔-equivalence class W
such that F ⊆ W.

Two cycles C, C′ are homotopic, if there is a set 
 of triangles such that C ⊕C ′ =⊕
T∈T T [39]. Obviously homotopic cycles belong to the same interchangeability class.

6.3 The Number of Minimal Cycle Bases

As an application of the ↔-partition of R we derive bounds on the number of distinct

minimum cycle bases of G.

Theorem 75. Let R =
⋃m

i=1Wi be the partition of the set of relevant cycles into

↔-equivalence classes. Then the number M of distinct minimum cycle bases satisfies

m∏

i=1

|Wi| ≤M ≤
m∏

i=1

( |Wi|
knar (Wi)

)
. (6.4)

Proof. The lower bound follows from the fact that, by lemma 68, each minimum cycle

basis contains at least one element from each ↔-equivalence class, and the fact that,

by the matroid property, each element of Wi can be chosen. The upper bound follows

directly from theorem 69 by assuming that the knar (Wi) basis elements from Wi can

be chosen freely.

There even exists a universal bound that depends only on the number of relevant

cycles and the cyclomatic number.
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Corollary 76. The number M of distinct minimum cycle bases satisfies

M ≤
( |R|

ν(G)

)
. (6.5)

Proof. This upper bound follows immediately if we neglect any restrictions for the

choice of ν(G) relevant cycles for a minimum cycle basis.

Corollary 77. Upper and lower bound coincide in equ.(6.4) if all↔-equivalence classes

satisfy knar (W) = 1 or knar (W) = |W| − 1.

It is tempting to speculate that the upper bound might be attained by all graphs.

Equivalently, then we could choose knar (W) cycles fromW without restrictions when

extracting a minimum cycle basis from R. Unfortunately, this is not the case as the

following examples show.

The triangles of K5. Figure 6.2 lists the 10 triangles of K5. Each triangle is contained

in two of the five induced K4-subgraphs a to e. Thus there are 5 dependent four-sets

of cycles:

A⊕B ⊕G⊕ J = 0 B ⊕ C ⊕ F ⊕H = 0 A⊕ E ⊕ F ⊕ I = 0

C ⊕D ⊕G⊕ I = 0 D ⊕ E ⊕H ⊕ J = 0

It is clear that all 10 cycles A through J are↔-equivalent forming a single equivalence

class with knar (triangles) = ν(K5) = 6. In general, it is clear that all triangles of a

complete graph Kn, n ≥ 3, belong to a single ↔-equivalence class.

4

6

910

8 31

2
7

5

1 2 3 4 5 6 7 8 9 10 a b c d e

A * * * * *

B * * * * *

C * * * * *

D * * * * *

E * * * * *

F * * * * *

G * * * * *

H * * * * *

I * * * * *

J * * * * *

Figure 6.2. The 10 triangles of K5 cover the five sub-K4s a through e twice.

More importantly, however, 5 of the
(
10
4

)
= 210 combinations of 4 cycles and hence

at least 5
(
6
2

)
= 75 of the

(
10
6

)
= 210 sets of six triangles are dependent. As a conse-

quence, neither the upper nor the lower bound in equ.(6.4) is an equality for K5.

Small relative ranks. The final example shows that Corollary 77 cannot be improved

even if we restrict ourselves to graphs in which all ↔-classes have small relative rank,

or when only a single ↔-class has knar (W ) ≥ 1. The family of graphs in figure 6.3

shows that linearly dependent subsets V ⊂ W with |V| ≤ knar (W) can be found even

for knar (W) = 2.
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H2H1 Hn...

H’’
H’ Figure 6.3. The six quadrangles are all essential.

All hexagons are in one equivalence class W with

knar (W) = n + 1 and |W| = n2/2 + 3n/2 + 2. The

outer cycle H ′ (of length 6) can be expressed as ⊕-sum

of all quadrangles and the inner hexagon H ′′ that does

not contain any path Hi. Thus no minimum cycle basis

can contain both H ′ and H ′′.

6.4 Computing Interchangeability Classes

To compute the interchangeability classes the definition 63 and the lemmatas 64 and

65 are used. Table 7 shows an algorithm to compile the classes.

Theorem 78. The ↔-equivalence classes of the set R can be computed by algorithm 7

in O(|M| |R|2 |E|) operations.

Proof. Sorting R andM⊆ R by length requires O(|R| ln |R|) operations. The Gauß-

Jordan elimination requires at most O(|R|2 |E|) operations. Coloring all the B̃’s needs

at most O(|R| |E|) comparisons. Note that this is only a rather crude upper bound for

the worst case. The actual requirements are by far smaller for most graphs.

Algorithm 7 Compute ↔-partition P.

Input: R,M /∗ relevant cycles and a minimum cycle basis ∗/
Output: P /∗ interchangeability partition ∗/
1: Sort minimum cycle basis by length: {B1, . . . , Bν}.
2: Sort relevant cycles by length: {C1, . . . , Cn}.
3: P← ∅.
4: for each cycle length l do

5: M< ← {B ∈ M
∣∣|B| < l}.

6: R= ← {C ∈ R
∣∣|C| = l}.

7: A← (M<,R=). /∗ matrix of cycles ∗/
8: Ã← reduced row echelon form of A. /∗ Gauß-Jordan elimination ∗/

/∗ Color columns in submatrix B̃ = (Ãij), j > |M<| ∗/
9: Assign each column j > |M<| a different color.

10: for each row i = 1, . . . , rank (A) do

11: if Ãij′ = Ãij′′ = 1 then

12: Identify the colors of j ′ and j ′′.

13: for each color c do

14: P← P ∪ {all cycles with color c}.



62 Interchangeability of Relevant Cycles

We have assumed in algorithm 7 that a minimum cycle basisM is supplied as input

since Vismara’s algorithm for computing R also produces a minimum cycle basis. Of

course it could be extracted from the Gauß-Jordan eliminations at virtually no extra

cost. Algorithm 1 may require exponential time in terms of |V | since the number of

relevant cycles may grow exponentially (see Fig. 3.7) [149]. Typically, however, there

are only O(|V |3) relevant cycles [55].

It is not possible to determine ↔-equivalence with the set R̂ of “cycle prototypes”

that is computed in the first step of Vismara’s algorithm. A counterexample is shown

in Figure 6.4.

5 6

1

2349

87

10

Figure 6.4. The set of relevant cycles consists of C0 =

(1, 3, 10, 4), C1 = (4, 1, 6, 2, 8, 10), C ′
1 = (3, 1, 6, 2, 8, 10),

C2 = (4, 1, 5, 9, 7, 10), and C ′
2 = (3, 1, 5, 9, 7, 10). We

observe C0 = C1⊕C ′
1 = C2⊕C ′

2. Thus {C1, C
′
1, C2, C

′
2}

is an↔-equivalence class. Vismara’s algorithm identifies

C0,C1 and C2 as cycle prototypes. Thus we cannot write

C1 = C2

⊕
Z such that Z contains only cycle prototypes.

6.5 Stronger Interchangeability

Definition 79. Two relevant cycles C, C ′ are strongly exchangeable, C
s↔ C ′, if there

is a set of cycles � , such that |C| > |C ′′| for all C ′′ ∈ � and C ′ = C ⊕⊕C′′∈ � C ′′.

Lemma 80. Two cycles C, C ′ ∈ R are strongly exchangeable, C
s↔ C ′, iff

(i) |C| = |C ′|
(ii) There is a set � ⊆ R such that

(a) |C ′′| < |C| for all C ′′ ∈ � ,

(b) C ⊕ C ′ =
⊕

C′′∈ � C ′′,

(c) {C} ∪ � is linearly independent.

Proof. From C ′ ∈ R and C ′ = C ⊕⊕ � , we know that |C ′| ≤ |C|. Adding C ⊕ C ′ on

both sides, we get C = C ′ ⊕⊕ � , hence |C| ≤ |C ′|, i.e. |C| = |C ′|.
Replacing each cycle in � by a sum of cycles from an MCB and then removing a

maximal linearly dependent set, leads to � ⊆ R.

Suppose � ∪{C} is dependent. Then C = C′′
1⊕C ′′

2⊕· · ·⊕C ′′
n with C ′′

j ∈ � , i.e., C is not

relevant, contradicting the definition of
s↔. The converse implication is obvious.
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Lemma 81.
s↔ is an equivalence relation.

Proof. C
s↔ C and C

s↔ C ′ if C ′ s↔ C are trivial.

Suppose C
s↔ C ′ and C ′ s↔ C ′′. Then there are two sets � and � ′, such that C =

C ′ ⊕⊕ � and C ′′ = C ′′′ ⊕⊕ � . Hence C = C ′′′ ⊕⊕ � 4 � ′ is also trivial.

Corollary 82. C
s↔ C ′ implies C ↔ C ′.

Lemma 83. An MCB contains at most one of two strong exchangeable cycles.

Proof. This follows from the definition, that C = C ′ ⊕⊕ � .

Restricting � to triangles gives an even finer partition, namely homotopic cycles,

C
=↔ C ′ [39].

The graph in Fig. 6.5 shows two homotopic cycles. Each of the two squares is the

sum of the other square and all triangles.

Ci

Co

Figure 6.5. Consider the two squares Ci and

Co, then Ci
s↔ Co. But since Ci = Co⊕4, the

two squares also homotopic cycles: Ci
=↔ Co.

Vismara’s cycle families [149] can be viewed as a refinement of strong exchange-

ability. It is easy to see that all cycles contained in one of Vismara’s cycle family are

also in the same
s↔-class. The converse is not true, see Fig. 6.6.
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1
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3

4

5

6

7 8

9

10

G’ G’’

Figure 6.6. The only difference between G ′ and G′′ is the labeling of the nodes. For

both G′ and G′′, the 4 relevant 8-edged cycles belongs to one ↔-class and to one
s↔-class. In G ′, there are two prototypes for the 8-edges cycles, each representing

2 relevant cycles: F 8
2,9,3 = {{8, 10, 4, 2, 3, 9, 7, 5}, {8, 10, 4, 2, 3, 9, 7, 6}} and F 8

1,9,3 =

{{8, 10, 4, 1, 3, 9, 7, 5}, {8, 10, 4, 1, 3, 9, 7, 6}}. But in G ′′ all 4 relevant 8-edged cycles are

contained in one cycle family: F 10
1,5,2.
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6.6 Interchangeability of U-Path

In chapter 5 the cycle space was extended to the U-space. The relevant U-paths can

be calculated in a similarly manner as the relevant cycles. The theory about the

interchangeability does not depend on the fact that one considers cycles; indeed it

works for all finite vector spaces over GF (2) and hence in particular for U-spaces.

Hence we have

Proposition 84. Let M be a minimum length U-basis and let W be a ↔-equivalence

class of relevant U-elements.Then |W ∩M| is independent of the choice of the basis

M.

It is tempting to speculate that the ↔-partition might distinguish between cycles

and paths. As the example below shows, however, this is not the case:

21

4 5

7

3 6

Here U = {1, 2} and the relevant U-elements are the paths P1 = (1, 3, 7, 6, 3),

P2 = (1, 3, 4, 5, 6, 2), and the cycle C = (3, 4, 5, 6, 7, 3). with |P1| = 4 and |P2| = |C| =
5. Furthermore C = P2 ⊕ P1, i.e., the path P2 and the cycle C belong to the same

↔-equivalence class.

If so, can a minimum length U -path basis of U∗ be computed efficiently? This might

be of interest in the context of metabolic and other chemical reaction networks.



Chapter 7
Circuit Bases of Digraphs

7.1 Circuit Space

With each simple chain c in a digraph G(V, A) we associate a vector C indexed by the

arcs in A such that

C(e) =





+1 ∃k : ek = e and ek = (xk−1, xk)

−1 ∃k : ek = e and ek = (xk, xk−1)

0 otherwise

(7.1)

In other words, C(e) = +1 if e ∈ c is traversed by c in forward direction, C(e) = −1 if

e ∈ c is traversed in backwards direction and C(e) = 0 if e /∈ c. The vectors associated

with simple paths and circuits therefore have no negative entries, see Fig. 7.1 for an

example.

The concatenation of two simple chains c ∗ c′ = c′′ is again a simple chain, then we

have C +C ′ = C ′′, since then the arc sets of c and c′ must be disjoint. It is meaningful

therefore to define the vector associated with an arbitrary chain c as the sum of the

vectors associated with its individual steps. In other words C(e) is the number of times

in which c transverses e ∈ A in forward direction minus the number of times in which

c transverses e in backwards direction.

The incidence matrix H of the digraph G has the entries Hex = +1 if x is the

terminal vertex of the arc e, Hex = −1 if x is the initial vertex of e, and 0 otherwise.

The circuit space C of G(V, A) is the subspace of R|A| that is generated by the cycles

of G(V, A). It is well known, see e.g. [14, II.3] that

U ∈ C ⇐⇒ HU = 0 (7.2)

A basis of the circuit space can be constructed just as in the case of undirected

graphs (see section 3.1). Let T be a spanning forest of G. For each e /∈ T there is a

65
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Figure 7.1. The cycle C delimiting the shaded region in the directed graph G on the l.h.s.

and the orientation indicated by the arrow has the vector representation

(+1, 0, 0, 0,−1, +1, 0, 0,−1, +1, +1,−1, 0, 0, 0, 0, 0, 0, 0) .

The r.h.s. shows the graph G◦, obtained from G by one edge of each 2-cycle and ignoring

the direction of the arcs. We have for example R = {2, 8, 15, 16} or R ′ = {3, 8, 14, 17} as

“reverse arcs” that are omitted in passing from G to G ◦ (from [54]).

unique cycle ce in T ∪ {e}. The cycles ce are the fundamental cycles associated with

the spanning forest T . The set of associated sets of vectors CT = {Ce|e ∈ A \ T} is a

basis of the circuit space C, see e.g. [10, Thm.3.4]. The dimension of the circuit space

is therefore

ν(G) = |A| − |V |+ k(G◦) (7.3)

where k(G◦) denotes the number of connected components of G◦, i.e., the number

of weak components of G. Note that this is the same construction which is used in

undirected graphs. Hence we can expect close relationships between the cycle space of

the digraph G and the underlying undirected graph G◦.

7.2 Elementary Circuits

From the construction of the basis it follows that C has a basis consisting of vectors

with coordinates −1, 0, or +1. Thus any vector U ∈ C can be written in the form

U = ξU∗ with ξ ∈ R+ and U∗ ∈ Z|A|; hence it suffices to consider only those elements

of the cycle space with integer coordinates.

From a practical point of view those elements of C that follow the directions of the

arcs in G are of particular interest. The special role of the circuits is emphasized by

the following result:

Lemma 85. Let z be a closed walk in G. Then there is a collection {Ci} of elementary

circuits such that Z =
∑

i aiCi with ai ∈ N.

Proof. If each vertex in z is visited exactly once, then z is an elementary circuit and

there is nothing to show. Otherwise z contains a vertex x that is visited more than
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once. Let x be the initial and terminal vertex of z. If x is visited in an intermediate

step then z is a concatenation of two closed walks z1 and z2 starting from x, and hence

Z = Z1 + Z2. We consider the two parts independently of each other. If such a part

again is not simple we continue in the same way as described above. After a finite

number of such decompositions x occurs only as initial/terminal vertex of each partial

closed walk zi. Now let z be the first vertex in zi that occurs more than once. We

have zi = z1

i
∗ z2

i
∗ z3

i
where z1

i
is the walk from x to z, z3

i
is a the part of zi after the

last occurrence of z, and z2

i
is the closed walk between the first and last occurrence of

x in z. By construction z1

i
∗ z3

i
is a circuit and z2

i
is a closed walk. This leads to a

decomposition of z into a concatenation of (not necessarily distinct) circuits. Thus the

vector Z associated with z is a sum of circuits with positive integer coefficients.

It is natural to consider the non-negative cone of the circuit space K = {x ∈ C|xk ≥
0}. A vector u ∈ K is extremal if

u =
∑

e

λev
e with ve ∈ K and λe > 0 implies ve = ξeu and ξe > 0 , (7.4)

i.e., if u cannot be represented as a positive linear combination of other vectors from

the cone K. Denote the support of a vector u by supp(u) = {e ∈ A|u(e) 6= 0}.
Lemma 86. If u is extremal in K and v ∈ K such that v 6= 0 and supp(v) ⊆ supp(u);

then v = µu for some µ > 0.

Proof. Let µ = min {u(e)/v(e) | e ∈ supp(v)} > 0. Then µv(e) ≤ u(e) with equality

for at least one e ∈ supp(v). Consider w = u− µv. We have w ∈ K since w(e) ≥ 0 for

all e ∈ A. Thus we can write u = w + µv as a positive linear combination of vectors in

K, contradicting the extremality of u. Thus w = 0 and hence u = µv.

The following proposition is well known, see e.g. [118].

Proposition 87. The elementary circuits of G are exactly the extremal vectors of the

cone K.

Proof. It follows immediately from equ.(7.2) that the subgraph Gv of G with arc set

supp(v) for any v ∈ K has neither a sink (vertex with out-degree 0) nor a source (vertex

with in-degree 0). Therefore Gv contains a circuit. Consequently, no proper subset of

an elementary circuit can be the support of a vector in K, i.e., every elementary circuit

is an extremal vector of K.

To see the converse, suppose v ∈ K is extremal. Let C be an elementary circuit

contained in supp(v), µ = mine∈C v(e), and v′ = v − µC. We have v′(e) ≥ 0 and

hence v ∈ K. Since v is extremal we must have v′ = 0 and thus supp(v) must be an

elementary circuit.
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7.3 Circuit Bases

Definition 88. A circuit basis is a basis of the circuit space C of G(V, A) consisting

exclusively of elementary circuits. A cycle basis is a basis of the circuit space C of

G(V, A) consisting exclusively of elementary cycles.

Lemma 85 raises the question under which conditions the circuits generate the

circuit space. This question was essentially answered by Berge [10]:

Proposition 89. [10] A strongly connected digraph G(V, A) has a circuit basis.

The converse of Proposition 89 is easily obtained:

Theorem 90. A digraph G(V, A) has a circuit basis if and only if each block is either

strongly connected or a single arc.

Proof. The cycle space of G(V, A) is the direct sum of the blocks of G. Thus G(V, A) has

a circuit basis if each block has a circuit basis or an empty cycle space. The only blocks

with empty cycle space are isolated vertices and pairs of vertices that are connected

by a single arc.

In other words, G(V, A) has a circuit basis if and only if its strongly connected

components are linked together in a tree-like fashion by individual arcs or sequences

of individual arcs. Because of this simple structure we shall restrict ourselves to 2-

connected digraphs from here on.

Double edges, i.e., circuits of length 2, play a special role, since they are a major

difference between graphs and digraphs. For instance, the cyclomatic number of the

underlying undirected graph is

ν(G◦) = |A◦| − |V |+ c(G◦) = |A| − d∗(G)− |V |+ c(G◦) = ν(G)− d∗(G) (7.5)

where d∗(G) denotes the number of double edges in G.

Lemma 91. Let B◦ be a cycle basis of the undirected graph G◦, and let D(G) be the

set of double edges of G. Then B = B◦ ∪ D(G) is a cycle basis of G with length

`(B) = `(B◦) + 2|D| (7.6)

Proof. The cycles in B◦ are of course independent cycles of G. At each double edge,

we may choose one of the arcs to be part of the B◦-cycles that contain the double

edge. This shows that the double edges in D are indeed independent of the set of

B◦-cycles. Equ.(7.5) hence implies that B is a cycle basis of G. Equ.(7.6) now follows

immediately.
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The following theorem shows that double edges are in a sense superfluous:

Proposition 92. [147] If G(V, A) is strongly 2-edge-connected then one can obtain a

strongly connected graph G∗(V, A∗) by removing one of the two arcs of each double edge.

The main result of this section is a variant of Berge’s theorem, Proposition 89.

Theorem 93. A strongly connected digraph G(V, A) has a circuit basis consisting of

the d∗(G) double edges and ν(G◦) elementary circuits.

Proof. We follow the construction of a cycle basis consisting of circuits described in [10,

Thm.3.9] and [65] with slight modifications. Clearly the theorem is correct for |V | ≤ 2.

Suppose the assertion is correct for all k < |V |. Let c∗ = (x0, e1, x1, . . . , xh−1, eh, x0)

be a shortest circuit in G, h ≥ 2. Such a circuit exists as a consequence of strong

connectedness. Clearly, it is elementary. In particular, if G contains double edges, we

choose one of them.

Next we construct a multi-digraph G′ by replacing the set W = {x0, . . . , xh−1} of

vertices of c∗ by a single vertex x′ and by replacing each arc (y, z) and (z, y), y 6= W ,

z ∈ W by an arc from y to x′.

In particular, any double edge in G (except c∗ itself if it is double edge) becomes to

a double edge in G′. This contraction step may lead to multiple parallel arcs incident

with a′. The resulting multi-digraph has |A| −h edges and |V | − |W |+ 1 = |V | −h + 1

vertices, i.e., ν(G′) = ν(G ′)− 1.

Instead of iterating this construction immediately as in the original proofs of Prop. 89

[10, 65] we first take care of the multiple arcs in G′. To this end we select one of the

multiple arcs, say g; if one of them is part of a double edge of G it gets selected first.

Let Cg be a shortest circuit through g in G′; Note that if g was part of a double edge

in G, then Cg is just this double edge. We store Cg in C∗ and delete the arc g from G′,
obtaining a multi-digraph G ′′. We repeat this procedure until, after removing q arcs,

there are no further parallel arcs and we are left with a di-graph G∗. All double edges

that have become part of a multiple arcs in G′ are now contained in C∗, all other double

edge are passed on as double edges to G∗.
Thus G∗ has |V |−h+1 vertices and |A|−h− q edges, i.e., its cyclomatic number is

ν(G∗) = ν(G)− 1− q. Clearly the circuits in C∗, which are elementary by construction,

are independent since each uniquely contains one of the q removed parallel arcs. Conse-

quently, the union C∗∗ of C∗ with any cycle basis of G∗ consists of ν(G)−1 independent

cycles and hence is a basis of the circuit space of the multi-digraph G′. The induction

hypothesis assumes that there is a circuit basis of G∗, hence C∗∗ can be chosen such

that it is circuit basis of G′.
Now recall that each edge incident to x′ in G′ corresponds to an edge incident with

a particular vertex xk ∈ W . Thus each circuit c ∈ C∗∗ is either an elementary circuit



70 Circuit Bases of Digraphs

in G if it does not contain x′ or it can be lifted to a unique circuit ĉ in G by replacing

x′ with the vertices at which c “enters” and “leaves” c∗ and the unique path within c∗

that connects these two vertices. The set

C = {ĉ|c ∈ C∗∗} ∪ {c∗} (7.7)

contains ν(G′) + 1 = ν(G) elementary circuit, among which are all d∗(G) double edges.

Finally, consider the equation

∑

c∈C∗∗

acCĉ + a∗Cc∗ = 0 . (7.8)

First we note that Cc∗(e) = 0 for all e ∈ A \ c∗. Thus, restricting equ.(7.8) to the arcs

in A \ c∗ and using that the arcs c ∈ C∗∗ are linearly independent, we obtain ac = 0

for all c ∈ C∗∗. Therefore a∗Cc∗ = 0, and C is indeed a set of ν(G) independent circuits

of G.

For a vector Z ∈ C with integer coordinates we set

|Z| =
∑

e∈A

|Z(e)| (7.9)

It follows from lemma 85 that for any closed path z we have |Z| = ∑i ai|Ci| with ai ∈ N.

Furthermore, we have |Z| ≥ |supp(Z)| with equality if and only if Z(e) ∈ {+1, 0,−1},
i.e., iff Z is an edge-disjoint union of cycles. In particular, the elementary circuits are

the minimal integer-valued elements of K. Bases of the circuit space with minimum

total length

`(B) =
∑

C∈B

|C| (7.10)

consisting of integer-valued vectors, C(e) ∈ Z, are of particular interest.

7.4 Minimum Circuit Bases and Relevant Circuits

Definition 94. A minimum cycle (circuit) basis is a cycle (circuit) basis of C with

minimal length.

Theorem 95. Let G be strongly connected and let C be a shortest circuit through an

arc e ∈ A. Then there is a minimum circuit basis that contains C. If C is the unique

shortest circuit through e, then every minimal circuit basis contains C.
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Proof. Suppose B is a minimal circuit basis, and let e ∈ A. Set Be = {C ∈ B|e ∈ C}
and B∗ = B \ Be. Suppose C is a shortest circuit containing e, C /∈ Be. Since

B∗ ∪ {C} is obviously an independent set, there exists a circuit C′ ∈ Be such that

B′ = B ∪ {C} \ {C ′} is a circuit basis with length `(B′) = `(B) + |C| − |C ′| ≤ `(B),

since we have assumed |C| ≤ |C′|. If C is the unique shortest cycle through e we have

|C| < |C ′|, and hence `(B′) < `(B), contradicting the minimality of B. Thus C ∈ B for

every minimal circuit basis.

The argument used the proof of theorem 95 is the same as in the case of minimum

cycle bases of undirected graphs [129].

Corollary 96. Every minimal circuit basis B of a strongly connected digraph contains

the set D of double edges.

Proof. If e ∈ A is part of a double edge, then the double edge D = {e, e′} is the unique

shortest circuit containing e. By theorem 95 D is an element of every minimal circuit

basis.

It is sometimes useful to consider undirected graphs as symmetric digraphs, i.e.,

as digraphs in which (x, y) ∈ A implies (y, x) in A. The following result shows that

minimum cycle bases of undirected graphs and minimum circuit bases of symmetric

digraphs are essentially the same.

Theorem 97. Let G be a symmetric digraph. Then every minimum circuit basis con-

sists of D and a set B of circuits such that B◦ = {C◦|C ∈ B} is a minimum cycle basis

of the undirected graph G◦.

Proof. It follows from equ.(7.5) that a minimum circuit basis of G cannot be shorter

than 2|D|+ L, where L is the length of a minimum cycle basis of G◦. Conversely, if B
is a minimum circuit basis, then B \D is a set of ν(G◦) independent proper cycles and

corresponds to a cycle basis of G◦ with the same length.

Now assume that G is symmetric, i.e., 2|D| = |A|. We will show that every minimum

cycle basis B◦ of G◦ can be lifted and extended to a circuit basis of G with length L+|A|,
which, as a consequence of the previous paragraph must then be a minimum circuit

basis. To this end we identify each edge e of G◦ with one of the two arcs of G forming

with the corresponding the double edge. This amounts to lift B◦ to the digraph G.

Clearly, B∗ = B◦ ∪D is a basis of the circuit space with the minimum possible length.

However, the cycles C ∈ B◦ will in general not be circuits.

For each “negative” edge e, C(e) = −1, of a basis cycle C, there is a double edge

D = {e, e′} ∈ D such that either C ′ = C + D or C ′ = C −D is a cycle that coincides

with C except for e, which is replaced by the positive edge e′, C ′(e′) = +1. Clearly, C
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and C ′ have the same length and belong to the same cycle C◦ of the undirected graph

G◦. Since D is contained in B∗, B∗∗ = B∗ ∪ {C ′} \ {C} is a basis of the circuit space

with the same length. Repeating this argument for all negative edges in C replaces

the basis cycle C with a basis circuit C> of the same length. Note that C and C> by

construction belong to the the same cycle C◦ of G◦. We finally obtain a circuit basis

of G with length L + |A|.

The set of circuits of G(V, A) forms of course a matroid. A basis of the cycle space

with minimum weight can therefore be obtained by means of the greedy algorithm [89]

from the set of all circuits.

Definition 98. Let (Q, J) be a matroid and let | . | : Q → R+ be a non-negative weight

function on Q. Then A ∈ Q is | . |-relevant if there is a minimum weight basis B of

(Q, J) containing A.

An analogous definition for maximum weight bases of course is also meaningful.

Definition 98 is the obvious generalization of the relevant cycles discussed in section 3.4.

The set R| . | of | . |-relevant circuits can be extracted from Q by means of the modified

greedy algorithm 8.

Algorithm 8 is of course essentially the same as algorithm 3 for the relevant cycles

in a graph. We repeat it here for arbitrary weighted matroids.

Algorithm 8 R-Greedy [149]

Input: (Q, J), | . |
Output: R /∗ Set of | . |-relevant elements. ∗/
1: Sort Q by weight: {A1, A2, . . . , Am} /∗ A1 with minimal weight. ∗/
2: B< ← ∅; B= ← ∅; R= ← ∅; R ← ∅;
3: for k = 1 to m do

4: if |Ak| > |Ak−1| then

5: R ← R∪R=; B< ← B< ∪ B=;

6: R= = B= = {Ak};
7: else

8: if {Ak} ∪ B< ∈ J then

9: R= ←R= ∪ {A+k};
10: if {Ak} ∪ B< ∪ B= ∈ J then

11: B= ← B= ∪ {A+k};
12: R ← R∪R=;

Lemma 99. Algorithm 8, R-Greedy, works.



7.5 Short and Isometric Circuits 73

Proof. Let us write Z<w = {A ∈ Z
∣∣ |A| < w} and analogously Z=w, and let B be a

minimum weight basis. Then A is a relevant element if and only if B<|A| ∪ {A} ∈ J,

since we can order Q such that A is the first element with weight |A| in the prescribed

order.

Algorithms for listing all circuits of a digraphs are available, see e.g. [83, 97]. The

number of circuits in a digraph G(V, A) may be very large, however. The straightfor-

ward application of the greedy algorithm or of algorithm 8 to the set of all circuits

will therefore not be feasible in most cases. In the case of undirected graphs one can

drastically reduce the initial set of cycles [77, 6, 149]. In the following section we con-

sider similar constructions for circuits in digraphs. The main difference is that in the

undirected graph one can work over GF (2) explicitly use the vector addition of cycles.

Here we have the additional problem that the sum of circuits is in general not a circuit.

7.5 Short and Isometric Circuits

Short, arc-short and isometric circuits can be defined in analogy to their undirected

counterparts in section 3.2.

Definition 100. A circuit C is short if for any two of its vertices x and y it contains

a shortest path from x to y or a shortest path from y to x.

A circuit C is strictly arc-short if for each x in C there is an edge ex = (v, w) such

that C = P [w, x] + P [x, v] + (v, w) where P [w, x] and P [x, v] are shortest paths.

A circuit C is arc-short if C contains a vertex x and an arc e = (v, w) such that

C = P [w, x] + P [x, v] + (v, w) where P [w, x] and P [x, v] are shortest paths.

A circuit C is isometric if for any two of its vertices x and y it contains a shortest path

from x to y and a shortest path from y to x.

Lemma 101. Every isometric circuit is short. A circuit C is short if and only if it is

strictly arc-short. Every short circuit is arc-short.

Proof. It follows directly from the definition that an isometric circuit is short.

For two distinct vertices x 6= y in C, we denote the path from x to y in C by

C[x, y]. Furthermore we write S[x, y] for a path from x to y in G that is shorter C[x, y]

provided such a di-path exists. We call S[x, y] a shortcut from x to y. In this case

S[x, y] ∪ C[y, x] is again a circuit.

Suppose C is short. First we note that in this case there cannot be a vertex in x such

that there are two vertices y, y′ in C and shortcuts S[x, y] and S[y′, x]. (If y lies in

C[x, y′] then there is a shortcut S[y, x], i.e., C is not short. If y′ lies in C[x, y] then

there is shortcut S[y, x], i.e., C is not short.) Hence we have to consider three cases
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for each vertex x in C:

(i) There is no shortcut to or from x in C. Then we may choose any edge e = (u, v) in

C and see that C[x, u] and C[v, x] are shortest paths.

(ii) There is a shortcut from x some y in C. Then there is also shortcut S[x, z] from

x to every vertex w in C[y, x]. We can choose y such that it is maximal in the sense

that there is no shortcut S[x, w] for all w 6= y in C[x, y]. Necessarily there is an edge

e = (z, y) ∈ C[x, y]. Hence C[x, z] is a shortest path. Since C is short C[y, x] must be

a shortest path and the proposition follows.

(iii) There is a shortcut from some y in C to x. This implies that there is a shortcut

S[w, x] for all w in C[x, y]. Again we choose y maximal in the sense that there is no

shortcut form w to x for all w 6= y in C[y, x]. Then there is an edge e = (y, z) ∈ C[y, x],

Fig. 7.2. If C[x, y] is not a shortest path then there is a shortcut S[x, y] and C is not

short.

x

y

e

x

y

z z

Figure 7.2. Cases ((ii) and (iii) of the proof of lemma 101. For details see text.

Conversely suppose C is not short. We show that C is not strictly arc-short. If C is not

short then there are two vertices x 6= y such that there are two shortcuts S[x, y] and

S[y, x]. Now suppose there is an arc (u, v) ∈ C such that there is neither a shortcut

S[x, u] and S[v, x]. Since there is a shortcut S[x, y] there are also shortcuts S[x, y′] for

all y′ in C[y, x]. Thus u cannot lie in C[y, x]. Similarly, there is a shortcut S[y′, x] for

all y′ in C[x, y] and hence v cannot be in C[x, y]. Hence u must be in C[x, y] \ {x, y}
and v must be in C[y, x] \ {x, y}. Thus there cannot be an edge from x to y.

Finally, a strictly arc-short circuit is trivially arc-short.

In undirected graphs, where a path from x to y is a path from y to x, a short

cycle is trivially isometric. In directed graphs, a circuit is isometric if for all pairs of

vertices x, y ∈ c the distance along the circuit equals the directed distance in G, i.e.,

dc(x, y) = d(x, y). In general, short circuits therefore are not isometric, as the example

in Fig. 7.3 shows.

We observe that a double edge is obviously isometric. However, not all strongly

connected digraphs graphs have cycle bases consisting of isometric circuits. The graph
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x

y

z

Figure 7.3. This graph has ν = 4− 3 +1 = 2. The only

circuits are the double edge D = (x, z) and the triangle

T = (x, y, z). T is not isometric since dT (z, x) = 2 <

d(z, x) = 1. However, T is short, since for any two

points, a shortest path in one of the two directions runs

along T .

in Fig. 7.3 serves a counter-example. Arc-short circuits are useful because they can be

constructed rather easily. In analogy to the undirected case only short circuits can be

part of a minimum circuit basis.

Theorem 102. If C is relevant then C is short.

Proof. Suppose C is contained in a minimum circuit basis and it is not short. Then

there are two vertices x and y such that C contains neither a shortest path P ′ from x

to y nor a shortest path P ′′ from y to x. Furthermore, denote by C ′ and C ′′ the paths

from y to x and from x to y along C, respectively. Note that C ′ + P ′, C ′′ + P ′′, and

P ′ + P ′′ are each closed paths in G. By lemma 85, each of them can be written as a

(positive) linear combination of circuits that are all not longer than |C ′|+ |P ′| < |C|,
|C ′′|+ |P ′′| < |C|, or |P ′|+ |P ′′| < |C|. From

C = C ′ + C ′′ = (C ′ + P ′) + (C ′′ + P ′′)− (P ′ + P ′′)

we find that C itself can be written as a linear combination of circuits, all of which are

strictly shorter than C itself. Since we have assumed that C is in the minimum circuit

bases, at least one of these shorter circuits is not. In this case, however, we can replace

C by one of these circuits in the basis, obtaining a strictly shorter basis, contradicting

minimality of the circuit basis.

Theorem 102 is a simple generalization of the analogous result for undirected graphs

[77, 66]. The notion of short circuits, however, appears weaker than its undirected

counterpart. Again the converse of theorem 102 is not true. As in the undirected case

not all isometric circuits are relevant (Fig. 7.5), but also not all relevant circuits are

isometric (Fig. 7.3). Thus it is not possible to generalize Horton’s algorithm to find a

minimum circuit bases.

We may, however, exploit a trick used e.g. in [69], namely perturbing the edge

weights by a small amount in such a way that each subset of A has a unique weight.

For instance, we assign numbers #e = 1, . . . , |A| to the arcs and set w(e) = 1 + ε3−#e,

0 < ε < 1. Now all shortest paths are unique and hence the |A|×|V | candidates for arc-

short cycles must contain a minimum weight basis of the circuit space of G. This basis

is independent of ε. Furthermore, the weight of two arc-sets with the same number of
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edges differs by less than ε/2. Hence we obtain indeed a minimum length basis of the

un-weighted problem. Of course, the weighting scheme is numerically problematic, it

can, however, be replaced by a suitable lexicographic ordering of the arcs. Thus we

have:

Theorem 103. A minimum circuit basis of C can be computed in polynomial time.

But it still remains to find the appropriate prototypes of the set of relevant circuits.

Figure 7.4. A counterexample to the

converse of theorem 102. The outer

quadrangle is a short circuit, but not a

relevant one; by the side the quadrangle

is also not isometric.

Figure 7.5. The outer quadrangle is an

isometric circuit, but it is not relevant,

because it is a linear combination of all

the triangles.

The diagram in Fig. 7.10 shows the relationship between the different types of

circuits, in directed graphs described in the preceding sections. Below the one-sided

arrows, standing for one-sided implications, the number of counterexample for the

inversion is given.

Figure 7.6. The inner triangle is a short-

est circuit, but it is for none of its edge

a unique shortest one.

Figure 7.7. The quadrangle (dashed) is a

relevant circuit, but for none of its edges

the shortest one in the graph.
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1
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34

5

Figure 7.8. Consider the arc-short pen-

tagon C. For the vertex 2 it is impossible

to find an edge e, such that the shortest

paths form both endpoints of e are con-

tained in C.

Figure 7.9. The MCB of this graph con-

tains all double edges and one of the two

hexagons.
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Figure 7.10. The relations between the different type of cycles. Two-sided arrows implies

an iff relation. Below the one-sided arrow the number of the figure of the counterexample

for the inversion is given. The dotted line stands for a “non-implication”



Chapter 8
Computations

8.1 Programs

The computational part of this work involved the development of tools for calculating

the interchangeability classes of relevant cycles (introduced in chapter 6). All programs

were written in ANSI C++, including STL, for attaining maximum portability and

speed (CycDeco) and usability (CalcGra).

Since the GML (Graph Modelling Language) [117] is a portable file format for

graphs with simple syntax, extensibility and flexibility, we decided to use the GML-file

format for the input and output of our programs. A GML file consists of a hierarchical

key-value lists. Graphs can be annotated with arbitrary data structures. GML is the

standard file format in the Graphlet graph editor system [117] .

CycDeco calculates the relevant, shortest, unique shortest and essential cycles, as

well as the interchangeability classes. If the vertex set U ⊆ V is specified additionally to

the graph, the U -paths are calculated additionally. First the biconnected components of

the graph are calculated. Then the cycles are computed separately for each biconnected

component. The following algorithm are used in CycDeco:

• relevant U -path prototypes: algorithm 6, see section 5.4

• MCB and relevant prototypes: algorithm 2 and 3, see section 3.4.

• relevant cycles: algorithm 4, see section 3.4

• unique shortest and shortest cycles: see section 3.2 and 3.6

• essential cycles: algorithm 5, if the interchangeability classes are not calculated,

see section 3.6; else extracted from the ↔-classes with knar () = 1, using algo-

rithm 7 and corollary 66.

78



8.2 RNA Structures 79

• interchangeability classes: algorithm 7, see section 6.4

CalcGra is the graphical user interface for CycDeco, implemented with the Qt-

library from Trolltech [143]. CalcGra is a simple graph editor with additional functions

as the cycle decompositions. Additionally, it is possible to color each cycle separately

or dependent sets of cycles.

Table 8.1 gives the CPU-time in seconds needed for cycle decompositions with

CycDeco for random graphs with biochemical relevant degrees (3,4,5,6). For the de-

compositions biconnected random graphs — started with an Hamiltonian cycle — were

used. One can see, that the calculation of all possible cycles and the partition does not

need much more time for these graphs, as the calculation of the relevant cycles does.

Even graphs with a lot vertices are decomposed very fast. The graphs of biomolecules

are sub-cubic, i.e., the maximal vertex degree is 3, hence very long RNAs can be de-

composed in within 15 minutes. For the small graphs (|V | = 10) most of the time is

used for I/O of the results.

We also measured the CPU-time for more dense graphs (lower part of table 8.1).

Again biconnected random graphs were used. The degree of the graph is given in

percentage of the maximal possible degree. These graphs contain almost only relevant

cycles of the length 3. Therefore, a lot of linear dependency test has to be done. Since,

the decomposition of rather small graphs with only 100 nodes takes a long time, we

did not measured bigger graphs.

8.2 RNA Structures

8.2.1 Background

The motivation for the present contribution arises from the search for a suitable energy

model for RNA secondary structure computations in the presence of so-called pseudo-

knots.

Definition 104. [156] A secondary structure is a vertex-labeled graph G on n vertices

with an adjacency matrix A fulfilling

1. ai,i+1 = 1 for 1 ≤ i < n (the backbone)

2. For each i there is at most a single k 6= i − 1, i + 1 such that ai,k = 1 (the base

pairs)

3. If ai,j = ak,l = 1 and i < k < j then i < l < j (no overlapping base pairs).
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Table 8.1. CycDeco: CPU-time in sec for the calculation of the relevant cycles and the

relevant, shortest, unique shortest and essential cycles as well as the interchangeability

classes of a biconnected random graphs with low degrees (first and second part) and high

degrees (third part) (x = deg
|V |−1

). (average values over 100 (|V | < 100) and 10 (|V | ≥ 100)

graphs) (using a Pentium III (Coppermine), 733 MHz, 1024 RAM)

average number of nodes

degree 10 30 50 100 300 500 1000

relevant cycles

3 0.0028 0.0236 0.080 0.506 13.33 66.3 677.8

4 0.0032 0.0356 0.130 0.958 29.48 241.06 2744

5 0.0046 0.0596 0.243 2.254 61.52 469.04 7372

6 0.0055 0.0934 0.410 4.716 207.6 1326.0 29032

complete decomposition

3 0.0028 0.0252 0.081 0.521 13.50 66.3 679.3

4 0.0040 0.0387 0.137 0.993 29.69 244.5 2749

5 0.0056 0.0649 0.254 2.299 63.18 474.7 7485

6 0.0056 0.0986 0.424 4.804 212.4 1354.0 30153

number of nodes

x 10 30 50 100 10 30 50 100

relevant cycles complete decomposition

3 0.0027 0.53 32.24 288.5 0.0024 0.55 32.3 303.8

4 0.0034 1.55 25.47 3365 0.0039 1.59 25.7 3393

5 0.0049 0.80 28.01 5389 0.0053 0.82 29.1 5762

6 0.0053 1.93 71.06 26757 0.0060 1.99 73.9 27013

7 0.0071 4.16 154.6 49977 0.0078 4.28 159.5 50426

8 0.0103 8.08 304.5 82581 0.0103 8.43 314.7 84085

If we violate the third condition in definition 104, we produce two overlapping base

pairs, the result is called a pseudo-knot.

The “classical” definition of the RNA secondary structures excludes pseudo-knots

[156] mostly for technical reasons: The folding problem for RNA can be solved ef-

ficiently by dynamic programming [156, 171] in their absence. It is not known how

to assign energies to the loops created by pseudo-knots and dynamic programming

methods that compute minimum energy structures break down.

These (pseudo-knot free) secondary structures are outerplanar graphs G. Hence

they have unique minimum cycle bases B(G) [93]. Therefore any secondary structure

can be uniquely decomposed into loops as shown in Fig. 8.1. The energy of an RNA

secondary structure is assumed to be the sum of the energy contributions of all loops.

Energy parameters for the contribution of individual loops have been determined ex-

perimentally (see e.g. [49, 80, 155]) and depend on the loop type, size and partly its
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sequence.
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Figure 8.1. RNA secondary structure elements. Any secondary structure can be uniquely

decomposed into these types of loops

These loops are exactly the relevant cycles of the graph. Assigning each relevant

cycle C an energy contribution E(C) leads to the standard energy model. The RNA

secondary structure prediction problem can be rephrased as minimizing the energy

function E(G) =
∑

C∈B(G) E(C) over the class of secondary structure graphs ([128, 156]

for details).

On the other hand, an increasing number of experimental findings, as well as re-

sults from comparative sequence analysis, suggest that pseudo-knots are important

structural elements in many RNA molecules [161]. Notably, functional RNAs such

as RNaseP RNA [94] (Fig. 8.9) and ribosomal RNA [88] contain pseudo-knots. The

diversity of molecular biological functions performed by pseudo-knots can be subdi-

vided into three groups. Pseudo-knots at the 5’end of mRNAs appear to adopt a role

in the control of mRNA translation. For instance the expression of replicase is con-

trolled in several viruses either by ribosomal frame shifting [16, 20, 31, 139, 146] or by

in-frame read-through of stop codons [165]. Both mechanisms involve pseudo-knots.

Core pseudo-knots are necessary to form the reaction center of ribozymes. Most of the

enzymatic RNAs with core pseudo-knots, such as RNaseP, are involved in cleavage or

self-cleavage reactions [17, 48, 62, 101]. Pseudo-knots in the tRNA-like motifs at the

3’end of the genomic RNA mediate replication control in several groups of plant viral

RNA [96].
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These biopolymer graphs can be decomposed into outerplanar graphs. This decom-

position can be used to derive an upper bound on `(G), the length of an MCB.

Definition 105. Let G = (V, E) be a graph with spanning path T . Consider a partition

{B1, B2, . . . , Bβ} of B = E \T such that Gk = (V, Bk∪T ) is outerplanar. The subgraph

Gk of G is called an outerplanar constituent and G = G1 ∨ G2 ∨ · · · ∨ Gβ.

It is clear that such a partition always exists. To see this assume that Bi contains

only a single edge then GI contains a single cycle and hence is outerplanar. A p-book B

is a set of p distinct half-planes (the pages of the book) that share a common boundary

line `, called the spine of the book. An embedding of a graph G into a book B consists

of an ordering of the vertices along the spine of the book together with an assignment

of each edge to a page of the book, in which edges assigned to the same page do not

cross. If G has a spanning path T and the vertices are arranged along the spine in their

order of occurrence along T , we shall say for simplicity that T is the spine of the book

embedding.

Note that G =
∨β

k=1 Gk is embeddable in a β-book B with spine T . The bisecondary

structure graphs introduced in [128] are exactly those that have at most two outerplanar

constituents. Equivalently, they are characterized as subgraph of planar Hamiltonian

graphs [11].

Theorem 106. Let G =
∨β

k=1 Gk. Then:

`(G) ≤
β∑

k=1

`(Gk) (8.1)

Proof. First we observe that Gk is connected for 1 ≤ k ≤ β, hence ν(Gk) = |T |+ |Bk|−
|V |+1 = |Bk|, while ν(G) = |B|+|T |−|V |+1 = |B| = ∑

k |Bk|, i.e., ν(G) =
∑n

k=1 ν(Gk).

The minimum cycle bases Mk of the outerplanar components are Gk are easily

constructed: they are given by the faces of the outerplanar embeddings [93]. Each of

these cycles contains at least one edge in Bk and none of the edges in Bl, l 6= k, whence

M =
⋃β

k=1Mk is a set of independent cycles of G containing
∑

k |Mk| =
∑

k ν(Gk) =

ν(G) cycles. In other words, M is a cycle basis of G. Equation (8.1) now follows from

`(M) =
∑

k `(Mk) = `(Gk).

Indeed, most known RNA structures with pseudo-knots are bi-secondary structures

(which do not involve nested pseudo-knots) (for details see [128]). Bi-secondary struc-

tures correspond to planar graphs while secondary structures form the sub-class of

outerplanar graphs. The virtue of bi-secondary structures is that they capture a wide

variety of RNA pseudo-knots, while at the same time they exclude true knots such as

the structure in Fig. 8.2.
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Figure 8.2. This pseudo-knot do not belong to the class of bi-secondary structures (from

[128]).

The book-thickness (sometimes also called the page-number) of a graph is the mini-

mal number p of pages of a book into which the graph can be embedded. Thus ordinary

secondary structure graphs need p = 1 pages, a pseudo-knot at least p = 2 pages. An

upper limit for the book-thickness consequently constricts the pseudo-knot complexity.

Structures with p = 2 pages correspond to the class of planar graphs. Almost all known

structures fall into this class (one exception: α-mRNA - Fig. 8.3, see section 8.2.2).

Π

Θ

Σ

Ψ

Ξ

Figure 8.3. Diagram of the contact structure of E. coli α-mRNA (Pseudoknot of the regula-

tory region of the alpha ribosomal protein operon, EMBL number: XO2543). The structure

contains 5 stems, labeled by uppercas Greek letters (from [128]).

Pseudo-knots violate outerplanarity and often they leads to graphs with a non-

unique minimum cycle basis. The set R of relevant cycles seems to be a good candidate

for extending the energy model. However, as the Fig. 8.7 of the pk2 of E. coli tmRNA

shows, sometimes there is a large class of relevant cycles associated with what bio-

physically is a single structural element. These are exactly the interchangeable cycles

described in chapter 6.

The folding of an RNA molecule is largely determined by the formation of base

pairs, leading to short, double-stranded, stem regions connected by single-stranded

loop regions like hairpins, bulge, internal and multi-branched loops (Fig. 8.1), each

having its own characteristic folding pattern, dependent on the particular base sequence

present [108]. Pseudo-knots result from base pairing of nucleotides of a single-stranded

loop region with complementary sequence outside this loop [112, 130]. The simplest

form of a pseudo-knot is the so-called H(airpin)-type [114, 161], which characterized

by the presence of two stems and two loops (see Fig. 8.4).



84 Computations

Figure 8.4. The h(airpin)-type pseudo-knot results from base pairing of nucleotides of a

single-stranded loop region with complementary sequence outside this loop [113]

Each of these two loops correlate to one relevant cycle or to one interchangeability

class. The free energy of a secondary structure is the sum of independent energies for

each loop in the structure. It seems natural therefore to average over the contributions

of interchangeable cycles or to define the energy parameters in such a way that all

interchangeable cycles contribute the same energy.

Hence we suggest that

E(G) =
∑

W∈ �
knar (W)

|W|
∑

C∈W

E(C) (8.2)

serves as a suitable generalization of the standard energy model for nucleic acid struc-

tures.

To be able to differ between the graph of the RNA secondary structure without

and with pseudo-knots, we denote the graphs G and G+.

8.2.2 Escherichia coli α-operon mRNA

The Escherichia coli α-operon mRNA folds into a structure that is required for al-

losteric control of translational initiation [137]. Compensatory mutations have defined

an unusual pseudo-knotted structure [136], the thermodynamics of which were subse-

quently investigated in detail [57]. The structure cannot be drawn without intersec-

tions, see Fig. 8.5. To our knowledge it is the only known RNA structure that cannot

be embedded in a 2-page book.

Nevertheless, the graph of the α-mRNA has a unique MCB and therefore each ↔-

class contains only one relevant cycle. Table 8.2 gives the cycle length distribution of

the unique MCB. The three stams Σ, Ξ and Ψ causes 9 additional quadrangles and

three longer relevant cycles (red, blue and yellow colored in Fig. 8.5).
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Figure 8.5. Diagram of the contact structure of E. coli α-mRNA (Pseudo-knot of the

regulatory region of the alpha ribosomal protein operon, EMBL number: XO2543). The

structure contains 5 stems, labeled by uppercase Greek letters (from [128]).

Table 8.2. Length distribution of the unique MCBM of Escherichia coli α-operon mRNA

with (G+) and without (G) pseudo-knots.

length 4 5 13 26 31 49

M(G+
) 19 1 1 1 1 1

M(G 10 1 - - 1 -

8.2.3 tmRNA

The bacterial tmRNA (also known as 10Sa RNA or SsrA) got its name because of

its dual tRNA-like and mRNA-like nature [86]. It is employed in a remarkable trans-

translation process to add a C-terminal peptide tag to the incomplete protein product of

a broken mRNA. The tmRNA-directed tag targets the abnormal protein for proteolysis.

Four pseudo-knots are usually present in each tmRNA, so the database is rich with

information on pseudo-knot variability. The tmRNA Website∗ currently contains 114

non-duplicate tmRNA sequences from 99 species.

Fig. 8.6 shows the secondary structure of the tmRNA of E. coli also as a linked

graph, where the sequence is placed on a line and the connecting bases are represented

through arc. The tmRNA of E. coli has four so called h-type pseudo-knots [113], so the

book-thickness is p = 2 and the graph G+ is still planar.

Only pk2 violates the uniqueness of the MCB. This pseudo-knot causes a large class

of relevant cycles of length 30, which are associated with what biophysically is a single

structural element. In Fig. 8.7 one of these relevant cycle is indicated by the thick blue

line, the other 7× (3 + 4) possible paths are shown by dashed blue lines. All these 49

cycles belong to the same ↔-class W with knar (W) = 1.

∗URL:http://www.indiana.edu/~tmrna/
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terchangeable relevant cycles. The others can

be found by an ⊕-sum with the blue dashed

stacks.

Table 8.3 shows the cycle length distribution of the set of relevant cycles and an

MCB of the secondary structure without (G) and with (G+) pseudo-knots. Immediately,

the additional quadrangles leaps to the eye. They come from the pseudo-knot stams:

5 from pk1, 4 from pk2, 5 from pk3 and 2 + 2 from pk4. The additional hexagon comes

from internal loop of the two stams pk4. pk1 and stam number 3 forms the 14-edges

cycle, pk3 and stams 8a and 8b leads to the 23-edges cycle and pk4 and stams 10a, 10b

and 10c encloses the 25-edges cycle.

Table 8.3. Length distribution of the relevant cyclesR and cycles of an MCBM of tmRNA

Escherichia coli secondary structure graph with (G+) and without (G) pseudo-knots.

length 4 5 6 7 8 9 10 11 13 14 22 23 25 30 98 107

M(G+
) 85 1 2 1 3 1 4 2 1 1 1 1 1 1 1 -

M(G) 67 1 1 1 3 1 4 2 1 - 1 - - - - 1

R(G+
) 85 1 2 1 3 1 4 2 1 1 1 1 1 49 1 -

R(G) 67 1 1 1 3 1 4 2 1 - 1 - - - - 1

In Fig. 8.6 the two longest relevant cycles of G (red line) and G (blue dashed line)

are shown. Again a shorter path, arose by pk4, leads to the shorter longest relevant

cycle.

The tmRNA from Cyanophora paradoxa cyanelle (Fig. 8.8) contains only one h-

type pseudo-knot (pk1), which forms a bi-secondary structure [128] G+ with a unique

MCB. Therefore G+ is embeddable in a book with 2 pages.
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Of course, there are some differences in the length distribution of the relevant cycles

of R(G) and R(G+), see Table 8.4.

Table 8.4. Length distribution of the relevant cycles R of tmRNA Cyanophora paradoxa

cyanelle secondary structure graph with (G+) and without (G) pseudo-knots.

length 4 6 9 12 16 21 160 164

R(G+
) 35 1 3 2 1 1 1 -

R(G) 33 - 3 2 - 1 - 1

The two stems of the pseudo-knot leads to the two additionally quadrangles and the

hexagon, which arises from the internal loop between the two stams. The big hairpin

loop of the pseudo-knot free secondary structure with length 164, indicated by the blue

dashed line in Fig. 8.8, is in the bi-secondary structure a little bit shorter (the red line

in Fig. 8.8). It consists of a path containing a ”pseudo-knot-edge”.

8.2.4 Ribonuclease P

Ribonuclease P (RNaseP) RNA is a well studied molecule which is found in all cells

that carry out tRNA synthesis. It is a processing endonuclease that specifically cleaves

precursors of tRNA. RNaseP generates the mature 5’ end of tRNAs by removing 5’

leader sequences from pre-tRNAs. In bacteria (and some Archaea) the RNA subunit

alone is catalytically active in vitro, i.e. it is a ribozyme. In vivo it is associated

with a small protein but is clearly the catalyst. It acts as a true enzyme, in the sense

that it reacts with multiple substrates. Unlike most ribozymes, RNase P recognizes

its substrate through tertiary RNA-RNA interactions, rather than through extensive

Watson-Crick base-pairing.

The secondary structure from Pseudomonas fluorescens RNaseP† given in Fig. 8.9,

contains two core pseudo-knots pk1 and pk2. These core pseudo-knots are necessary

to form the reaction center of the ribozyme. Most of the enzymatic RNAs with core

pseudo-knots are involved in cleavage or self-cleavage reactions.

Fig. 8.10 gives the relevant cycles occurred by both pseudo-knots. The pseudo-

knot pk1 (l.h.s. of Fig. 8.10) leads to two additional stams, represented through 4

and 2 quadrangles, separated through an internal loop of length 5. The remaining 3

additional quadrangles arise from pk2 (r.h.s. of Fig. 8.10).

pk1 leads only to relevant cycles, which are also essential. pk2 on the other hand

violates the uniqueness of the MCB. As shown in table 8.5 a 16 34-edged cycles occurs

in the contact graph of the RNaseP with the pseudo-knots. These long relevant cycles,

indicated by the blue lines, belong to one ↔-class W with knar (Wi) = 1. One of

†from “The RNase P Database”, URL:http://www.mbio.ncsu.edu/RNaseP/home.html
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relevant cycles, caused by pseudo-knots are represented by blue lines (for details see text)

them is shown in right picture of Fig. 8.10 as a solid blue line, the alternative paths

are indicated by dashed blue lines.

In table 8.5 the cycle length distribution of the set of relevant cycles and an MCB

is shown. Immediately two additional group of long relevant cycles leap to the eye: the

19-edges one and 34-edges ones. Both are shown in Fig. 8.9 by thick blue lines.

Table 8.5. Length distribution of the relevant cyclesR and cycles of an MCBM of tmRNA

Pseudomonas fluorescens secondary structure graph with (G+) and without (G) pseudo-

knots.
length 4 5 6 7 8 9 12 15 19 23 34 39 43

M(G+
) 81 5 9 3 2 1 1 1 1 1 1 1 1

M(G) 72 4 9 3 2 1 1 1 - 1 - 1 1

R(G+
) 81 5 9 3 2 1 1 1 1 1 16 1 1

R(G) 72 4 9 3 2 1 1 1 - 1 - 1 1
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8.3 Chemical Networks

8.3.1 Reaction Networks

Recent surveys, in particular [82, 154, 46], have revealed that metabolic reaction net-

works belong to the class of small world networks in the wider sense: they have a

diameter that is much smaller than what one would expect for an uncorrelated random

graph with the same number of vertices and edges.

Small world networks have received considerable attention since the seminal paper

by Watts and Strogatz [158]. In a recent paper [2], Amaral et al. present evidence that

there are (at least) three structurally different classes of networks that are distinguished

by the distribution P (d) of the vertex degrees d:

(a) Single Scale Networks with a sharp distribution of vertex degrees exhibiting ex-

ponential or Gaussian tails. This class includes also the Erdős-Rényi model of

uncorrelated random graphs [43, 13].

(b) Scale Free Networks with a power law distribution P (d) ∼ d−γ. A simple model

for this type of networks was introduced recently by Barabási et al. [7, 8].

Metabolic networks [154, 82] and food-webs [103] belong to this class.

(c) Broad Scale Networks for which P (d) has a power-law regime followed by a sharp

cut-off, e.g. exponential or Gaussian decay of the tail. An example is the movie-

actor network described in [157]

The most common model of graph evolution, introduced by Erdős and Rényi [43],

assumes a fixed number n = |V | of vertices and assigns edges independently with a

certain probability p [13]. In many cases ER random graphs turn out the be quite

different from a network of interest. The Watts-Strogatz [158] model of small world

networks starts with a deterministic graph, usually a circular arrangement of vertices

in which each vertex is connected to k nearest neighbours on each side. Then edges

are “rewired” (in the original version) or added [106, 105] with probability p. We

shall consider the latter model for k = 1, denoted SW1 below, which corresponds to

adding random edges to a Hamiltonian cycle. Both ER and SW1 graphs exhibit an

approximately Gaussian degree distribution.

The other extreme is scale-free BA model [7, 8] with a degree distribution of the

form P (d) ∼ d−3: Starting from a small core graph, at each time step a vertex is added

together with m edges that are connected to each previously present vertex k with

probability

Π(k) = d(k)
/∑

j

d(j) , (8.3)
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where d(j) is the degree of vertex j. A recent extension of the model allows the tuning

of the scaling exponent γ in the range 2 ≤ γ ≤ 3 [1].

Much of the literature discusses small world networks in terms of the average path

length between two vertices [105] or of the network’s clustering coefficient [74, 9] which

measures how close the neighbourhood of a each vertex comes on average to being

a complete subgraph (clique) [158]. In this contribution we consider the small cycle

of small world networks in detail. This approach is motivated by the following two

observations:

Recent work on the spread of epidemics on a small world network [109] emphasizes

the importance of “far-reaching” edges. The idea is that clipping a far edge will force

a (relatively) long detour in the network. Hence it is these edges that are responsible

for the small diameter of the graph G. In section 3.2 we have seen that detours are

intimately related to the cycles in the graph. In particular, we describe the connection

between cycles in directed and undirected models and argue that the collection of

relevant cycles is the appropriate mathematical object for our purposes. In section 1.2.3

a brief outline of the relationship between the cycle structure of a reaction network and

Chemical Flux Analysis was given. In the following sections the distribution of triangles

and longer relevant cycles is discussed for uncorrelated random graphs as well as for

small world models.

Triangles in Reaction Networks

It is clear that all triangles in a graph are relevant, since a triangle is necessarily a

shortest cycle through each of its edges. Hence |R(G)| ≥ ∆, where ∆ denotes the

number of triangles in G. We expect 〈∆〉ER =
(

n
3

)
p3 triangles in an ER random graph

with edge-drawing probability p. For the SW1 graphs we obtain a similar expression:

〈∆〉SW1 = np + n(n− 4)p2 +
1

6
n(n2 − 9n + 20)p3 . (8.4)

The MCB will therefore consist almost exclusively of triangles if ∆ � ν(G). The

average vertex degree is d = 2|E|/n = p(n− 1) for ER and d = 2 + p(n− 3) for SW1,

resp. Assuming that n is large we expect to find only triangles in R(G) for d�
√

3n.

Numerical simulations show that this is indeed the case, see Fig 8.12 in the following

section. In this regime, we have |R(G)| ∼ d3/6, and the graph contains no far edges.

Not surprisingly, there is little difference between SW1 and ER random graphs for large

n.

Since the BA model is constructed such that it yield a fixed average vertex degree

d, it should be compared to random graph models with the same vertex degree d

instead of random graphs with a fixed edge drawing probabilities p. We have an
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asymptotically constant number of triangles for both ER and SW1: ∆ER → d3/6 and

∆SW1 → d3/6 − d + 2/3, resp. Note that as a consequence the clustering coefficient

vanishes asymptotically. In SW networks with a priori connectivity k > 1 we find of

course a number of triangles that grows at least linearly with n, since the initial (p = 0)

networks already contains (k− 1)n triangles. The clustering coefficient stays finite for

large n in this case [157].
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Figure 8.11. Cycles in the BA model.

L.h.s.: triangles in BA models with different values of m.

R.h.s.: mean length of a relevant cycle in BA networks.

The large vertex degree of the “early” vertices in the BA model suggests that there

should be many more triangles than in ER or SW1 models. The expected degree of

vertex s at “time” t is known [34]: d(s|t) = m[
√

t/s− 1]. The probability of an edge

between s and t, t > s, is therefore pst = md(s|t − 1)/2(t − 1)m, where 2(t − 1)m is

the sum of the vertex degrees at “time” t− 1. We have therefore

〈∆〉 =
∑

r<s<t

prspstprt

≈ m3

8

∫ n

1<r<s<t

(1/st2)

(√
s

r
− 1

)(√
t

r
− 1

)(√
t

s
− 1

)

∼ Cm3 ln3 n +O(ln2 n)

(8.5)

The l.h.s. panel in Fig. 8.11 shows ∆ for typical BA-random graphs with m = 2, . . . , 8

as a function of “time”. The behavior of ∆ in a individual growing network is well

represented by equ.(8.5).

An extension of the BA model generates graph with 2 < γ ≤ 3. In addition to the

growth of the network, the model includes to rewiring operations: (i) addition of m new

edges such that the initial points of the edges are chosen randomly while the terminal
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points are selected according to equ.(8.3), and (ii) rewiring of m randomly selected

edges by leaving on endpoint fixed and re-attaching the other endpoint according to

equ.(8.3). Since the scaling exponents depend on the relative frequency of the two

rewiring operations, a quantitative comparison of chemical reaction networks with the

extended BA model does not seem to meaningful at this point.

There is, however, a universal scaling relation between P (d) ∼ d−γ and the degree

d(s|t) ∼ (t/s)β of vertex s and time t [34], namely β = 1/(γ − 1) and 2 ≤ γ ≤ 3, i.e.,
1
2
≤ β � 1. Using the same reasoning as above the number of triangles should scale as

〈∆〉 ∼ C(β)n2β−1 ln n for 2 < γ < 3. Thus we again expect the fraction of triangles to

vertices to approach zero for large systems. The number of triangles in graphs with the

same number of edges in vertices, on the other hand, increases with decreasing values

of γ.

Longer Cycles in Reaction Networks

Much less can be said in general about longer relevant cycles. Computationally we find

that the number L = |R| − ∆ of non-trivial relevant cycles has its maximum around

|E| ≈ 0.74n3/2 independent of the random graph model, Fig 8.12. The scaling of is

consistent with L ∼ Cn5/2, where the constant C ≈ 0.036 is the same for ER and SW1

random graphs and C ≈ 0.016 for the BA models. For small vertex degrees, d� |V |1/2

we find R(G) ≈ ν(G), i.e., the MCB is (almost) unique.
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Figure 8.12. Relevant non-triangles in ER (�), SW1 (4), and BA (•) random graphs with

n = 30 (l.h.s) and n = 100 (r.h.s).

The cyclomatic number of a BA random graph is ν(G) ∼ (m/2 − 1)n; Hence,

asymptotically, almost all relevant cycles must be long for β < 1, i.e., γ > 2. The l.h.s.
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of Fig. 8.11 shows that the average length of a relevant cycle grows logarithmically

with n in the BA model. Not surprisingly, the slopes decrease with m.

8.3.2 A Metabolic Network

Metabolic networks form a particular class of chemical reaction networks which is

distinguished by the fact that all reactions are associated with specific enzymes that

catalyze the reaction.

For our analysis of metabolic graphs, we use the substrate graph of the Ecoli1

core metabolism, a set of chemical reactions representing the central routes of energy

metabolism and small-molecule building block synthesis. Similar to [154], we omit the

following substrates from the graph: CO2, NH3, SO4, AMP, ADP, and ATP, their deoxy-

derivatives, both the oxidized and reduced form of thioredoxine, organic phosphate and

pyrophosphate. The resulting graph has n = |V | = 272 vertices and |E| = 652 edges.

Its analysis is summarized in Table 8.6.

Recent results by Barabasi et al. [82] show that the degree distribution of a variety of

metabolic networks follows a power law with scaling exponent γ ≈ 2.2. Note that these

author did not use the substrate graph Σ. Instead, they used the digraph representation

of the reaction network, discussed in Section 1.2.3 and Figure 1.6, whose vertices are

the substrates, the reactions, and the enzymes catalyzing the reaction. The numerical

values of γ are not necessarily comparable between different graphical representations

of reaction network.

The extended BA model [1], which is based on both growth and partial re-wiring

of the networks can explain scaling exponents γ between 2 and 3. The discussion in

[46, 154] shows that a sequentially growing metabolic network is consistent with data

because the evolutionary oldest metabolites have the largest vertex degrees.

The longest relevant cycles in a metabolic network are of particular interest since

they reflect parts of the network that cannot easily be replaced by alternative routes.

In Fig. 8.13 we show the largest such cycle in Ecoli1. We emphasize that the cycles

in our analysis represent routes for transmission of perturbations, but not necessarily

of mass, as it is commonly considered in MFA. This is apparent from Fig.8.13, which

does not correspond to a pathway from a biochemical chart, but links several pathways

together. Note that the notion of a pathway requires from the outset the distinction

between “substrates” or products and intermediates; for our purposes such a distinction

is not necessary.
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Figure 8.13. The subgraph of E. coli spanned by the relevant cycles of length 9. Two of

these long cycles are highlighted. The edges shown in bold are part of each of the 16 relevant

9-cycles.

8.3.3 Planetary Atmospheres

It seems interesting to compare metabolic networks to reaction networks that are not

governed by the enzymatic reactions. A class of large and well-understood models are

the chemical networks of planetary atmospheres. The data reported here are taken

from the book [167]. For details on these reaction networks we refer to [167] and the

references therein.

The largest network included in this study is a model of Earth’s atmosphere which

contains a large number of reactions involving halogen species including the CFCs

implicated in global warming.

The atmospheres of the Jovian planets Jupiter, Saturn, Uranus, and Neptune are

dominantly reducing. The thermodynamically stable form of carbon in the giant plan-

ets is methane CH4. The photolysis of CH4 leads to the production of higher hydrocar-

bons, some of which have been detected Earth-based or space-craft observations. The

network of the most important reactions inter-converting carbon species is denoted HC

in Table 8.6 below.

Smaller networks model the atmospheres of the planets Mars and Venus, the Jovian

satellite Io and the Saturn satellite Titan. The bulk of the atmospheres of both Mars

and Venus is CO2. While a pure CO2 atmosphere should contain sizeable amounts

of CO and O2 small amounts of H2O stabilize CO2 through a network of reactions

involving ·OH radicals. In addition, both atmospheres contain N2 and exhibit the as-

sociated chemistry of nitrogen oxides. Venus furthermore exhibits an interesting sulfur

chemistry. Io’s thin atmosphere is dominated by the photo-chemistry of SO2. Titan
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possesses a mildly reducing atmosphere exhibiting a rich hydrocarbon and nitrogen

chemistry with HCN as a core species.
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Figure 8.14. Degree distribution of the atmospheric reaction network of Earth. The symbols

correspond to three different bin widths of the histogram for P (d). The data are consistent

with a power law with γ = 1.86± 0.09 (full line).

Fig. 8.14 shows that the atmosphere chemistry models also appear to have a scale

free degree distribution with a scaling exponent γ ≈ 1.9. This is surprising since

these reaction networks could not have arisen by a stepwise mechanism. A possible

explanation is a strong bias in the choice of chemical species and reaction pathways:

the network models have been constructed to describe inter-conversion of a relative

small number of dominating (or interesting) species, which naturally favors a “hub and

spine” arrangement.

8.3.4 Comparison of the Chemical Networks

Table 8.6 shows that the three random models BA, SW1, and ER agree at least quali-

tatively with each other. The BA random graphs exhibit a much broader distribution

of cycle sizes (not shown) than the ER and SW1 models. As a consequence, the av-

erage cycle numbers for ER and SW1 have statistical uncertainty of about 2%, while

the uncertainty of the BA values is 5 to 10 times higher. Note that ER and SW1 have

a similar number of relevant cycles, but the cycles are slightly longer in SW1.

The substrate graphs of the planetary atmosphere models have a much larger av-

erage vertex degree. This accounts for the increased number of triangles and the lack

of long relevant cycles.
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Two features distinguish the metabolic network Ecoli1 from all three random net-

work models:

(1) The number ∆ of triangles is almost 10 times larger than expected. This can be

explained by two effects. In part this might be an artifact of the substrate graph

representation. The ratio 282/379 ≈ 0.744 indicates that almost all triangles are

contained in 4-cliques, since in each 4-clique we have three triangles that belong

to a particular MCB, while the fourth face of the tetrahedron is their ⊕-sum [54].

More importantly, however, the discussion in section 8.3.1 leads us to expect an

increased number of triangles in scale free networks with small scaling exponent

γ < 3, as is the case in metabolic networks [154, 82]. A quantitative comparison

between metabolic networks and the extended scale-free model [1] does not appear

to be useful since the rewiring mechanism of the extended BA model is too

artificial to apply to metabolic networks.

(2) There is a much smaller number of relevant pentagons and hexagons, which

results in an overall somewhat reduced number of relevant cycles: 723 compared

to about 1060 (BA), 904 (ER), and 805 (SW1). This is most likely again a

consequence of the small value of the scaling exponent γ.

The atmosphere chemistry networks have a significantly larger average vertex de-

gree. This explains the fact that almost all relevant cycles are triangles.

The vertices with the largest degree d in the raw data of many of the above networks

are in some cases exceptional. In metabolic networks, for instance, ATP is involved as

“universal energy currency”. Many of the reactions in planetary atmosphere involve a

background gas atom as a means to removing excess energy from a reaction or photons

hν. Following [154] we argue that one should consider the network topology without

these “special purpose” vertices. Almost all relevant cycles involving these exceptional

species are triangles. We remark that their inclusion does not lead to qualitative

changes of either the degree distribution or the distribution of relevant cycles apart

from the obvious increase in the total number of cycles.
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Table 8.6. Cycle Structure of Networks.

Model |V | |E| |C| 3 4 5 6 7 8 9
∑

BA 272 625 MCB 78 158 124 20 0.4 0.01 0 380

R 81 285 527 161 5.5 0.4 0 1060

S 81 273 414 144 5.5 0.4 0 918

ER 272 625 MCB 18 58 163 131 11 0.4 0 381

R 18 61 212 528 82 3.2 0 904

S 18 61 205 311 68 3.2 0 666

SW1 272 625 MCB 15 46 131 167 21 1.1 0.03 381

R 15 48 157 427 151 7.1 0.2 805

S 15 48 155 301 108 6.5 0.2 634

Ecoli1 272 652 MCB 282 51 19 20 3 5 1 381

R 379 114 90 83 5 36 16 723

S 379 56 24 42 2 14 16 533

Earth 250 780 MCB 431 98 2 0 0 0 0 531

R 918 332 6 0 0 0 0 1256

S 918 303 6 0 0 0 0 1227

Titan 56 305 MCB 243 2 0 0 0 0 0 245

R 646 52 0 0 0 0 0 697

S 646 0 0 0 0 0 0 646

Venus 43 207 MCB 159 3 0 0 0 0 0 162

R 438 10 0 0 0 0 0 448

S 438 10 0 0 0 0 0 448

Mars 32 167 MCB 130 0 0 0 0 0 0 130

R 342 0 0 0 0 0 0 342

S 342 0 0 0 0 0 0 342

HC 40 299 MCB 260 0 0 0 0 0 0 260

R 1017 0 0 0 0 0 0 1017

S 1017 0 0 0 0 0 0 1017



Chapter 9
Conclusion and Outlook

The perception of cyclic structures is a crucial step in the analysis of graphs. The

smallest canonical set of cycles which describes the cyclic structure of a graph is the

union of all the minimum cycle bases, called the set of relevant cycles R. A cycle is if

it is not the sum of shorter cycles. The set of relevant cycles is of particular importance

for “ring perception” in computational chemistry. In chapter 4 we have reviewed this

application, clarifying a number of inconsistencies in the literature. The concept of

relevant cycles is then extended to a new vector space U∗, generated by the incidence

vectors of the uv-paths — paths connecting two vertices u and v ∈ U , where U is a

subset of the vertex set. This construction is of interest in the context of chemical

networks, where a subset U of all chemical species V is fed into the system from the

outside or is harvested from the system. The uv-paths hence correspond to productive

pathways. We gave a polynomial time algorithm to compute the set of relevant cycles

and U-paths. A partitioning of R has been described such that each cycle in a class

W can be expressed as a sum of other cycles in W and shorter cycles. It is shown

that each minimum cycle basis contains the same number of representatives of a given

class W. We extended this partitioning to the U-space and gave a polynomial-time

algorithm to compute this partition.

A well known theorem in network flow theory states that any strongly connected

digraph has a directed circuit basis, i.e., a basis of the cycle space consisting of circuits.

We generalized the idea of relevant cycles to relevant circuits and show that a minimum

circuit basis can be computed in polynomial time. Even though all relevant circuits

are short — a generalization of the analogous result for undirected graphs — it is

not possible to generalize either Horton’s algorithm for to minimum circuit bases or

Vismara’s prototypes of relevant cycles to the directed case. Both procedures work in

the undirected case since one can show that, during building a initial set of cycles, any

fixed choice of a — usually not unique — shortest path can be used. The ideas behind

101
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this proof, however, do not work with directed paths. The efficient calculation of

relevant circuits thus remains an open problem. Although we found a not very elegant

way to calculate a minimum circuit basis, we have not implemented this algorithm.

We showed that some definitions commonly used for the chemical problem of ring

perception (ESSR and ESER) yield neither a superset nor a subset of the minimum

cycle basis. This problem of defining extended ring-sets will more appealing lies beyond

the scope of this work, however.

Since most of the chemical graphs are planar, it seem to be a good idea to implement

the faster Hartvigsen’s algorithm [67] for planar graphs. This would speed up the time

complexity from O(|V |4) to O(|V |2 log |V |) (Hartvigsen). Furthermore, there exists

faster algorithms for other graph classes with special structure.

The partitioning of the union of all minimum cycles bases into interchangeabil-

ity classes appears to be a suitable starting point for the RNA prediction problem

of secondary structures in the presence of pseudo-knots. Each structural element is

represented through one class. Not being restricted to a special type of pseudo-knots,

we can define for each single structural element an energy parameter, by taking the

average over the contributions of each representatives of the class associated with this

element. We found a suitable framework for a generalization of the standard energy

model for nucleic acid structures. The actual parameters could be estimated from

known structures, since datas from thermodynamical experiments are not available at

present (with very few exceptions [61].

The direct comparison of minimum U-bases with biological relevant metabolic path-

ways as obtained e.g. from MFA is not reasonable, since in chemical reaction mecha-

nisms are in the latter case described by hypergraph [169].

The cycles are one part of the perception of the cyclic structure of a graph. The

mutual arrangement of the cycles is also of great interest. There are three different

definitions of cycle graphs:

Definition 107. A cycle graph CE(G), CS(G), CR(G) of a graph G is the graph whose

vertex set is the set

1. of all elementary cycles of G
2. of all chordless cycles of G
3. of all relevant cycles of G

and two vertices in C∗(G) are adjacent whenever the corresponding cycles have at least

one edge in common.

Of source (3) of definition 107 is a subset of (2) which is again a subset of (1).

The particular interest lies on the cycle graph of type (3) and its correlation with the
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interchangeability classes of relevant cycles. We know that the relevant cycles of the

same Vismara cycle family belongs to a connected subgraph of the cycle graph CR(G),

since from their definition refdef:vismara they have at least one edge in common. This

does not hold true for the cycles of same interchangeability class (see Fig. 9.1), also

not for homotopic equal-length cycles and strong-equivalent cycles.

CP’

CP’’

Figure 9.1. The two pentagons CP ′ and CP ′′

of the upper graph belongs to the same ↔-

class, but do not have any edges in common.

Thus the cycle graph of this ↔-class consists

of two isolated vertices.

Our whole mathematical construct is based on the cycle space, but certainly it

can be applied on other vector spaces of the graph, e.g., the cut space. Maybe the

minimum bases and relevant elements can not be calculated in polynomial time. In

the case of the vector space, there are restrictive conditions for the initial set, from

which the relevant elements are extracted by the greed algorithm. One have also to

find such constrictive initial conditions.
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[2] L. A. N. Amaral, A. Scala, M. Barthélémy, , and H. E. Stanley. Classes of small

world networks. Proc. Natl. Acad. Sci. USA, 97:11149–11152, 2000.
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