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Abstract

Many advanced techniques of sequence analysis are dependent upon the avail-
ablity of high quality multiple sequence alignments. A recent procedure for
extracting conserved secondary structure elements from a moderate size sam-
ple of related RNA sequences is one example. For such a procedure a high
quality alignment of nucleic acid sequences is essential.

In many cases, the sequences under consideration code for proteins. It
is well known that amino acid sequences can be aligned much more reliably
than their underlying genomic DNA or RNA sequences. In this work a
procedure is described that utilizes the information contained in the amino
acid sequences to construct an improved multiple alignment of the underlying
nucleic acid sequences. This algorithm, which consists of a combination of
amino acid and nucleic acid based partial alignments, is implemented in the
program package RALIGN.

It is demonstrated that the RALIGN approach is indeed feasible and leads
to significant improvements. In particular, the number of small gaps is re-
duced, and RALIGN guarantees that insertions and deletions at the nucleic
acid level within a coding region match insertions and deletions at the level
of protein sequences.

The program RALIGN is applied to finding conserved RNA secondary
structures in the pregenomic RNA of human hepatitis B virus sequences.
Apart from the well known e-element at the very 5’-end of the sequence, we
find a number of highly significant secondary structure elements that so far
have not been described in the literature. A Y-shaped element located in the
ENH enhancer region is of particular interest.



Zusammenfassung

Bei der Verwendung vieler Methoden im Bereich der Sequenzanalyse ist man
angewiesen auf die Verfiigharkeit von multiplen Sequenzalignments hochster
Qualitat. Eine neue Methode zur Detektion von konservierten Sekundar-
strukturelementen in einem Datensatz verwandter RNA-Sequenzen ist ein
Beispiel. Fiir solch eine Anwendung ist ein Nukleinsaure-Alignment hochster
Qualitat absolut essentiell.

In vielen Fillen codieren die betrachteten Sequenzen fiir Proteine. Es
ist eine bekannte Tatsache, dass Aminosiuresequenzen viel eher erfolgver-
sprechend aligniert werden konnen als die entsprechenden genomischen DNA-
oder RNA-Sequenzen. In dieser Arbeit wird eine Methode beschrieben, die
die Information nutzt, die in Aminosiduresequenzen enthalten ist, um ein
verbessertes multiples Alignment der entsprechenden Nukleinsduresequenzen
zu konstruieren. Dieser Algorithmus, der aus einer Kombination von Teil-
alignments auf der Ebene von Nukleinsdure- und Aminosauresequenzalign-
ments besteht, wurde implementiert in dem Programmpaket RALIGN.

Es konnte gezeigt werden, dass der RALIGN-Ansatz tatsachlich gut funk-
tioniert und zu signifikanten Verbesserungen fiithrt. Im speziellen wird die
Anzahl der kurzen gaps reduziert, wobei durch RALIGN gewéhrleistet wird,
dass Insertionen und Deletionen auf der Ebene von Nukleinsduren innerhalb
einer codierenden Region exakt den Insertionen und Deletionen auf der Ebene
der jeweiligen Proteinsequenzen entsprechen.

Das Programm RALIGN wurde angewendet, um konservierte RNA-Sek-
undarstrukturelemente in der priagenomischen RNA von humanen Hepatitis
B-Viren zu detektieren. Neben dem gut bekannten e-Element am 5’-Ende
der Sequenz konnten noch einige hochsignifikante Sekundarstrukturelemente
gefunden werden, die bis jetzt in der Literatur nicht beschrieben worden sind.
Interessant ist vor allem ein Y-formiges Element, das in der ENH enhancer-
Region liegt.
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1 Introduction

There is a huge amount of various data sets available in different sequence
data banks like e.g. GenBank. However, often there is no satisfactory mecha-
nism to process the data [82]. One of the essential tools in molecular biology is
the simultaneous alignment of nucleotide or amino acid sequences. Multiple
alignments are used to find diagnostic patterns to characterize protein fami-
lies; to detect or demonstrate homology between new sequences and existing
families of sequences; to help predict the secondary and tertiary structures of
new sequences; to suggest oligonucleotide primers for PCR; and as an essen-
tial prelude to molecular evolutionary analysis [51]. The rate of appearance
of new sequence data is steadily increasing and the development of efficient
and accurate automatic methods for multiple sequence alignments is of major
importance [2, 1].

Recent research in our group aims at finding conserved secondary struc-
ture elements that are part of the genomes of RNA viruses and the prege-
nomic RNA intermediates of some DNA viruses like the Hepatitis B viruses
[58, 69]. For this reason predicted secondary structures of known genomic
RNA sequences have to be compared on the basis of a reliable multiple se-
quence alignment. Almost all RNA molecules and consequently also almost
all subsequences of a large RNA molecule form secondary structures. The de-
velopment and implementation of computational methods capable of reliably
predicting functional structural elements on the basis of sequence information
will provide immense benefits in terms of our understanding of the relation-
ship between sequence and structure [18, 11, 25, 49]. Such methods will also
help greatly in tasks such as drug discovery or the study of molecular evo-
lution [27]. They could be applied to huge quantities of sequence data at
our disposal nowadays to discover important structural motifs and trends in

various macromolecules, without measuring the 3D structure of each macro-
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molecule which is very laborious and expensive [5, 10, 12, 57, 73, 72].

Secondary structures of ssRNA viruses or (as in the case of Hepatitis B
virus) pregenomic RNA intermediates are known to play an important role
in the regulation of the viral life cycle [31, 56]. See figure 1.

Since only functional secondary structures are likely to be conserved,
a method that detects and highlights conserved structural elements based
solely on already available sequence data could be used e.g. to guide experi-
mental mutagenesis or deletion studies [29, 30, 50].

An important prerequisite of this method is the quality of the sequence
alignment. However, sequence heterogenity on the level of nucleic acids
makes good alignments often infeasible even for phylogenetically closely re-
lated sequences. In many cases one observes too many gaps. This is caused
by the inherent redundancy of the genetic code: most amino acids have more
than one codon on the level of nucleic acids. As a result it is possible that two
different nucleic acid sequences code for the same protein sequence. In the
extreme case all three codon positions are different. In a protein alignment
these amino acids would match each other while the differences on the level
of nucleic acids can produce gaps in a nucleic acid alignment. This specific
problem leads to various gaps within coding regions where they are not really
necessary, because the biologically important part of the system is protein in
this region of the genome. On the level of protein alignments many of these
gaps could have been avoided.

The purpose of this thesis is to improve the quality of sequence alignments
of RNA viruses by designing and implementing a combined alignment algo-
rithm. This program should detect possible coding regions in all input data
sets and process them on amino acid level while non coding regions would
be handled as nucleic acids. Finally the various alignments of the parts of
an input sequence have to be combined.

The idea behind the combined amino acid and nucleic acid based align-
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Figure 1: Two predicted secondary structures of the complete RNA pregenomes of human
hepatitis B viruses (AB014360 and HBD50521). Note that there is hardly similarity

between the predictions.
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Figure 2: Example for a predicted secondary structure. It consists of the nucleotides 2794

to 2937 of mammalian hepatitis B virus.
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ments is that coding regions on the level of protein vary less than on the
level of nucleic acid, because most amino acids are coded by more than one
codon (base triplet) and some different nucleic acid sequences can produce
the same protein sequence after translation. Protein sequences can still show
substantial homology when the corresponding nucleic acid sequences are al-
ready essentially randomized.

In the following some examples will be shown how it was made possible
to improve alignments of viral genomes and to reduce the quantity of gaps
using the combined amino acid and nucleic acid based alignment algorithm.
Here we use HIV1 and hepatitis B viruses as examples.

The alignment results of Hepatitis B viruses were used then as an input
for secondary structure prediction using the Vienna RNA package [41, 43].
The starting point of this approach is the list of all predicted base pairs.
The multiple sequence alignment is very useful to establish which base pairs
from different sequences correspond to each other. Then the individual base
pairs are ranked by certain filtering procedures. The procedure is described
in detail in [42, 40].

The algorithm proposed here has the following features: first the program
detects all possible coding regions of a minimum size without user interven-
tion. The next step is translation of the detected coding regions into amino
acid sequences.

Corresponding open reading frames are identified and then aligned. While
the program can operate fully automatically, manual alteration of the list of
corresponding ORF's by the user is possible and often recommended.

The protein alignment results are then reverse translated back into nu-
cleic acids and the non coding regions between the open reading frames are
aligned as nucleic acids using the alignments of the open reading frames as
constraints.

The last step consists of joining all reverse translated protein sequence
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alignments with the nucleic acid alignments of the non coding regions.
Secondary structure prediction was performed using the algorithms of the
Vienna RNA package like RNAfold which calculates the minimum free energy
structure and the partition function and base pairing probability matrix of an
RNA sequence. Further used programs were alidot and pfrali. The pro-
grams alidot and pfrali detect conserved secondary structure elements in
relatively small sets of RNAs by combining multiple sequence alignments and
secondary structure predictions. While alidot works with single structures,
its variant pfrali uses base pairing probability matrices. In both cases the
best possible quality of the input alignment is of crucial importance. It will
be shown that the alignments are indeed improved by the combined amino
acid and nucleic acid based alignment algorithm and that the number of gaps

is reduced significantly.
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2 Theory

2.1 Background on Alignments

An alignment is the most basic sequence analysis task. It is used to tell
whether two or more sequences are related and to give an impression how
close relationship is in terms of sequence similarity. To find the best possible
alignment of sequences is of central importance for bioinformatics and data
processing after routine laboratory procedures like sequencing nucleic acids.
Some alignment algorithms exist which are used to find an optimal alignment,
and, of course, a scoring system is necessary to rank alignments. In principle
all known algorithms are based on two criteria, (i) maximum similarity or
(i) minimum (Hamming-) distance [23, 28, 39].

For evalualing the difference between two sequences we have three possi-
bilities of pairs of opposite symbols: (i) identity, (ii) substitution or mismatch
and (iii) insertion or deletion. The procedure is usually done by first align-
ing the sequences and then deciding whether that alignment is more likely
to have occurred because the sequences are related, or just by chance. In
any case the scoring system should help to answer this question regarding
to identical and similar positions in the alignment. (Similar pairs of residues
in amino acid alignments are those which have a positive score in the sub-
stitution matrix used to score the alignment, e.g. aspartate-glutamate pairs,

D-E, both negatively charged amino acids.)

2.2 Scoring Systems

Careful thought must be given to the scoring system used to evaluate an
alignment when we are looking for evidence that they have diverged from
a common ancestor by a process of mutation and selection. As mentioned

above, the basic mutational processes that are considered are substitutions,
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HBA_HUMAN GSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL
++ ++++H+ KV + +A  ++ +L+ L+++H+ K

LGB2_LUPLU NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG

Figure 3: This figure shows a protein sequence alignment between a fragment of human
alpha globin and leghaemoglobin from yellow lupin. Some identities are shown and some
similar positions which have a positive score in the substitution matrix (indicated by ’+’).
This is a biologically meaningful alignment, in that we know that these two sequences are

evolutionarily related.

which change residues in a sequence, and insertions and deletions, which add
or remove residues and are together referred to as ’gaps’. The total score we
assign to an alignment is a sum of terms for each aligned pair of residues, plus
terms for each gap. Informally, using an additive scoring system we expect
identities and conservative substitutions to be more likely in good (biolog-
ically relevant) alignments than we expect by chance, and so they should
contribute positive score terms. And on the other hand non conservative
changes are expected to be observed less frequently in real alignments than
we expect by chance, and so these contribute negative score terms. This
system also corresponds to the assumption that we can consider mutations
at different sites in a sequence to have occurred independently (treating a
gap of arbitrary length as a single event). All alignment algorithms depend
crucially on such a scoring scheme and from a biological point of view the
assumption of independence appears to be a reasonable approximation for
DNA and protein sequences, although we know that intramolecular interac-
tions between residues of a protein play a very important role in determining
protein structure. Regarding the secondary structures of RNAs, where base
pairing introduces very critical long range dependencies, the model of inde-

pendent mutations is biologically inaccurate [46, 52, 54].
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As mentioned above we need score terms for each aligned residue (or base)
pair. We derive substitution scores from a probabilistic model that gives a
measure of the relative likelyhood that the sequences are related as opposed
to being unrelated. We do this by having models that assign a probability
to the alignment in each of the two cases. Then we consider the ratio of
the two probabilities. The random model R assumes that a letter in the
sequence (for proteins an amino acid or one of the four bases in the case of
DNA or RNA) occurs independently with some frequency ¢, and hence the
probability of the two sequences is the product of the probabilities of each

amino acid (or base):

P(z,y|R) = qul qu] (1)

where z and y is a pair of sequences, x; is the ith symbol in z and y; is
the jth symbol in y. These symbols come from an alphabet (A, G, C, T,
U in the case of nucleic acids or an amino acid in the case of protein). In
the alternative match model M, aligned pairs of residues occur with a joint
probability pg. This value py, can be thought of as the probability that the
residues a and b have each independently been derived from some unknown
original residue ¢ in their common ancestor (¢ might be the same as a and/or

b). This gives a probability for the whole alignment:
‘/L‘ ylM przyz (2)

The ratio of these two likelihoods is the odds ratio:
P(xa y‘M) — Hipl'iyi — pwiyi
P(z,y|R) Tl ¢w I1; g i ey

We want to arrive at an additive scoring system, so we have to take the

(3)

logarithm of this ratio, known as the log-odds ratio:

S = ZS(%’,?J@') (4)
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where

s(a,b) = log(. ") )

is the log likelihood ratio of the residue pair(a,b) occurring as an really
valid aligned pair, as opposed to an unaligned pair (or by chance joined
pair of residues or nucleic acids). We can see that S in this equation is a
sum of individual scores s(a, b) for each aligned pair of residues. And these
individual scores, these log-odds values can be rounded to the nearest integer
for purposes of computational efficiency and then arranged in a matrix. For
instance, in the case of proteins the matrix is a 20x20 matrix which gives
an individual score s(a;, b;) for sequences @ and b in position ¢ and j. The
highest positive entries in the matrix are given for identical residue pairs,
lower, but also positive, values do the conservative substitutions have while
non conservative substitutions give a negative score. So it is possible to
derive scores, in fact s(a,b) in the above equation, for every pair of residues
in the alignment. Any matrix like this is making a statement about the
probability of observing ab pairs in real (biologically relevant) alignments
and is called substitution matrix or score matrix or weight matrix. Examples
of substitution matrices are the BLOSUM50, the BLOSUM62 [36] or the PAM250
matrix [20].

The next point is penalising gaps. There are two possibilities: the stan-

dard cost associated with a gap of length g could be given by a linear score

v(9) = —gd (6)

where d is called the gap open penalty. But it seems to be more legitimate
to make a difference whether a gap is newly opened or an existing gap is just

extended. A type of score could be used which is known as the affine score

Y(g) =—d—(g—1)e (7)
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AARNDCAQEGHTIULI KMMTFU&PZSTWYUV

A 5-2-1-2-1-1-1 0-2-1-2-1-1-3-1

R-2 7-1-2-4

1 0-3-2 0

1 03 0-4-3 3-2-3-3-1-1-3-1-3

1 0-4-2-3

1-3-4 0-2-4-2

N-1-1 7 2-2 0 0 0

b-2-2 2 8-4 0 2-1-1-4-4-1-4-5-1 0-1-5-3-4
c-1-4-2-413-3-3-3-3-2-2-3-2-2-4-1-1-5-3-1

0-1-1-1-3

1-3-2 2 0-4-1

0 0-3 7 2 -2

1
E-1 0 0 2-3 2 6-3 0-4-3

Q -1

1-2-3-1-1-1-3-2-3

G 0-3 0-1-3-2-3 8-2-4-4-2-3-4-2 0-2-3-3-4

H-2 0

1 0-210-4-3 0-1-1-2-1-2-3 2 -4

1 -1-3

I-1-4-3-4-2-3-4-4-45 2-3 2 0-3-3-1-3-1 4

1
0-1-3-2-3

1-4-3-1-2-1

L-2-3-4-4-2-2-3-4-3 2 5-3 3

K-1 3 0-1-3 2

1-2 0-3-3 6-2-4-1

1

0
4 -1

M-1-2-2-4-2 0-2-3-1 2 3-2 7 0-3-2-1-1

1

p-1t-3-2-1-4-1-1-2-2-3-4-1-3-410-1-1-4 -3 -3

F-3-34-5-2-4-3-4-1 0 1-4 0 8-4-3-2

5 2 -4 -2 -2

0-1 0-1 0-1-3-3 0-2-3-1

1

1 -1
T 0-1t0-1-1-1-1-2-2-1-1-1-1-2-1 2 5-3-2 0

W-3-3-4-5-5-1-3-3-3-3-2-3-1

S

1-4-4-315 2 -3

y-2-1-2-3-3-1-2-3 2-1-1-2 0 4-3-2-2 2 8-1
v 0-334-1-3-3-4-4 4 1-3 1-1-3-2 0-3-1 5

Figure 4: The BLOSUMA50 substitution matrix. The log-odds values have been scaled and

rounded to the nearest integer for purposes of computational efficiency.
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where e is called the gap extension penalty. This penalty should be set to
something less than the gap open penalty d, so that extension of existing in-
sertions (or deletions) is penalised less than opening further gaps (as it would
be by the linear gap cost). Gap penalties also correspond to a probabilistic
model of alignment. We assume that the probability of a gap occurring at
a particular site in a given sequence is the product of a function f(g) of
the length of the gap, and the combined probability of the set of inserted

residues,

P(gap) = f(9) || . (8)

i€gap

The form of this equation as a product of f(g) with the g,, terms corresponds
to an assumption that the length of the gap is not correlated to the residues
it contains. The natural values for the g, probabilities here are the same
as those used in the random model above, because they both correspond to
unmatched independent residues. When we divide by the probability of this
region according to the random model to form the odds ratio, the g,, terms
cancel out. This leaves us with a term dependent on length y(g) = log(f(g))-
Gap penalties correspond to the log probability of a gap of that length.

But on the other hand, if there is evidence for a different distribution
of residues in gap regions then there should be residue-specific scores for
the unaligned residues in gap regions, equal to the logs of the ratio of their
frequencies in gapped versus aligned regions. This might happen if it is
expected that polar amino acids are more likely to occur in gaps in protein
alignments than indicated by their average frequency in protein sequences,
because the gaps are more likely to be in loops on the surface of the protein
structure than in the buried core.

After having determined a certain scoring system we need to have an
algorithm for finding an optimal alignment for a pair of sequences. Without

using gaps there is only one possible global alignment for two sequences
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when both have the same length n. But the alignment becomes much more

complicated once gaps are allowed. We have

(2n> _ oy 2 )

n (n!)? 2mn

possible global alignments between two sequences of length n. The quantity
of possible alignment solutions grows by about 4™ This means for sequences
of length 30 there are 10° possibilities, and with length 60 we have 108
possible alignments. But in terms of molecular biology sequences of length
30 or even 60 are comparatively short and often it is necessary to find the
best alignment between sequences which have a length of a few thousand
amino acids or nucleotides (like in the case of virus genomes). It is of course
not computationally feasible to enumerate all these, even for moderate values
of n.

So we need to find a way which gives us the possibility to gain opti-
mal alignments without testing and valueing every possible solution. The
algorithms for finding optimal alignments given an additive alignment score
of the type described above is called dynamic programming. Dynamic pro-
gramming algorithms are of central importance for computational sequence
analysis. They imply that we get the best possible alignment between two
sequences as a result of an optimal alignment till each current position. Us-
ing the introduced scoring scheme as a log-odds ratio, better alignments have
higher scores. So what we have to is to maximise the score to find the op-
timal alignment as opposed to other interpretations of scoring which search
for minimal distances or costs. Both approaches have been used in the bi-
ological sequence comparison literature. Dynamic programming algorithms
apply to either case. The differences are, simply said, just exchanges of 'min’
for 'max’ [61, 63, 64].
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2.3 The Needleman-Wunsch Algorithm

The most important dynamic programming algorithm in biological sequence
analysis for obtaining the optimal global alignment between two sequences,
allowing gaps, is the Needleman-Wunsch algorithm [63, 8], introduced in
1970.

The idea behind all versions is to build up an optimal alignment using
previous solutions for optimal alignments of smaller subsequences. A matrix
F of the two sequences is constructed, indexed by 7 and j, one index for each
sequence, where the value F(i, j) is the score of the best alignment between
the initial segment z.; of x up to z; and the initial segment y;_; of y up to
yj. The score value F'(3, j) is builded recursively and we start by initialising
F(0,0) =0.

As mentioned above we have three possibilities of pairs of opposite sym-
bols: (i) identity, (ii) substitution or 'mismatch’ and (iii) insertion or deletion.
So we proceed to fill the matrix from top left to bottom right, from the first
letters of the sequences to their ends. Along the top horizontal row (where
j = 0) and the first vertical column (where i = 0) we write the pairs of one
sequence’s letters with a gap in the second sequence and get the scores of
these gaps by multiplying the position of the letter by the gap penalty. So
the values F(i,0) represent alignments of a prefix of z to all gaps in y and
we can define F(i,0) = —id. Likewise down the left column F'(0,5) = —jd.
IfFGi—-1,j—1),F(i—1,7) and F(i,j — 1) are known, it is possible to cal-
culate F'(i, 7). There are three possible ways that the best score F'(, j) of an
alignment up to x;, y; could be obtained: z; could be aligned to y;, in which
case F'(i,j) = F(1—1,j—1) + s(xi,y;), where s(z;, y;) is the individual score
for this pair of amino acids or nucleotides; or z; is aligned to a gap, in which
case F'(i,j) = F(i — 1, j) — d, where d is the gap penalty; or y; is aligned to
a gap, in which case F(i,j) = F(i,j — 1) — d. The best score up to (7, ) is
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the largest of these three options. Therefore, we have

F(i—1,5—1) + s(zi, ),
F(i,5) = sup F(i—1,5)—d, (10)
F(i,j—1) —d.

This equation is applied repeatedly to fill in the matrix of F'(i,j) values,
calculating the value in the bottom right-hand corner of each square of four
cells from one of the other three values (above left, left, or above). And as
we fill in the F'(i,j) values, we also keep a pointer in each cell back to the
cell from which its F'(i, j) was derived. Finally the value in the bottom right
cell of the matrix F'(n,m) is by definition the best score for an alignment
of 1., to y1..m. To gain the alignment itself, we must find the path of
choices which led to this final value. The procedure for doing this is called
backtracking. We build the alignment in reverse, starting from the final cell,
and following the pointers that we stored when building the matrix. At each
step in the backtracking process we go back from the current cell (i,7) to
the one of the cells ( — 1,7 — 1), (i — 1,4) or (4,5 — 1) from which the value
F(i,j) was derived. So with every step we get a pair of symbols and add it
to the growing alignment: x; and y; if the step was to ( — 1,j — 1), z; and
the gap character ’-’ if the step was to (i — 1, 7), or ’-” and y; if the step was
to (i,7 — 1). Finally we reach the starting point of the matrix, i = j = 0.
The reason that the algorithm works is that the score is made of a sum of
independent pieces, so the best score up to some point in the alignment is
the best score up to the point one step before, plus the incremental score of

the new step.

2.4 Multiple Alignments

As described above it is practice to use dynamic programming in order to

align just two sequences. This guarantees a mathematically optimal align-
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ment, given a table of scores for matches and mismatches between all amino
acids or nucleotides and penalties for insertions or deletions of different
lengths. But attempts at generalising dynamic programming to multiple
alignments are limited to small numbers of short sequences [55]. For much
more than ten or so proteins of average length, the problem is infeasible given
current computer power. Therefore, all of the methods capable of handling
larger problems in practical timescales make use of heuristics. Nowadays, the
most widely used approach is to exploit the fact that homologous sequences
are evolutionary related. We can produce a multiple alignment progressively
by a series of pairwise alignments, following the branching order in a phy-
logenetic tree [22]. We first align all possible pairs of sequences and derive
a distance matrix in order to calculate the initial guide tree which is built
up by the distances between the sequences. Then the most closely related
sequences get aligned progressively according to the branching order in the
guide tree, gradually adding in the more distant ones when we already have
some information about the most basic mismatches or gaps. Some informa-
tion which is derived from the first pairwise alignments of the most closely
related sequences.

This approach is fast enough to allow alignments of virtually any size.
Further, in most (simple) cases, the quality of the alignments is very good, as
judged by the ability to correctly align corresponding domains from sequences
of known secondary or tertiary structures [6]. So this approach also works
well if the data sets consist of sequences of different degrees of divergence.
By the time the most distantly related sequences are aligned, one already has
a sample of aligned sequences which gives important information about the
variability at each position. The placement of gaps in alignments between
closely related sequences is much more accurate than between distantly re-
lated ones. Therefore, the positions of the gaps which were introduced during

the early alignments of the closely related sequences are not changed as new
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Pairwise Alignment of al possible pairs
of sequences.

Creation of adistance matrix of all
sequences.

Cadlculation of theinitial guide tree, built up
by the distances between the sequences.

Serial pairwise alignments of larger and
larger groups of sequences, following the
branching order in the guide tree.

Figure 5: A flow chart representing the main steps of CLUSTAL W. See the text for details.
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Figure 6: This is an example for a multiple nucleic acid sequence alignment. On the left

side some gaps are shown. The last line is the consensus line which indicates identities.

sequences are added. One problem is that this approach becomes less re-
liable if all of the sequences are highly divergent. More specifically, any
mistakes like misaligned regions made early in the alignment process cannot
be corrected later as new information from other sequences is added. Thus,
there is no guarantee that the global optimal solution has been found and
the alignment is not captured in a local minimum. This risk increases with
the divergence of the initially aligned sequences and is thought of as mainly
resulting from an incorrect branching order in the initial tree. As mentioned
above initial trees are derived from a matrix of distances between the sepa-
rately aligned pairs of sequences in the first steps of the multiple alignment
process. Most relevant errors occur during these initial alignments.
Furthermore, the parameter choice problem is very important. One choo-
ses a weight matrix and two gap penalties (one for opening a new gap and
one for extension of an existing gap) and expects that these should work
well over all parts of all the sequences in the data set. When the sequences
are closely related this works in most cases. But this problem increases

as the sequences diverge. All residue weight matrices give most weight to
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identities. If identities dominate an alignment, almost any weight matrix
will find approximately the correct solution. With very divergent sequences
the scores given to non-identical residues will become critically important,
because there are more mismatches than identities.

Another problem arises with the choice of the best gap penalties. The
range of gap penalty values which will find the correct or best possible solu-
tion can be very broad for highly similar sequences, but as more and more
divergent sequences are used, the exact values of the gap penalties become
very important for success [78]. Further, in protein alignments, gaps do not
occur randomly. They occur far more often between the major secondary

structural elements like helices than within [68].

2.5 CLUSTAL W in Some Details

A widely used program is CLUSTAL W [74]. CLUSTAL W addresses the align-
ment parameter choice problem and dynamically varies the gap penalties in
a position- and residue-specific manner. The observed relative frequencies of
gaps adjacent to each of the 20 amino acids are used to locally adjust the gap
opening penalty after each residue. Short stretches of hydrophilic residues
usually indicate loop or random coil regions and the gap opening penalties
are locally reduced in these stretches. In addition, the locations of the gaps
found in the early alignments are also given reduced gap opening penalties.
And because it has been observed that gaps in alignments between sequences
of known structure tend not to be closer than roughly eight residues on aver-
age, CLUSTAL W also increases the gap opening penalty within eight residues
of an existing gap. The two main series of amino acid weight matrices used
today are the PAM series [36] and the BLOSUM series [20]. In each case there is a
range of matrices to choose from. Some matrices are appropriate for aligning

very closely related sequences where most weight by far is given to identities,
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with only the most frequent conservative substitutions receiving high scores.
Other matrices work better at higher evolutionary distances where less im-
portance is attached to identities. As the alignment proceeds, CLUSTAL W
chooses different weight matrices depending on the estimated divergence of
the sequences to be aligned at each stage.

Besides, sequences are weighted by CLUSTAL W to correct for unequal
sampling across all evolutionary distances in the data set [77, 78]. This down-
weights sequences which are very similar to other sequences in the data set
and up-weights the most divergent ones. The weights are calculated directly
from the branch lengths in the initial guide tree [75, 74]. In CLUSTAL W the
initial guide tree used to guide the multiple alignment, is calculated using
the Neighbour-Joining method [71] which is quite robust against the effects
of unequal evolutionary rates in different lineages and gives good estimates
of individual branch lengths. These branch lengths are used to derive the
sequence weights. And finally it is possible for the user to choose between
fast approximate alignments [7] or full dynamic programming for the distance
calculations used to make the guide tree.

As mentioned above the first step of the basic multiple alignment algo-
rithm is aligning separately all pairs of sequences in order to calculate a
distance matrix giving the divergence of each pair of sequences. Accurate
scores for constructing the best pairwise alignments are derived from full
dynamic programming alignments using two gap penalties (for opening or
extending gaps) and a full amino acid weight matrix. The relevant distance
scores for the matrix are then calculated as the number of identities in the
best alignment divided by the number of residues compared (gap positions
are excluded). These scores are then initially calculated as per cent identity
scores and are converted to distances by dividing by 100 and substracting
from 1.0 to give number of differences per site.

The trees used to guide the final multiple alignment process are calculated
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from the distance matrix derived in the first step. This produces unrooted
trees with branch lengths proportional to the estimated divergence. Then the
root of one tree is established at a position where the means of the branch
lengths on either side of the root are equal. These trees are then also used
to derive a weight for each sequence.

The weights are dependent upon the distance from the root of the tree
but sequences which have a common branch with other sequences share the
weight derived from the shared branch. For example, a sequence’s weight
consists of the distance for its own branch plus half the length of the branch
shared with its neighbour in the tree plus one third of the length shared with
its second, less homologous neighbour, and so on. This sums a total weight
for each sequence. Then the weights are normalised in such way that the
biggest one is set to 1.0 and the rest are all less than 1.0. Groups of closely
related sequences receive smaller weights because they contain much dupli-
cated information. Highly divergent sequences without any close relatives
receive high weights.

Then the progressive alignments start. The basic procedure at this stage
is to use a series of pairwise alignments to align larger and larger groups of
sequences, following the branching order in the guide tree. First the most
similar sequences at the tips of the tree get aligned. Then this alignment
gets aligned with the third most similar sequence which is something more
divergent from the first two sequences and so on till the last sequence with
the least homology gets aligned with an alignment consisting of all other
sequences. At each stage a full dynamic programming algorithm [62] is used
with a residue weight matrix and penalties for opening and extending gaps.
So each step consists of an alignment of two existing alignments or sequences.
Gaps that are present in former alignments remain fixed, but new gaps that
are introduced at each state of alignment get full opening and extending

penalties even if they are introduced inside old gap positions. The score
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Figure 7: A distance matrix derived guide tree for avian hepatitis B viruses. The branch

lengths are proportional to the estimated divergences.
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between a position from one sequence or alignment and one from another
is calculated as the average of all pairwise amino acid weight (substitution)
matrix scores in the two sets. For example, aligning two alignments with
2 and 4 sequences the final score for this position is the average of 8 (2x4)
comparisons. If one of the sequences contains a gap at this specific position,
the gap versus a residue is scored as zero. Besides, the default amino acid
weight matrices used in this context are rescored to have only positive values.
Thus, this treatment of gaps treats the score of a residue versus a gap as
having the worst possible score. And also, because sequences are weighted to
correct for unequal sampling across all evolutionary distances in the data set,
as mentioned before, each weight (substitution) matrix value for the residues
is multiplied by the weights of the two sequences.

Two different gap penalties are used: a gap opening penalty, which gives
the cost of opening a new gap of any length, and a gap extension penalty,
which gives the cost of every item in the gap. CLUSTAL W varies gap penalties
used with different weight (substitution) matrices to improve the accuracy
of the sequence alignments. Further, the per cent identity of the two (groups
of) sequences to be aligned is used to increase the gap opening penalty for
closely related sequences and to decrease it for more divergent sequences.
Also, if there are already gaps at a position, then the gap opening penalty is
reduced in proportion to the number of sequences with a gap at this position
and the gap extension penalty is lowered by a half. If a position does not have
any gaps but is within 8 residues of an existing gap, the gap open penalty
is increased. In the case of proteins the gap open penalty is reduced by one
third in hydrophilic stretches.

Finally, CLUSTAL W offers two main series of weight matrices to the user:
the Dayhoff PAM series [20] and the BLOSUM series [36]. In each case there is a
choice of matrices ranging from strict ones, useful for comparing very closely

related sequences, to less strict ones which are useful for aligning more diver-
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gent sequences. Depending on the distances between the two sequences or
groups of sequences to be compared, CLUSTAL W switches between 4 different
matrices in each series. The distances are measured directly from the guide

tree.

2.6 RNA Secondary Structure Prediction

RNA polymers are macromolecules, consisting of a linear arrangement of
building blocks, the monomers [32]. RNA polymers have the ability to fold
back on themselves, due to interactions between individual base pairs. For
biopolymers like proteins or RN A these interactions are specific, and can lead
to the adaption of a unique compact conformation called 'native state’. Dur-
ing the structure formation process both, RNA and proteins, try to minimize
the solvent exposure of hydrophobic residues by burying these residues in the
interior of the structure [37]. But it is self-evident from the different chemical
nature of RNA and proteins that the ways how these macromolecules achieve
their compact conformation is different. For proteins the driving force of the
collapse into compact conformations is the formation of a hydrophobic core.
For RNA the formation of compact conformation is promoted by the ten-
dency to maximize the stacking interaction between base pairs [38]. And
it is essential for living cells that this formation of the correct and func-
tional conformation is achieved in biologically relevant sufficiently short time
(80, 79, 81, 33].

From a theoretical point of view, the problem of how biopolymers achieve
their native state splits up into two aspects. The first aspect is the structure
prediction problem. The second aspect deals with the dynamics of the folding
process itself [13, 14, 35].

Since the sequence of a biopolymer specifies its three-dimensional struc-

ture, it should be possible, at least in principle, to predict its native structure
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solely from the knowledge of the sequence [45]. And in fact, as is becoming
increasingly clear, biopolymers like proteins or RNA are flexible and rapidly
fluctuating molecules whose structural mobilities have functional significance
[15, 59].

The native states of RNA consist of a large ensemble of closely related and
rapidly inter-converting conformational sub-states of nearly equal stabilities.
Theoretical methods for structure prediction require extensive computation.
The secondary structure of RNA is defined as the pattern of base pairs, which
is formed by hydrogen bonds between atoms of the four bases [67, 66].

For RNA folding powerful algorithms [65, 83] based on the method of
dynamic programming [8] and experimentally measured energy parameters
have been developed [26, 34, 49, 76].

RNAfold as part of the Vienna RNA package reads RNA sequences from
stdin and calculates their minimum free energy structure, partition function
and base pairing probability matrix [41, 60]. It returns the minimum free
energy structure in bracket notation, its energy, the free energy of the thermo-
dynamic ensemble and the frequency of the minimum free energy structure
in the ensemble to stdout. It also produces PostScript files with plots of
the resulting secondary structure graph and a ”dot plot” of the base pairing
matrix. The dot plot shows a matrix of squares with area proportional to
the pairing probability in the upper half, and one square for each pair in the
minimum free energy structure in the lower half. The results of RNAfold are

used as an input for alidot and pfrali [43, 44, 40].

2.7 Detection of Conserved RNA Structures

The programs alidot and pfrali detect conserved secondary structure ele-
ments in relatively small sets of RNAs by combining multiple sequence align-

ments and secondary structure predictions. Both a (good) sequence align-
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ment and secondary structure predictions for each sequence in the alignment
must be provided as inputs. While alidot works with single structures, its
variant pfrali uses base pairing probability matrices.

The starting point of the analysis of conserved secondary structure ele-
ments is a list of all predicted base pairs. This list will in general not be a
valid secondary structure, because it is possible that one certain nucleotide
takes part in more than one base pairs and it is possible that base pairs cross.

The quality of the input sequence alignment is of crucial importance. So
the approach of the combined amino acid and nucleic acid based alignments
should provide one with better sequence alignments with less gaps.

The basic idea behind both alidot and pfrali is to sort the individual
base pairs by their credibility and to reduce the number of entries in the list
by subsequent filtering steps until only those secondary structure elements
are left that are consistently predicted. Of course the sorting procedure is
very important. For each predicted base pair the nucleotides occurring in the
corresponding positions in the sequence alignment are stored. A sequence is
non-compatible with a base pair (i.j) if the two nucleotides at positions i and
j would form a non-standard base pair such as GA or UU. A sequence is
compatible with base pair (i.j) if the two nucleotides form either one of the
following six combinations: GC, CG, AU, UA, GU, UG.

When different standard combinations are found for a particular base pair
(i.j) we may speak of consistent mutations. If we find combinations where
both positions are mutated at once we have compensatory mutations. The
occurrance of consistent and, in particular, compensatory mutations strongly
supports a predicted base pair, at least in the absence of non-consistent
mutations.

We call a base pair (i.j) symmetric if j is the most frequently predicted
pairing partner of 7 and if ¢ is the most frequently predicted pairing partner

of j. Foe each sequence position ¢ there is at most one symmetric base pair
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involving 1.

In the first step of alidot and pfrali, a list of 'believable base pairs’ is
extracted from the set of all pairs which are contained in the input. In the first
processing step of alidot, all but the most frequent pair (7.j) for each base i
is removed. The remaining list is then sorted according to some hierarchical
criteria like: (i) the more sequences are non-compatible with (7.j), the less
credible is the base pair, (ii) symmetric base pairs are more credible than
other base pairs, (iii) a base pair with more consistent mutations is more
credible, (iv) base pairs are more credible with smaller values of a certain
pseudo-entropy which is derived from the frequencies f;; with which (i.j) is
predicted in the sample of sequences and which is a measure for the reliability.
In contrast, pfrali does not prune the list in a preprocessing step and uses a
two-step mechanism for sorting the list of base pairs: (i) the more sequences
are non-compatible with (7.j), the less credible is the base pair, (ii) if the
number of non-compatible sequences is the same, then the pairs are ranked
by the product of the mean probability and the number of different pairing
combinations.

The next step is common to both programs: the sorted list is reduced by
running through it and removing all base pairs that cross with higher ranking
ones and hence would not yield a valid secondary structure.

The resulting secondary structure will, in general, still contain ill-suppor-
ted base pairs. These are removed by three subsequent filtering steps. First
all pairs are removed that have more than two non-compatible sequences, as
well as pairs with two non-compatible sequences adjacent to a pair that also
has non-compatible sequences.

Next all isolated base pairs are omitted. The remaining pairs are col-
lected into helices. Only those helices are retained that satisfy the following
conditions: (i) the highest ranking base pair must not have non-compatible

sequences, (ii) for the highest ranking base pair the product of the mean
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Figure 8: Scheme of the secondary structure analysis of viral genomes. Sequences are
aligned using a standard multiple alignment procedure. Secondary structures for each
sequence are predicted and gaps are inserted based on the sequence alignment. The
resulting aligned structures can be represented as aligned mountain plots. From the aligned
structures consistently predicted base pairs are identified. The alignment is used to identify
compensatory mutations that support base pairs and inconsistent mutants that contradict
pairs. This information is used to rank proposed base pairs by their credibility and to

filter the original list of predicted pairs.
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probability and the number of different pairing combinations must be greater
than 0.3, (iii) if the helix has length 2, it must not have more non-compatible
sequences than consistent mutations.

The search algorithms for detecting conserved RNA structure elements
are based on both a multiple sequence alignment and predicted secondary
structures. The multiple sequence alignment is contained in a single file
in CLUSTAL W format. The predicted secondary structures are contained in
individual files (e.g minimum free energy files or base pairing probabilities
produced by RNAfold as part of the Vienna RNA package).

Both programs produce both text and PostScript output. The text out-
put contains some statistics, all base pairing data and the conserved structure
in bracket notation. The PostScript output are dot plots, a simple graphi-
cal representation of structures, where each base pair corresponds to a small
sqare in a matrix of size sequence length x sequence length. The size and
color of this ’dot’ are used to encode additional information like the frequency

of prediction and the number of different consistent base pairs.
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3 The RALIGN Project

3.1 Difficulties of Nucleic Acid Alignments

Alignments of nucleic acid sequences can bear one main problem: the se-
quence heterogenity on the level of nucleic acid makes good alignments often
impossible. The resulting alignments contain too many gaps although the
sequences should be very similar regarding their high degree of relationship.
While protein sequences can still show substantial homology, the correspond-
ing nucleic acid sequences are already essentially randomized. This is caused
by the inherent redundancy of the genetic code: most amino acids have more
than one codon on the level of nucleic acid. As a result it is possible that
two different nucleic acid sequences code for the same protein sequence. In
a protein alignment these amino acids would match each other while the
differences on the level of nucleic acids can produce gaps in a nucleic acid
alignment. This specific problem leads to various gaps within coding regions
where they are not really necessary, because the biologically important part
of the system is protein at this region of the genome. Furthermore, on the
level of protein alignments many of this gaps could have been avoided.
Therefore, in most cases it is possible to obtain better alignments on the
level of protein than on the level of nucleic acids. The scores (the per cent
homologies) are higher and the number of gaps within the protein sequences
is not as high as it would be in the case of nucleic acids. Reducing the gaps
within an alignment improves the resulting alignment which may be used as
input into other sequence data processing programs like those for secondary

structure prediction.
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SARGLSSTVSLGQFEHWSPR
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NARNLSDTVSLSQFDHPSPR

AGTGCAAGAGGATTAAGTAGTACAGTAAGTTTAGGACAATTTGAACATTGGAGTCCAAGA
GC GG T AC G T CA TT GA CA CC G
GACGCCCGCGACCTCTCCGACACCGCTTCCCTCTCCCAGTTCGACCACCCCTCCCCCCGC

Figure 9: Example for the problem of higher sequence heterogenity on the level of nucleic
acids. It shows an hypothetical amino acid alignment on top which represents a high de-
gree of similarity between both protein sequences allowing for an unambiguous alignment.
Below the same sequences are aligned on the level of nucleic acids. It is clearly visible
that the sequences are much more heterogenous: the pairwise identity is only 33%. This

is only slightly above the 25% identity expected for two random nucleic acid sequences.

3.2 Some Characteristics of virus genomes

Virus genomes contain various open reading frames within their nucleic acid
sequences as they are available as data sets in various data banks (e.g.
GenBank). The lengths of small virus genomes can vary from some 3500
bp as in hepatitis B up to about 20000 bp as in the case of Ebola. The
typical genome size is about 10000 bp. The genomes can consist of single-
stranded or double-stranded DNA or single- or double-stranded RNA. Also
some viruses with relatively large double-stranded genomes exist, like the
pox viruses. Retrotranscribing viruses are the retroviruses (e.g. HIV), the
hepatitis B viruses as well as caulimoviruses which have a DNA genome but
use RNA as an intermediate during their replication. RNA viruses have enor-
mously high mutation rates of up to 10~ per position and replication. The
number of the open reading frames depends on the type of virus considered.
In addition, the organization of virus genomes is extremely variable. Over-

lapping open reading frames are possible, hence one part of the nucleic acid
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sequence codes for more than one protein in different frames. Theoretically,
three open reading frames can be covered by the same nucleic acid sequence
in all three possible reading frames. This possibility is actually realized in
the hepatitis B virus. In addition, various non coding regions can exist in a

certain virus genome.

3.3 The Idea behind RALIGN

The idea behind the combined amino acid and nucleic acid based alignments
(RALIGN) is that coding regions on the level of protein vary less than on the
level of nucleic acid, because most amino acids are coded by more than one
codon (base triplet) and some different nucleic acid sequences can produce the
same protein sequence after translation. Thus, our approach was to improve
the quality of sequence alignments of RNA viruses (especially the pregenomic
RNA intermediate of Hepatitis B virus) by creating and implementing a
combined alignment algorithm.

One could argue that the quality of sequence alignments could be raised
simply by translating the entire nucleic acid sequence into protein and pro-
cessing on the level of proteins. But a very important factor is that the viral
genomic sequence could consist of more than just one open reading frame
(various coding regions in different frames) as well as some non-coding re-
gions. These non-coding regions should, of course, be processed as nucleic

acids, and every open reading frame should be processed in the correct frame.

3.4 The RALIGN Algorithm

The combined amino acid and nucleic acid based alignment procedure is
made available in a program called RALIGN. The source code of the package
is written in the programming language C and will run on computers with a

conforming C compiler.
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RALIGN reads GenBank nucleic acid sequences from sequence files in Pear-
son’s format and GenBank format. Besides, it is possible for the user to define
one or more than one codon tables for each sequence or a group of sequences.
Every input file can be processed using its own codon table. The standard
codon table is the universal genetic codon table which fits most cases. Enter-
ing 'ralign’ without any options or input files displays a list of the various
available codon tables. These user-defined codon tables are then used by
the program for translation and, of course, for finding the correct start- and
stop-codons in the nucleic acid sequences. Then the program finds all possi-
ble open reading frames which have a previously defined minimal length.

GenBank files may contain information about the exact positions of start-
and stop-codons, the genomic structure of exons and introns or the protein
sequence after translation. If some information like this (e.g. regarding exons
and introns) is present in the GenBank file, it can be obtained and used as
preferred information.

The detected coding regions are translated, using the correct codon ta-
ble, and the resulting proteins are compared to the protein sequences in the
GenBank file, if available. An output file is created which contains all data
about the detected open reading frames, either derived by reading the data in
the GenBank file or as a result of the automatic search done by the program.
From this file the user can get information about all open reading frames,
about their length, their start and stop, and the lengths of their proteins af-
ter translation. Also a second file is created: a PostScript output file which
gives a graphical representation of the found open reading frames either in
one of the three frames or, beyond these, as derived from the GenBank file
input with all introns.

In many cases we can see significant differences in the genetic structure
regarding the number and order of various open reading frames even between

very closely related sequences. This makes it difficult to decide which ORF's
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Figure 10: An example for the PostScript output of RALIGN. The figure shows a graphical
representation of the found open reading frames of three unrelated sequences. A mouse
gene, the genome of HIV1 and the genome of hepatitis B virus. The exon-intron organiza-
tion in the mouse gene is shown (as obtained through the GenBank file) and also all found

open reading frames in the three sequences.
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NUMBER OF SEQUENCE INPUT: 1

PATH OF SEQUENCE INPUT FILE: Data/MAUS1.gbf
NAME OF SEQUENCE: MUSMHQAMB

found ORF’s: 4

ORF number (order of appearance): 1

exon information: GenBank_file

start: 200 stop: 2388 length: 1035

protein sequence length: 344

No differences to protein sequence in GenBank file.

ORF number (order of appearance): 4

exon information: search_result

start: 1807 stop: 2163 length: 357
protein sequence length: 118

Not covered by GenBank file information.

ORF number (order of appearance): 3
exon information: search_result

start: 1066 stop: 1356 length: 291
protein sequence length: 96

Not covered by GenBank file information.

ORF number (order of appearance): 2
exon information: search_result

start: 600 stop: 776 length: 177
protein sequence length: 58

Not covered by GenBank file information.

Figure 11: An example for the text file output of RALIGN. Various data about the input
sequences are shown, like the name, the positions of start and stop codons, the lengths of
nucleic acid and protein sequences and information whether the open reading frame was

found automatically or derived from the GenBank file.
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correspond to each other in the various sequences.

Overlapping open reading frames are quite frequent in virus genomes. If
a certain part of the sequence is coding for two or three proteins, a decision
has to be made which open reading frame is used for the protein alignment.
RALIGN constructs a hierarchy which considers the lengths of the open reading
frames. The longest coding region gets highest priority, the second longest
second highest priority and so on. The largest selected coding regions from
every sequence get aligned first as a protein alignment.

The program makes a first decision, which coding regions are maintained
through the alignments as protein sequences and what regions get aligned on
the level of nucleic acids. RALIGN gives the highest priority to the longest open
reading frames and checks simply, going from the longest to the shorter ones,
which of these regions are located at about the same position. The proposed
assignment is presented to the user in a file listing the open reading frames
chosen for protein alignment. The user now has the possibility to alter this
assumption and to tell the program exactly what coding regions are to be
used for alignments on protein level. The information in both output files
(text and PostScript) turned out to be quite helpful to make meaningful
decisions about the choice of the open reading frames which get processed
as protein sequences in the various alignment steps. In many cases this
possibility to change the program’s assumption is important.

After the user has either manipulated or accepted the chosen open reading
frames, RALIGN computes alignments of the homologous sequence parts. In
the current implementation CLUSTAL W is used for this purpose.

Normally, an alignment like this produces end gaps. End gaps are not
penalised by the CLUSTAL W algorithm, so they occur very often. Here we
are aligning only a piece of the genomic sequence; thus this treatment of end
gaps is not desireable. Since CLUSTAL W is used as a ‘black box’ via a system

call, we have to resort to a trick:
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RALIGN cuts off the end gaps such that the remaining ’central alignment
block’ has no gaps both at the first and the last position. The sequence
pieces that have been cut off are joined to the neighbouring sequence parts
before and after the now aligned protein parts of the sequence. In the case
of overlapping coding regions these cut off parts are again handled on the
level of the proteins that these regions code for. On the other hand, if
the neighbouring sequences are non-coding, the cut off sequence pieces are
handled directly as nucleic acids.

Then the second protein alignment of the second largest open reading
frames (with second priority) is started. Again the central alignment block is
generated and the cut off end gap regions are again joined to the neighbouring
parts. If, in the case of overlapping coding regions, the central block of
the first alignment (the alignment of higher priority) is still overlapping the
second open reading frame, then the second protein alignment processes only
this part of the second open reading frame which is not covered by the prior
alignment. In order to be able to smoothly join the first and second central
alignment block we have to suppress the generation of end gaps in the second
alignment. This is achieved by adding a tag to each of the sequences to be
aligned. In the present implementation this tag consists of 12 copies of the
string THISISATAG, which is quite unlikely both for a native amino acid and
nucleic acid sequence. Im almost all cases, therefore, CLUSTAL W aligns the
artifical tag sequences with each other and hence provides us with well defined
edges for the alignment of the real sequence. The ends of the second protein
alignment part which lie adjacent to the first central alignment block are
therefore forced to lie exactly one above the other.

After having aligned all protein subsequences (all chosen open reading
frames), after having removed all end gap containing regions, and after having
linked them to the neighbouring parts of the sequences, the alignments of the

non-coding regions start. Again the ends of the aligned sequence parts are
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forced to lie one above the other, if these ends are adjacent to formerly aligned
protein parts. That way all parts can be joined smoothly together.

The protein alignments are then reverse translated. At every position
where the protein alignments contain a gap of length n, a gap of length 3n
is inserted into the corresponding nucleic acid sequence at the corresponding
site.

Finally, all alignments, either on the level of proteins or nucleic acids, get
combined and a resulting alignment output file is created which contains the
complete nucleic acid sequence alignment.

In some rare cases CLUSTAL W will not properly align the tag regions
added to suppress end gaps. Gaps inserted into the tags can lead to imperfect
removal of the tags and thereby corruption of the sequences.

In a last step the final alignment is checked for such errors. Currently,
the only recourse is to remove the offending sequence from the alignment. A

permanent fix will be implemented at a later time.
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Read input sequence files

Extract information like about introns,
protein sequence and names

Align all open reading frames using
ahierarchy built up by the lengths of
the ORFsin the case of overlaps

and using tags

!

Search open reading frames
respecting the correct codon table

Align all non coding regions lying
between the ORFs using tagsto align
the ends correctly

!

!

Tranglate all ORFs respecting the
correct codon table

Reverse trandlate the protein alignments
and remove tags

v

\

Create PostScript output

Merge the alignment parts

v

\

Create text file output and present

Write the resulting output file

information

v/

Sort ORFs by length

\

Make an assumption which ORFs get
aligned on the level of protein

Check for alignment errors and display
information about them

v/

\

Present the assumption and wait for
corrections

\

Read corrections and start alignments

Output:

ral.an: the resulting alignment file

ORF.ps : the PostScript output

ORF.ral: the text output

ORFinput.ral: the assumption about
the protein alignments

NCral.out: CLUSTAL W messages

for the non coding regions
ORFral.out: CLUSTAL W messages
for the ORFs

Figure 12: This flow chart shows the main steps of RALIGN.
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4 Results

4.1 Examples for Improved alignments
4.1.1 Human Immunodeficiency Viruses

Although individual cases of unexplained immunosuppresion accompanied
by opportunistic infection were recognized in industrialized societies during
the 1960s and 1970s, 1981 proved to be a turning point in the recognition of
a new syndrome. Outbreaks of immunodeficiency-associated conditions such
as Kaposi’s sarcoma, mucosal candidiasis or Pneumocystis carinit pneumonia
were described. As the underlying infectious agent for this newly described
immunodeficiency syndrome human retroviruses were identified, named hu-
man immunodeficiency virus type I (HIV-1). In 1986, a second HIV (HIV-2)
was isolated in West Africa and subsequently in Europe and North America.

The CD4 receptor, present on most T-helper cells, many cells of mono-
cyte-macrophage lineage, and certain other cell types, appears to be the
principal receptor for attachment of both HIV-1 and HIV-2. But also other
mechanisms for viral entry into certain cells are possible and the search for
additional receptors (like the Fc receptor) that facilitate virus entry into cells
has been intense.

Over the course of infection, the virus an individual carries broadens in
tropism and biologic variability. Small changes in the envelope glycoprotein
amino acid composition can lead to large differences in phenotype. Sequence
variation occurs rapidly. Although a predominant HIV species is maintained
over time, swarms of quasispecies of subtly altered viruses emerge with broad-
ened tropism and possibly increased cytopathic capacity.

HIV-1 is a highly complex retrovirus [42, 44]. Its genome is dense with
information for coding of proteins and biologically significant RN A secondary

structures [48]. The latter play a role in both the entire genomic HIV-1
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Figure 13: Organization of a retrovirus genome like HIV-1. Proteins are shown on top,
known features of the RNA are indicated below. For details about the genes see the text.

Arrows indicate the positions of the following five examples for improved alignment results.

sequence and in the separate HIV-1 mRNAs, which are basically (combined)
fragments of the entire genome [3].

The major genes of HIV-1 are gag, pol, env, tat and rev. See the figure
for graphical representation.

The gag gene codes for structural proteins for the viral core. The pol
gene codes among others for the reverse transcriptase and the protein that
integrates the viral DNA (after reverse transcription) into the host DNA.
The env gene codes for the envelope proteins. The tat and rev genes code
for regulatory proteins, Tat and Rev, that can bind to TAR and the RRE,
respectively. INS1, INS2 and CRS are RNA sequences that destabilize the
transcript in the absence of the Rev protein. FSH refers to the hairpin that
is involved in the ribosomal frameshift from gag to pol during translation.
Poly(A) refers to the polyadenylation signal. PBS is the primer binding site.

In the following, parts of an alignment of HIV-1 genomes will serve as
examples how the number of gaps could be reduced. These parts are cut out

of an complete alignment with a total length of the order of 10 000 nt.
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There is no significant difference between the alignment generated by
CLUSTAL W and by RALIGN regarding the length of the alignment. But the
number of gaps is much lower in the RALIGN generated alignment while the
gaps are longer. Besides, RALIGN produces no gaps which cannot be divided
by 3 in the regions of the protein alignments. See the figures on the next
pages which show cut out parts of a conventional alignment produced by
CLUSTAL W in contrast to an alignment produced by the combined amino
acid and nucleic acid based alignment algorithm as implemented in RALIGN.
It is shown that the number of gaps in the alignment could have been reduced

distinctly using RALIGN.
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AE- 90CF402 UACAUUGUACCAAGG- - CU- - - - == === - - - - - - AGUUUUACUAAUGCCA:- - - - - - - - -

AE- CM240 UAAAUUGUACCAAUG: - CU- - - - = = === - - oo - - AAUUUGACCAAUGGCAGUAGCAAAA
B- 896 UAAAUUGCACUAAUUUGAAUAUCACUA- - - - - - AGAAUACUACUAAUCCCACUAGUAGCA
B- ACH320A UAAAUUGCACUGAU- - - UWUUG: - - - - - - - - - - - GGAAUGCUACUAAUACCACUAGUAGUA
B- BCS&3 UAAAUUGCACUGAUGAGUUGA- - - - - - - - - - - - AGAAUGCUACUAAUACCACUAGUACUA
B- CAML UAAUUUGCACUAAUG- UA- - - - - - === - - - - - - AAUAAUACUAGGACCAAUAGUAGUG
B- D31 UAAAUUGCACUGAUC- UGAAG - ------------ AAUGCUACUAAUACCAAUAAUAGUA
B- HI V1AD8 UAAAUUGCACUGAUU- UGAGG: - - - - --------- AAUGUUACUAAUAUCAAUAAUAGUA
B- HXB2 UAAAGUGCACUGAU- - - UUGA- - - - - - - - - - - - AGAAUGAUACUAAUACCAAUAGUAGUA
B- JRCSF UAAAUUGCAAAGAUGUGAA: - - - - - - == - === - - - - - UGCUACUAAUACCACUAGUAGUA
B- LAl UAAAGUGCACUGAU- - - UUGG- - ---------- GGAAUGCUACUAAUACCAAUAGUAGUA
B- MANC UAGAUUGCACUGAUUAUGUAG: - - - - - - - - - - - GGAAUGCUACUAAUACCACUAGCACUA
B- OvI UAGAUUGCACUGAUGUUAAUA- - - - - - - - - - - - CCACUAGUAGUAGUUUGAGGAAUGCUA
B- SF2 UAAAUUGCACUGAUU- UGGGG: - - - - === == - - - - AAGGCUACUAAUACCAAUAGUAGUA
B- WEAU UAAAUUGCACUAAUGUGAAUGUGACUAAUUUGAAGAAUGAGACUAAUACCAAUAGUAGUA
B- YU2 UAAAUUGCACUGAU- - - UUAA- - - - - - - - - - - - GGAAUGCUACUAAUACCACUAGUAGUA
B- pNL43 UAAAGUGCACUGAU- - - UUGA- - - - - == - - - - - AGAAUGAUACUAAUACCAAUAGUAGUA
D- ELI UAAACUGUAGUGAU- - - = = - == - - o e e e e e e GAAU- UGAGGAACA- - - AUGGCACUA
D- NDK UAAACUGCACUGAU- - - - - - == - - o e e e o e oo GAAU- UGAGGAACAGCAAGGGCA- - A
O ANT70 UGGAGUG- - - === mmmmmmmmmm e e e - ACAAACAUAGCUGGAACAA
O WP5180 UGAACUGUGUAGAUG- - - - - = - - == - - - - - U----- GCAAACAAAUAAAACAGGCCUAU
S| VCPZGAB UGCAGUGCAGUAAGG: - - - - == ----=------- CUAACUUUAGCCAGGCAAAAAACCUAA

Figure 14: In the central region of these part of an conventional CLUSTAL W alignment of
HIV-1 genomes there are some gaps of length 3, separated from the neighbouring gaps by
just 4 nucleotides. In some lines (like the third one) we have gaps of length 1. And in the
last line there are two gaps separated just by one single nucleotide. So almost each line
contains more than one gap. The total number of gaps in this alignment part is 39, 17
can not be divided by 3.

ADI - MAL UAAACUGCACUAAUGUGAAUGGGACUGCUGUGAAUGGGACUAAUGCUGGGAGUAAUAGGA
AE- 90CF402 UACAUUGUACCAAG: - - - = = = = = < = = = mmmm e e o e - GOUAGUUUUACUAAUGCCA
AE- CMR40 UAAAUUGUACCAAU- - - - = - = - = < =« e e e e e e oo GOUAAUUUGACCAAUGGCA
B- 896 UAAAUUGCACUAAUUUGAAUAUG: - - - = - = - = < - < - - - ACUAAGAAUACUACUAAUCCCA
B- ACH320A UAAAUUGCACUGAUUUUGGG - - = - = - = - = < == == <= o< - < - - AAUGCUACUAAUACCA
B- BCSG3 UAAAUUGCACUGAU- - = - - - = < =< == == o= oo o GAGUUGAAGAAUGCUACUAAUACCA
B- CAML UAAUUUGCACUAAUGUAAAL- - - < - < = = == - =< - = AAUACUAGGACCAAUAGUAGUGAUU
B- D31 UAAAUUGCACUGAUCUGAAG: - - = - = - = - = < == == o= << < - - AAUGCUACUAAUACCA
B- HI V1AD8 UAAAUUGCACU - - - - = = - =« =< = s me e me o GAUUUGAGGAAUGUUACUAAUAUCA
B- HXB2 UAAAGUGCACUGAUUUGAAG: - - = - = - = - =< == == o= - = < - - AAUGAUACUAAUACCA
B- JRCSF UAAAUUGCAAAGAUGUG: - - - < = = == == == == == m = o c oo AAUGCUACUAAUACCA
B- LAl UAAAGUGCACUGAUUUGGGG - - = - = - = - =< == == == =< o< - - AAUGCUACUAAUACCA
B- MANC UAGAUUGCACUGAUUAUGUAGEG: - - - - - = < == == == === = < - - AAUGCUACUAAUACCA
B- O UAGAUUGCACUGAUGUUAAUACCACUAGUAGU- - - AGUUUGAGGAAUGCUACUAAUACCA
B- SF2 UAAAUUGCACUGAU- - = - = = = - = < === mmmmm e oo - UUGGGGAAGGCUACUAAUACCA
B- VEAU UAAAUUGCACUAAUGUGAAUGUGACU- - - - - - - - - AAUUUGAAGAAUGAGACUAAUACCA
B- Y2 UAAAUUGCACUGAU- - - - - = = = - = - - - - - - - - UUAAGGAAUGCUACUAAUACCA
B- pNL43 UAAAGUGCACUGAUUUGAAG: - - = - = - = - = < = = == e o e oo - - AAUGAUACUAAUACCA
D-ELI UAAACUGUAGUGAUGAAUUGAGGAACAAUGEC: - - - - - - - - ACUAUGGGGAACAAUGUCA
D- NDK UAAACUGCACUGAUGAAUUGAGGAAG: - - = - - - = < = = - = - - AGCAAGGGCAAUGGGAAGG
O ANT70 UGGAGUGU- - - - < = == = == m o m e e e e e ACAAACAUAGCUGGAACAA
O M/P5180 UGAACUGUGUAGAUCUGCAA: - - < - < =« == <= o e e o e - ACAAAUAAAACAGGCOCUAU
S| VCPZGAB UGCAGUGCAGUAAGGCUAACUUUAGE: - - - - - - - - CAGGCAAAAAACCUAACAAACCAGA

Figure 15: This figure shows about the same region of the HIV-1 genomes as above, after
an alignment using the combined amino acid and nucleic acid based alignment algorithm
as implemented in RALIGN. It is clearly visible that the number of gaps could have been
decreased dramatically. Each line contains just one gap of different lengths. The number

of gaps is 22, this is 44% less than in the above CLUSTAL W generated alignment part.
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ADI - VAL GGGAGUAAUAGGACUA- - - - - - - AUGCAG- - AAUUGAAA- - AUGGAAAUUGGAGAAGUGAAAAAC
AE- 90CF402 A-eeeee-- CCAGUG - --------- ACAGAAUA- - - AAAAUG- - - GAAGAUGCAGUAAGAAAC
AE- CM240 AGUAGCAAAACCAAUGU- - - - - CUCUAACAUAAUAGGAAAUAUA- - - ACAGAUGAAGUAAGAAAC
B- 896 ACUAGUAGCA- - - ------------ GCUGGGGAAUGA- - - - - UGGAGAAAGGAGAAAUAAAAAAU
B- ACH320A ACUAGUAGUA- - - ------------ GCGGGAUUAUAAUA- - - - G- AGAAAGGAGAAAUAAAAAAC
B- BCSG3 ACUAGUACUAAUACCCCUAGUGGUAGCUGGAAAAAGAU- - - - - GGAAAGAGGAGAAAUAAAGAAC
B- CAML AAUAGUAGUGAUU- - - - - GGGACAGGAGGGAAGGAGAAAAGAUG - - AAAGGAGAAAUAAAAAAC
B- D31 AAUAAUAGUAG- - - - - - ----- UGGACGAUGACAGGAGAAAUG- - - AAAGGAGAAAUAAAAAAC
B- HI V1AD8 AAUAAUAGUAG - - - --- GAGGGAA- - -------- UG- - - AGAGGAGAAAUAAAAAAC
B- HXB2 AAUAGUAGUA- - - - - - GCGGGAGAAUGAUA- - AUGGAGAAAGGAGAGAUAAAAAAC
B- JRCSF ACUAGUAGUA- - - - ----------- GUGAGGGAAUGA- - - - - UGGAGAGAGGAGAAAUAAAAAAC
B- LAl AAUAGUAGUAAUACCAAUAGUAGUAGCGGGGAAAUGAUG- - AUGGAGAAAGGAGAGAUAAAAAAC
B- MANC ACUAGCACUAAUAAUACCGCUAGUGGAAGUUGG- - GGAGCGAUG- - - AGAGGGGAAAUAAAAAAC
B- OvI AGGAAUGCUACUAAUACCACAAGUAGUAGUUGG- - GAAACGAUGGAGAAAGGAGAAUUAAAAAAC
B- SF2 AAUAGUAGUAAUU- - - - - GGAAA- - GAAGAAA- - - ------- UA- - - AAAGGAGAAAUAAAAAAC
B- VEAU AAUAGCUAGUAG- - ---------- GGAGGGGAAAAGA- - - - - UGGAGGAGGGAGAAAUGAAAAAC
B- YU2 ACUAGUAGUA- - - ------------ GCUGGGAAACGAU- - - - - GGAGAAAGGAGAAAUAAAAAAC
B- pNL43 AAUAGUAGUA- - - ------------ GCGGGAGAAUGAUA- - AUGGAGAAAGGAGAGAUAAAAAAC
D- ELI

D- NDK

O ANT70

O MWP5180

S| VCPZGAB AAAAACCUAA:- - - - - - === - - - - - - - CAAACCAGACAUCUUCUC- CGCCUCUCGAAAUGAAAAAC

Figure 16: Again a part of an usual alignment created by CLUSTAL W. Almost each line
contains more than one gap, there are also some lines containing up to three gaps, like the
first one. This is a rather bad alignment. The total number of gaps is 53, 34 can not be
divided by 3.

ADI - VAL ACUAAUGCAGAAUUGAAAAUGGAA- - - - === === = - o oo oo oo - AUUGGAGAAGUGAAAAAC
AE- 90CF402 ACCAGUGACAGA- - - - - === == - - m oo - o - - AUAAAAAUGGAAGAUGCAGUAAGAAAC
AE- CM240 AGUAGCAAAACCAAUGUCUCU- - - - - - AACAUAAUAGGAAAUAUAACAGAUGAAGUAAGAAAC
B- 896 ACUAGUAGCAGC- - ---------- UGGGGA- - - - - - AUGAUGGAGAAAGGAGAAAUAAAAAAU
B- ACH320A ACUAGUAG- - ------------- AGCCGG - - GUUAUAAUAGAGAAAGGAGAAAUAAAAAAC
B- BCSG3 ACUAGUACUAAU- - - ACCCCUAGUGGUAGCUGGAAAAAGAUGGAAAGAGGAGAAAUAAAGAAC
B- CAML UGGGACAGGAGCGAAGGAGAA- - - - - - - - - - - - - - - AAG- - - AUGAAAGGAGAAAUAAAAAAC
B- D31 AAUAAUAGUAGUUGGACGAUGACAGGA- - - - - - - - - - - - GAAAUGAAAGGAGAAAUAAAAAAC
B- HI V1AD8 AAUAAUAGUAGUGAGGGA:- - - - - === - - - - - - - oo oo - - - AUGAGAGGAGAAAUAAAAAAC
B- HXB2 AAUAGUAGS - - - ----------- AGCGGGAGAAUGAUAAUGGAGAAAGGAGAGAUAAAAAAC
B- JRCSF ACUAGUAGUAG- - - --------- GAGCGA- - - - - - AUGAUGGAGAGAGGAGAAAUAAAAAAC
B- LAl AAUAGUAGUAAUACCAAUAGUAGUAGCGGGEGAAAUGAUGAUGGAGAAAGGAGAGAUAAAAAAC
B- MANC ACUAGCACUAAUAAUACCGCUAGUGGAAGUUGG - - GGAGCGAUGAGAGGGGAAAUAAAAAAC
B- OvI ACAAGUAG - ------------ - AGUUGGGAAACGAUGGAGAAAGGAGAAUUAAAAAAC
B- SF2 AAUAGUAGS - ------- - o - - - AAUUGGAAAGAAGAAAUAAAAGGAGAAAUAAAAAAC
B- VEAU AAUACUAGUAGUGGAGGGGAA- - - - - - - - - --- - - - AAGAUGGAGGAGGGAGAAAUGAAAAAC
B- YU2 ACUAGUAGY - ---------------- AGCUGGGAAACGAUGGAGAAAGGAGAAAUAAAAAAC
B- pNL43 AAUAGUAGU- - ------------- AGCGGGAGAAUGAUAAUGGAGAAAGGAGAGAUAAAAAAC
D- ELI ACUACAGAGGAGAAAGGAAUG: - - - === - mmmmm oo oo oo o e oo e oo o AAAAAC
D- NDK GUAGAAGAGGAGGAAAAAAGG - - === === s s s s s s e e e e oo - - AAAAAC
O ANT70 ACAAAUGAAAACCUU- - - - - - - - s e e m o e e e e e e e e e e o e oo AUGAAGAAG
O WP5180 UUAAAUGAGACAAUAAAU- - - - - - - - e s e e e e m e e e oo - GAGAUGAGAAAU
S| VCPZGAB ACAUCUUCUCCG: - - == === === mmmmmmmmmm o e e e e oo oo o CCUCUCGAAAUGAAAAAC

Figure 17: This figure shows again about the same region of HIV-1 genomes, but, in
contrast, created by RALIGN. Again clearly visible is the reduction of the number of gaps:
most of the lines contain just one gap, with few lines containing two gaps. There is no

line with more than two gaps. The number of gaps could be reduced by about the half
(26 gaps).
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ADI - VAL - AUAG- - - UACUAAUUAUAGGUUAAUAAAUUG
AE- 90CF402 CAAAUUAGUAGUAGUGUACAAAAUAAUAAUAACAGUAAUACUAGUGGACAAAAUAAUAGUCAUAAGUUUAGAUUAAUACAUUG
AE-CM240  CAAAUU-GAAG ---------------- AUAMGAAGACUAGUAGUG ----------------- AGUAUAGGUUAAUAAAUUG
B-896 SAG - - - e s e - - - - AAAAUACUAAUAAUA- - - - - - - e e e e - CUAAGUAUAGGUUAAUAAGUUG
B- ACH320A - AUAAUAAUAAUACUAAUA- - - - - - CCAGCUAUACCAGCUAUAGGUUGAUAAGUUG
B- BCSG3 - UACCAAAUAUAGGUUGAUAAGUUG
B- CAML SAG - -------- oo - - - AUAAGGCUAAUACAAGY - - - - - - - - - - - s e e e - UAUACAUUGAUACAUUG
B- D31 - - - CUAUAGGUUGAUAAGUUG
B- HI V1AD8 SAG - -------- oo - - - AUMAUGAUAAUACUAG - - - - - - - - - - - - - - - - - CUAUAGGUUGAUAAAUUG
B- HXB2 - - - - - - UACCAGCUAUAAGUUGACAAGUUG
B- JRCSF CCAAAUAUAGGUUAAUAAGUUG
B- LAl - - UACCAGCUAUACGUUGACAAGUUG
B- MANC SAG ------------- - - - AAAAGAAGAAUACUAG - - --------- - - - - CUUUAGAUUGAUAAGUUG
B- Ovl SAG - ---- - - - - - - - AUAAGAAUGAUACUAA:- - - - - - - - - s e e e e AUUUAGGUUAAUACAUUG
B- SF2 - - CCAACUAUACCAACUAUAGGUUGAUACAUUG
B- VEAU -AG --------------- - AUCAUGAUAAUACAAG - - ------------------ CUAUACGUUGAUAAAUUG
B- YU2 - - - CUAGCUAUAGGUUGAUAAGUUG
B- pNL43 - ACCAGCUAUAGGUUGAUAAGUUG
D-ELI - ACAAUGAUAGUAGUACCA- - - - - - AUAG- - - UACCAAUUAUAGGUUAAUAAAUUG
D- NDK - ACAAUAAUAAUAGGACCA- - - - - - AUAG- - - UACUAAUUAUAGGUUAAUAAAUUG
O ANT70 AAAAUGUAUACAUUAACUAAUUG
O MWP5180 AAGGUU- - AAUGA- - - - - -------- CUCAAAUGCAGUAAAUGEA- - - - - - ACAACAUAUAUGUUAACUAAUUG
S| VCPZGAB AACCU----AG --------mmmmm e GGAAUGAGAACAACAG: - - - === === - m e e oo o - AUAUAGGAUAAUUAAUUG

Figure 18: This alignment part shows two very regular gaps of length 4 and 17, separated
by just 2 nucleotides. On the right side another important gap containing region lies.
Each line contains three or four gaps. The total gap number is 69, 45 can not be divided

by 3. Created by an conventional alignment using CLUSTAL W.

ADI-MAL  CAAAUAGAUGAU- - - - - - mmmmmmemmm e AGUGAUAAUAGUAGUUAUAGGCUAAUAAAUUG
AE- 90CF402

AE-CM240  CAAAUUGAA---------------oe o GAU - - e e e AAGAAGACUAGUAGUGAGUAUAGGUUAAUAAAUUG
B-896 @ CCAAUAGAAAAUACUAAU- - - - - - - s sm s e e e e e e e e e e AAUACUAAGUAUAGGUUAAUAAGUUG
B- ACH320A - - - - ACCAGCUAUACCAGCUAUAGGUUGAUAAGUUG
B-BCSG = CCAAUAGAUAAUGAUAAG - -----------m-mmmmmmmmm oo o oo o o - AAUAGUACCAAAUAUAGEUUGAUAAGUUG
B-CAML  CCAAUAGAUAAGGECU- - - == m = - s mmmmmm e e e e e e e e e e e oo AAUACAAGUUAUACAUUGAUACAUUG
B- D31 - - - AAUACUAGCUAUAGGUUGAUAAGUUG
B- HI V1AD8 - - - AAUACUAGCUAUAGGUUGAUAAAUUG
B- HXB2 - - - ACUACCAGCUAUAAGUUGACAAGUUG
B- JRCSF - - - AAUACCAAAUAUAGGEUUAAUAAGUUG
B- LAl - - - ACUACCAGCUAUACGUUGACAAGUUG
B- MANC - - - AAUACUAGCUUUAGAUUGAUAAGUUG
B-Ovl  CCAAUAGAUAAGAAU- - - - - - - - s mmmm oo e e e e e e e e e e e GAUACUAAAUUUAGGUUAAUACAUUG
B-SF2 ~ CCAAUAGAUAAUGCUAGUACUACU- - - - - === - - s s mmmm e e e oo o ACCAACUAUACCAACUAUAGGUUGAUACAUUG
B-VEAU = CCAAUAGAUCAUGAU- - - - - - - - s e e e e e e e e e e e e e e oo AAUACAAGCUAUACGUUGAUAAAUUG
B-YU2 = CCAAUAGAUAAU- - - - - - - - mmmmmmmm oo oo e e e GCUAGCUAUAGGUUGAUAAGUUG
B-pNL43  CCAAUAGAUAAU- - - - - - - s s e e e e e e e e e e oo ACCAGCUAUAGGUUGAUAAGUUG
D-ELI - - - - ACCAAUAGUACCAAUUAUAGGUUAAUAAAUUG
D- NDK - - - - ACCAAUAGUACUAAUUAUAGGUUAAUAAAUUG
O ANT70

O MP5180

S| VCPZGAB

Figure 19: This alignment part gives distinct evidence for the powerful algorithm of
RALIGN. The two plain and regular gaps of length 4 and 17 in the central region could have
been avoided completely. The already existing right-handed gaps were just extended. The
number of gaps is 23, this is 66% less than above.
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ADI - VAL CUCUAUACAACAGCGAUAGU- - - - - - - - A- - - - GGAG- - AUAU- AAGAAGAGCAUAUUGUACU
AE- 90CF402 UUCCAUACAACAGGAAACAU- - - - - - - AAAU- - GAUG- - AUAU- AAGAAAAGCAUAUUGUGAA
AE- CM240 UUCUAUAGAACAGGAGAUAU- - - - - - - AAUA- - GGAA- - AUAU- AAGAAAAGCAUAUUGUGAG
B- 896 UUUUAUGCAAGAAGAAACAU- - - - - - - AAUA- - GGAG- - AUAU- AAGACAAGCACAUUGUAAC
B- ACH320A UUUUAUGCAACAGGACAAAL- - - - - - - AAUA- - GGAG- - AUAU- AAGACAAGCACAUUGUAAC
B- BCS&3 UAUUAUACAACAGGAGAAAU- - - - - - - AGUA- - GGAG- - AUAU- AAGACAAGCACAUUGUAAC
B- CAML GUUUAUGCAACAGACAGAAU- - - - - - - AAUA- - GGAG- - AUAU- AAGACAAGCACAUUGUAAC
B- D31 UUUUAUACAAAAGGAAAAAL- - - - - - - AAUA- - GGAG- - AUAU- AAGACAAGCACAUUGUAAC
B- HI V1IAD8 UUUUAUACAACAGGAGACAU- - - - - - - AAUA- - GGAG- - AUAU- AAGACAAGCACAUUGCAAC
B- HXB2 UUUGUUACAAUAGGAAAAAL- - - - - - - AG- - - - - GAA- - AUAU- GAGACAAGCACAUUGUAAC
B- JRCSF UUUUAUACAACAGGAGAAAL- - - - - - - AAUA- - GGAG- - AUAU- AAGACAAGCACAUUGUAAC
B- LAl UUUGUUACAAUAGGAAAAAL- - - - - - - AG- - - - - GAA- - AUAU- GAGACAAGCACAUUGUAAC
B- MANC UUUCAUGUAACAAGAGCCGU- - - - - - - AACA- - GGAG - AUAU- AAGACAAGCACAUUGUAAC
B- OvI UUUCAUACAACAAAACAAAL- - - - - - - AAUA- - GGAG - AUAU- AAGACAAGCACAUUGUAAC
B- SF2 UUUCAUACAACAGGAAGAAU- - - - - - - AAUA- - GGAG- - AUAU- AAGAAAAGCACAUUGUAAC
B- WEAU CUUUAUACAACAGGAGAAAU- - - - - - - AAUA- - GGAG- - AUAU- AAGACGAGCACAUUGUAAC
B- YU2 UUGUAUACAACAGGAGAAAU- - - - - - - AAUA- - GGAG- - AUAU- AAGACAAGCACAUUGUAAC
B- pNL43 UUUGUUACAAUAGGAAAAAU- - - - - - - AG- - - - - GAA- - AUAU- GAGACAAGCACAUUGUAAC
D- ELI CUCUAUACUACAAGAUCAA- - - - GAUCAAUA- - - - - - - - - - AU- AGGACAAGCACAUUGUAAU
D- NDK CUCUAUACAAUAACAGGAAAAAAGAAGAAAACAGGAU- - ACAU- AGGACAAGCACAUUGUAAA
O ANT70 UACAGCAUGGGAAU- - - - AGGGGGAACAGCAGGAAAC- - AGCUCAAGGGCAGCUUAUUGCAAG
O WP5180 CGCAGUAUGACACUUAAAAGAAGUAACAAUACAUCACCAAGAUCAAGGGUAGCUUAUUGUACA
S| VCPZGAB UUUUAUAAUAUAGAAAAUGS- - - - - - - AGUA- - GGAG- - AUAC- CAGAUCUGCCUACUGUAAG

Figure 20: This region in the usual alignment shows four different gaps in the central
region, most of them are very short (just one or two nucleotides). They are separated
by very short sequence fragments of 4 nucleotides only. This alignment result consists of
many disrupted fragment and is no good alignment. The number of gaps is 83, all of them
can not be divided by 3.

ADI - VAL CUCUAUACAACAGGGAUAGUAGGA- - - - - === - == - - - - GAUAUAAGAAGAGCAUAUUGUACU
AE- 90CF402 UUCCAUACAACAGGAAACAUAAAUGGU- - - - - = - - - - - - GAUAUAAGAAAAGCAUAUUGUGAA
AE- CM240 UUCUAUAGAACAGGAGAUAUAAUAGGA- - - - - - - - - - - - AAUAUAAGAAAAGCAUAUUGUGAG
B- 896 UUUUAUGCAAGAAGAAACAUAAUAGGA- - - - - - - - - - - - GAUAUAAGACAAGCACAUUGUAAC
B- ACH320A UUUUAUGCAACAGGACAAAUAAUAGGA- - - - - - - - - - - - GAUAUAAGACAAGCACAUUGUAAC
B- BCSG3 UAUUAUACAACAGGAGAAAUAGUAGGA- - - - - - - - - - - - GAUAUAAGACAAGCACAUUGUAAC
B- CAML GUUUAUGCAACAGACAGAAUAAUAGGA- - - - - - - - - - - - GAUAUAAGACAAGCACAUUGUAAC
B- D31 UUUUAUACAAAAGGAAAAAUAAUAGGA- - - - - - - - - - - - GAUAUAAGACAAGCACAUUGUAAC
B- HI V1AD8 UUUUAUACAACAGGAGACAUAAUAGGA- - - - - - - - - - - - GAUAUAAGACAAGCACAUUGCAAC
B- HXB2 UUUGUUACAAUAGGAAAA- - - AUAGGA- - ---------- AAUAUGAGACAAGCACAUUGUAAC
B- JRCSF UUUUAUACAACAGGAGAAAUAAUAGGA- - - - - ----- - - GAUAUAAGACAAGCACAUUGUAAC
B- LAl UUUGUUACAAUAGGAAAA- - - AUAGGA- - ---------- AAUAUGAGACAAGCACAUUGUAAC
B- MANC UUUCAUGUAACAAGAGCCGUAACAGGA- - - - - - - - - - - - GAUAUAAGACAAGCACAUUGUAAC
B- OvI UUUCAUACAACAAAACAAAUAAUAGGA- - - - - - - - - - - - GAUAUAAGACAAGCACAUUGUAAC
B- SF2 UUUCAUACAACAGGAAGAAUAAUAGGA- - - - - - - - - - - - GAUAUAAGAAAAGCACAUUGUAAC
B- WEAU CUUUAUACAACAGGAGAAAUAAUAGGA: - - - - - - - - - - - GAUAUAAGACGAGCACAUUGUAAC
B- YU2 UUGUAUACAACAGGAGAAAUAAUAGGA- - - - - - - - - - - - GAUAUAAGACAAGCACAUUGUAAC
B- pNL43 UUUGUUACAAUAGGAAAA- - - AUAGGA- - - - - - - - - - - - AAUAUGAGACAAGCACAUUGUAAC
D- ELI CUCUAUACUACAAGAUCAAGAUCA:- - - - - - = = - = = - = - - AUAAUAGGACAAGCACAUUGUAAU
D- NDK CUCUAUACAAUAACAGGAAAAAAGAAGAAAACAGGA- - - UACAUAGGACAAGCACAUUGUAAA
O ANT70 UACAGCAUGGGAAUAGGGGGAACAGCAGGAAACAGE: - - - - - UCAAGGGCAGCUUAUUGCAAG
O WP5180 CGCAGUAUGACACUUAAAAGAAGUAACAAUACAUCACCAAGAUCAAGGGUAGCUUAUUGUACA
S| VCPZGAB UUUUAUAAUAUAGAAAAUGUAGUAGGA- - - - - - - - - - - - GAUACCAGAUCUGCCUACUGUAAG

Figure 21: Using RALIGN the number of gaps could have been decreased again. The
resulting alignment contains one larger gap in most cases and only few sequences have a
second, shorter gap. The successful reduction of gaps by the combined amino acid and
nucleic acid based alignments is clearly visible. Total number of gaps in this region: 25
(70% less gaps).
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ADI - MAL
AE- 90CF402
AE- C\VR40
B-896

B- ACH320A
B- BCSG3

B- CAML

B- D31

B- HI VIAD8
B- HXB2

B- JRCSF
B- LA

B- MANC
B-OvI

B- SF2

B- WEAU

B- YU2

B- pNL43
D-ELI

D- NDK

O ANT70

O MP5180
SI VCPZGAB

AU- AGUACAUGGCAGAAUAAUGEUGE: - - - AAGA- - - - - - CU- AA- - GU- - - - AAUAGCACAGAGUC- - - AACUGGUAGUAUCACACUCCCAUG
AU- AGUACUUGGAUA- - - - - = === - - - - - - AAUGGAACCAUGCAGGAGEUU- - AAUGGCACAAACUG- - - A- - - GGCAAUAUCACACUUCCAUG
AU- AAUACUUGCCUAG: - - - = - - - - - - - GAAAUGAAACCAUGGCGGEEEUGU- - AAUGACAG- - - - - === === === - = - UAUCACACUUCCAUG
AU- AGUACUUGGAAU- - - - - - - G------ U UA------ CUGGAGGGACA- - AAUGGCACUGAAGG: - - AAAUGACAUAAUCACACUCCAAUG
AU- AGUACUUGG: - - - - - AAUGAUACUGGGAAUGUUA- - - CUGAAAGGUCA- - AAUAACAAUGA- - - - - - AAAU- - - - - - AUCACACUCCCAUG
AU- AGUACUUGGGCUGGGAAUAAUACUUGGAAUAGUAGUGCUGAAAGGUCA- - GAUGACACUGGAGG: - - AAAU- - - - - - AUCACACUCCCAUG
AU- ACUACUUGGCUGUUUAAUGGUACUUGGAAUGAUA- - - CUGAAGGGUUA- - AAUAACACUGAAAG: - - AAAU- - - - - - AUUACACUUCCAUG
AU- AGUACUUGGAAU- - - - - - - - === - - - - - - GAUA- - - CUAAAGAGUCA- - AAUAACACAAAU- - - - - - - - - GGAACUAUCACACUCCCAUG
AU- AGUACUUGGAAUUUUAAUGGUACUUGGAAUUUAA- - - CACAAUCG: - - - - AAUGGUACUGAAGG: - - AAAUGACACUAUCACACUCCCAUG
AU- AGUACUUGGUUU- - - AAUAGUACUUGGAGUA- - - - - - CUGAAGGGUCA- - AAUAACACUGAAGG: - - AAGUGACACAAUCACCCUCCCAUG
AU- AGUACUUGGAAU- - - - - - - G------ A-UA------ CUGAAAAGUCA- - AGUGGCACUGAAGG: - - AAAUGACACCAUCAUACUCCCAUG
AU- AGUACUUGGUUU- - - AAUAGUACUUGGAGUA- - - - - - CUGAAGGGUCA- - AAUAACACUGAAGG: - - AAGUGACACAAUCACACUCCCAUG
AU- AGUACUUGGAAUACUGEG: - - - - - - - - AAUGAUA- - - CUAGAGAGUCA- - AAUGACACAAAUAA- - - UACUGGAAAUAUCACACUCCCAUG
AU- AGUACUUGGAAU- - - - - - === - - - - - - - - - GAUA- - - CUACAAGGGCA- - AAUAGCACUGAA:- - - - - - - - - GUAACUAUCACACUCCCAUG
AU- AAUACAUGGAGGUUAAAL- - - - - - - === - - - - - - CACACU- G- - - - - AA- GGAACUAAAGG- - - AAAUGACACAAUCAUACUCCCAUG
AU- AGUACUUGGCAUGCUAAUGGUACUUGGAAGAAUA- - - CUGAAGGGGCA- - GAUAACAAU- - - - - - - - - - - - oo - - - AUCACACUCCCAUG
------- CUUGG - - - - - AAUGAUACUAGAAA- - - - - - - - - - - - - - - GUUA- - AAUAACACUGGAAG - - AAAU- - - - - - AUCACACUCCCAUG
AU- AGUACUUGGUUU- - - AAUAGUACUUGGAGUA- - - - - - CUGAAGGGUCA- - AAUAACACUGAAGG: - - AAGUGACACAAUCACACUCCCAUG
AU- AGUACAUGGAAUAU- - - UAGUGCAUGGAAUAAUAU- - - UACAGAGUCA- - AAUAAUAGCACAAA- - - CAC- - - AAACAUCACACUCCAAUG
AU- AGUACAUGGAAU- - - - - - - - - - CA- - GACUAAUAG- - - UACAGGEUUC- - AAUAAUGGCACAG- - - - ----------- UCACACUCCCAUG
AUUA- UACCUUU- UCA- - - - - - - - - - UGUAACGGAACCACCUGUAGUGUUAGUAAUGUUAGUCAAGG: - - - - - UAACAAUGGCACUCUACCUUG
ACUA- UACUUUUAUCAA- - - - - - - - CUGUACAAAGUCCGGAUGCCAGGAGAUCAAAGGGAGCAAUGAGACCAAUAAAAAUGGUACUAUACCUUG
CUGACAACAUUA- - - - - - - e e e e e e e e e e oo CA- - AAUGCBCAUU- - - - - === - - oo - - AUAAUACUGCCAUG

Figure 22: This part of the HIV-1 genome alignment is extremely disrupted. We have a

lot of gaps, some of them very short, some a little bit longer. An alignment like this is

not usable for secondary structure prediction where the quality of the input alignments is

of great importance. 116 gaps, 39 can not be divided by 3.

ADI - MAL
AE- 90CF402
AE- CMR40
B- 896

B- ACH320A
B- BCSG3
B- CAML

B- D31

B- HI V1AD8
B- HXB2

B- JRCSF
B-LAI

B- MANC

B- OYI

B- SF2

B- VEAU

B- YU2

B- pNL43
D-ELI

D- NDK

O ANT70
O M/P5180
SI VCPZGAB

AUAGUACAUGGCAGAAUAAUGGL- - - GCAAGACUAAGUAAUAGCACAGAGUCAACUGGU: - - - - = = - s m s mcm oo e -
AUAGUACUUGGAUA- - - = = = == - = - - AAUGGAACCAUGCAGGAGGUUAAUGGCACAAACUCA-

AUAAUACUUGCCUAGGA- - - - AAUGAAACCAUGGCGGERUGUAAUGACACY- - - - - - -

AUAGUACUUGGAAU- - - - - - === == - - - - GUUACUGGAGGGACAAAUGGCACUGAAGGA-

AUAGUACUUGGAAUGAUACUGGG: - - - - - AAUGUUACUGAAAGGUCAAAUAACAAUGAA: - - - - - === - mmmmmm oo oo o

AUAGUACUUGGGCUGGEG: - - - AAUAAUACUUGGAAUAGUAGUGCUGAAAGGUCAGAUGACACUGGAGGAAAUAUCACACUCCCAUG

AUACUACUUGECUG - - UUAAUGGUACUUGGAAUGAUACUGAAGGG- - - UUAAAUAACACUGAAAGAAAUAUUACACUUCCAUG

AUAGUACUUGGAAU- - - - - - - GAUACUAAAGAGUCAAAUAACACAAAU- - - - - - === - - oo oo o - - - GGAACUAUCACACUCCCAUG

AUAGUACUUGGAAU- - - - - - === - - - oo - - UUUAAUGGUACUUGGAAUUUAACACAAUCGAAUGGUACUGAAGGAAAUGACACUAUCACACUCCCAUG

AUAGUACUUGGUUUAAUAGUACU- - - - - - UGGAGUACUGAAGGGUCAAAUAACACUGAAGGA: - - - - = === = = - - - - AGUGACACAAUCACCCUCCCAUG
----------------- GAUACUGAAAAGUCAAGUGGCACUGAAGGA- --- - - AAUGACACCAUCAUACUCCCAUG

- - UUAAAUCACACUGAAGGAACUAAAGGAAAU- -

AUUAUACCUUUUCA- - - - - - UGUAACGGAACCACCUGUAGUGUUAGUAAUGUUAGUCAA- - - -
ACUAUACUUUUAUCAAC- - - UGUACAAAGUCCGGAUGCCAGGAGAUCAAAGGGAGCAAUGAG: -

Figure 23: This figure again demonstrates the excellent capability of the new RALIGN

algorithm to obtain better alignments. The number of gaps could has been reduced dra-

matically as a result of the powerful combined amino acid and nucleic acid based alignment

algorithm. Most lines still have only two remaining gaps. 46 gaps (60% less gaps).
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5 An Application

5.1 Detecting Conserved Structures in Hepatitis B

Secondary structures of ssRNA viruses or (as in the case of Hepatitis B virus)
pregenomic RNA intermediates are known to play an important role in the
regulation of the viral life cycle. Much research is performed to find con-
served secondary structure elements as part of the genomes of RNA viruses
and the pregenomic RNA intermediates of some DNA viruses like the Hep-
atitis B viruses [58, 69]. Almost all RNA molecules and consequently also
almost all subsequences of a large RNA molecule form secondary structures
[17, 19, 21, 24, 25]. Since only functional secondary structures are likely to
be conserved, a method that detects and highlights conserved structural ele-
ments based solely on already available sequence data could be used e.g. to
guide experimental mutagenesis or deletion studies. For this reason predicted
secondary structures of some known genomic RNA sequences are compared.
The development and implementation of computational methods capable of
reliably predicting functional structural elements on the basis of sequence
information will provide immense benefits in terms of our understanding of
the relationship between sequence and structure [16].

In fact, this method for detecting conserved structures depends crucially
on the best possible quality of sequence alignments. But even very closely
related types of certain viruses can often not be aligned in a satisfying way.
Alignment inaccuracies are a substantial problem when dealing with rather

diverse sets of viral sequences.
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5.2 The Properties of the Hepatitis B Virus
5.2.1 About the Morphology

The Hepatitis B virus infects mammals and members the family of the Hep-
adnaviridae. Their morphology is spherical, occasionally pleomorphic, 40-
48 nm in diameter (40-42nm in the case of HBV, 46-48nm in the case of
duck HBV) but with no evident surface projections. The outer 7 nm thick,
detergent-sensitive envelope contains the surface antigens and surrounds an
icosahedral, 27-35 nm diameter (HBV: 27nm, DHBV: 35nm) nucleocapsid
core with 180 capsomers. The core is composed of one major protein species,
the core antigen, and encloses the viral genome (DNA) and some associated
minor proteins. Some viruses occur with filamentous forms of variable length
and 22 nm diameter and others with spherical 16-25 nm structures that lack
cores.

The genome consists of a single molecule of non-covalently closed, circular
DNA that is partially double-stranded and partially single-stranded. The
G+C content is about 48 %. One strand in negative sense (complementary
to the viral mRNAs) is full-length (3100 -3400 nt), the other is shorter and
varies in size. In the hepatitis B virus genome, which is a member of the
Orthohepadnavirus genus, the full-length negative sense DNA strand has a
nick at a unique site corresponding to a position 242 nt downstream from the
5’ end of the positive sense strand. The ssDNA may represent up to 60 % of
the circle. In the second genus (Avihepadnavirus, e.g. duck hepatitis B) of
the family Hepadnaviridae the nick in the negative sense DNA is about 50
nt from the end and genomes may be fully double-stranded. The uniquely
located 5’ ends of the two strands overlap by about 240 nt so that the circular
configuration is maintained by base pairing of cohesive ends. The 5’ end of
the negative sense DNA has a covalently attached terminal protein. The 5’

end of the positive sense DNA has a covalently attached 19 nt, 5’ capped
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Figure 24: Electron micrograph of hepatitis B virus particles, including virions, 20-nm

spheres, and filaments.
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Figure 25: Electron micrograph of virion cores produced by detergent treatment of virions.
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oligoribonucleotide primer.

In orthohepadnaviruses the envelope (surface antigen) proteins of virions
consist of three groups of antigenically complex proteins: S-proteins (p24,
gp27), M-proteins (p33, gp36) and L-proteins (p39, gp42). All three have
common carboxy termini and differ in amino termini (due to different sites
of translation initiation) and in the presence and form of glycosylation. In
hepatitis B virus the S-proteins appear to have the same amino acid compo-
sition and, beside this, gp27 has a single glycosylation site that is shared by
the M-proteins p33 and gp36 which are composed of p24 with additional 55
amino acids and a further glycosylation site. The L-proteins contain about
further 120 amino acids and their N-termini are myristylated.

The virion core is composed principally of the 22 kDa core antigen, a
phosphoprotein. Enzymes associated with virions include a protein kinase
and reverse transcriptase with RNA- and DNA- dependent DNA-polymerase
and RNase H activities (P-gene products). Other functional components
include the terminal protein covalently attached to the 5’ end of the full
length DNA strand. This terminal protein has been shown to be a component
of the about 90 kDa P gene product.

The envelope lipids of virions are derived from the host cell membranes.

5.2.2 The Genomic Organization of Hepadnaviruses

The hepatitis B virus genome has four partially overlapping genes (S, C, P,
X), all oriented in the same direction. The duck hepatitis B virus (genus
Avihepadnavirus) consists of three genes (S, C, P). There appear to be no
intervening sequences. The S-gene ORF codes for the surface antigens. In
the S-gene the p24 protein is preceded by pre-S2 which, in turn, is preceded
by pre-S1. Each has an in-frame ATG start codon for the initiation of protein
synthesis of all surface antigens (S-, M- and L-proteins). The C-gene ORF

specifies the core protein. This is preceded by a short pre-C region that varies
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in size between different viruses and is larger in avihepadnaviruses than in
mammalians.

The P-gene covers 80 % of the entire genome and overlaps the other
three ORFs. It codes for the reverse transcriptase, with DNA polymerase
and RNase H activities, and the genome-linked terminal protein. Finally, the
X-gene specifies a protein with a probable transactivation function. It varies
in size among the HBV serotypes.

After having entered the hepatocytes, the single-stranded regions are
made full length double-stranded DNA. The terminal protein of the negative
strand is removed, also the terminally redundant region and the oligoribonu-
cleotide of the positive strand, and the DNA is converted into a covalently
closed circular DNA by ligation.

After location of the double-stranded DNA into the nucleus of infected
cells, transcription of viral mRNAs starts enhanced by the X-protein. Tran-
scription yields various species of mRNAs with various lengths which code
for the viral proteins. Following transcription, translation of the gene prod-
ucts ensues in the cytoplasm of the infected cells. The 3.4 kb pre-genome
is transcribed which is greater in size than the genome, because of termi-
nally redundant sequence parts. The pre-genome is initiated near the start
of the pre-C ORF and terminates about 100 nucleotides downstream of the
pre-C initiation site after making a complete copy of the genome (240 nu-
cleotides downstream in the case of avian hepatitis B virus). The mRNAs
are unspliced and are made from distinct promotors. Two regions of the
HBV genome have transcription enhancer activities, another is similar to
glucocorticoid responsive elements.

Integration of viral DNA into the host genome is possible, but singly
integrated forms cannot serve as templates for the synthesis of the 3.4 kb

pre-genome (which requires circularized or concatenated copies of integrated
DNA).
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3.5kb

Figure 26: Diagram of the genome organization of hepatitis B virus indicating the DNA
arrangement, the positions of the four open reading frames (C, P, S, X) and the mRNA

transcripts.
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Current evidence indicates that following the generation of a covalently
closed circular DNA and synthesis of the 3.4 kb pre-genome, this RNA as-
sociates with viral core particles where it serves as a template for synthesis
of minus-strand DNA by reverse transcription using a protein primer. Then
the minus-strand DNA serves as a template for plus-strand DNA synthesis.
The plus-strand DNA strand is incomplete in most core particles at the time
of virion assembly and release from infected cells. And finally the carboxy-

terminal domain of C-protein probably is required for packaging the DNA.

5.2.3 The eStructure: a 5’-proximal Encapsidation Signal

After reverse transcription of the terminally redundant RNA pregenome,
the specific packaging of the transcript into viral capsids is mediated by
interaction of the reverse transcriptase, P protein, with the 5’-proximal en-
capsidation signal € [53]. e-function is correlated with the formation of a
hairpin containing bulges and a loop. This interaction is not only central to
pregenome packing but also to capsid assembly. Furthermore, it is essential
for initiation of reverse transcription. There is striking assymetry in the im-
portance of primary sequence in the 5’- and the 3’-part of the e-structure.
The motif CU is important in the proximal bulge position. It has been pro-
posed that these nucleotides are in close contact with P protein [70]. Deletion

of the bulge prevents incapsidation.

5.3 Results: Conserved Secondary Structure Elements

The combined amino acid and nucleic acid based alignment algorithm as im-
plemented in RALIGN is especially useful when used with rather closely related
sequences. In these cases the reduction of gaps bears quite good alignment
results. Therefore, as an example for an application human hepatitis B virus

genomes were used. With 16 various pregenomic RNA sequences the com-
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AB014370 E00010 AB014366  HBD50521
AB014360  AB014361  AB014362  HBVAYWE
HBVAYWGEN HBVAYWMCG HBV131567 HBV131568
AF046996  HHVBFFOU  HBVADW4A  HVHEPB

Figure 27: The 16 input sequences: human hepatitis B virus pregenomes.

bined amino acid and nucleic acid based alignment was done.

The redundant terminal part of the pregenomes was attached to the se-
quence end. Using RALIGN led to an alignment which contains very few gaps
although the input sequences were not the most closely related. The 16 input
sequences are members of 6 different subgroups of human hepatitis B virus
which contain some different sequence parts. And this resulting alignment is
a rather good input for algorithms which depend on good alignment results
like alidot and pfrali. Using alidot and pfrali led to dot plots which
show a lot of conserved secondary structure elements. In most cases alidot
and pfrali gave the same results, but there are also some differences in the
dot plots. The dot plots then were used to construct the secondary structure
graphs and the Hogeweg mountain representations. Before producing the
secondary structure graphs the consensus sequences were calculated.

The colour codes are as follows:

red: all sequences have the same two nucleotides
ocre: two types of base pairs occur

green: three types of base pairs occur
turquoise: four types of base pairs occur

blue: five types of base pairs occur

violet: all six types of base pairs occur
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AF046996

HBV 131568

HHVBFFOU u HBV 131567
HBVAD
AB014362
014360
014361

E00010

D50
AB014366
H BVAYWI\

"EYRYAV NI ca

L 0.1

Figure 28: Phylogenetic relationships among the 16 human HBV sequences used here.
The tree was produced using Splitstree-2.4.1 [47], The graph encapsulates 83.3% of
distances, the rest is assigned to the so-called split-prime part [4] and corresponds to noise
in the data.
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Figure 29: This figure shows the dot plot of the well known e-structure in the hepatitis B

pregenome. As the color code shows almost all sequences have the same two nucleotides.

This indicates that the sequences are highly conserved. But twice two types of base pairs

occur as shown by the ocre dots. These consistent mutations strongly support the pairing

at their positions. And we have one inconsistent mutation at the end of the stem structure.
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Figure 30: Conventional secondary structure representation of the e-structure at the begin-
ning of the sequence. Nucleotides 20 - 100 are shown. Consistent mutations are indicated
by circles. Also one incompatible sequence is in the data setaffecting the terminal U-A

pair of the structure (shown in gray).
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Figure 31: The Hogeweg mountain representation of the e-structure. Two ocre coloured

consistent base pairs strongly support the structure.
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Figure 32: This alidot derived dot plot shows the region 490 - 540. At one position
two types of base pairs occur. We have a consistent mutation at this position. Also
at this certain position one sequence is incompatible. In addition, we have some more
incompatible sequences in the dot plot indicated by the pale colours. Data such as these

probably do not correspond to functional structures.
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Figure 33: This is an example for a conserved secondary structure which is detected by
alidot, but not by pfrali. Nucleotides 620 - 670 are shown. At three positions two types
of base pairs occur (indicated by the ocre coloured dots). At one positions four types of
base pairs are found (turquoise colour). The three positions with consistent mutations

(ocre dots) strongly support this secondary structure element.
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Figure 34: The conserved structure found by alidot but not by pfrali. Position 620 -

670. Compensatory and consistent mutations are idicated by circles.
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Figure 35: The Hogeweg mountain representation of the region 620 - 670 as derived from
alidot. The ocre and turquoise coloured regions show the positions of the compensatory

and consistent mutations which strongly support the secondary structure shown before.
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Figure 36: The predicted secondary structure at position 1010 - 1030 as predicted by
alidot. One consistent mutation, but with one base pair one sequence is incompatible,
and with three base pairs two sequences are incompatible. This is an example for a

predicted structure which is not credible.
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Figure 37: The dot plot of the region 1200 - 1320 as produced by alidot. A lot of ocre
dots indicating that two types of base pairs occur. And also some dots with pale colours
which show that one or two sequences in the sample are inconsistent. Here we have some
consistent mutations which strongly support the predicted secondary structure elements.
The ENH enhancer element is located in this area. Whether the potentially conserved

structural elements detected here are related to the functioning of ENH is unknown.
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Figure 38: The dot plot of the same region as before, but produced by pfrali. The large

predicted structures are essentially the same result as derived by using alidot.
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Figure 39: The secondary structure of the region 1200 - 1320 as predicted by alidot.
Consistent mutations which strongly support the predicted base pairs are indicated by

circles. But also here some incompatible sequences exist.
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Figure 40: The secondary structure of the same region as before, but predicted as a result
of using pfrali instead of alidot. The main features of the organization of the secondary
structure elements have the same appearance, but the central bulge is much larger and
the hairpin on top of the figure is not as long as predicted by alidot. The two predictions

are consistent in the sense that there are no conflicting base pairs.
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Figure 41: The Hogeweg mountain representation of the region 1200 - 1320 as derived

from alidot.
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Figure 42: The Hogeweg mountain representation of the region 1200 - 1320 as derived

from pfrali.
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Figure 43: The position 1392 - 1420 as predicted by alidot. Six conserved base pairs
were found, at two positions two types of base pairs occur; but the pale colour indicates
that at each position one sequence in the sample is incompatible, at one position two
sequences are incompatible. And further investigation led to the result that one of the

input sequences has a deletion at this position.
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Figure 44: The secondary structure as predicted through alidot, strongly supported by
one compensatory mutated base pair and one consistent mutation. But a deletion in one of
the input sequences leads to pale grey colour of the base pairs. Pfrali shows no secondary

structure at this position.
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1450 -- 1580

Figure 45: The region 1450 - 1580 as predicted by alidot. Various consistent mutations,
indicated by the ocre dots (two types of base pairs) support the prediction of this found
secondary structure element. But there is a lot of incompatible sequences in the data set.

This predicted secondary structure element is an example for a not credible prediction.
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Figure 46: The predicted secondary structure of the consensus sequence. Some consistent
mutations support this structure. But there are also some incompatible sequences in the

input data set as indicated through the pale grey colours. Not credible.
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Figure 47: This alidot derived dot plot shows the region 2700 - 2730. At two positions
three types of base pairs occur as compensatory mutations (green dots). One of these
positions has also one incompatible sequence in the input data set. At one position two
types of base pairs occur as indicated by the ocre dot. This is a strongly supported

predicted secondary structure element.
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Figure 48: Three compensatory mutations strongly support this secondary structure ele-

ment. Position 2700 - 2730. Only few inconsistent sequences are detected.
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Figure 49: At two positions three types of base pairs occur, at one position two types.

Only at two positions inconsistent sequences in the input data set.
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Figure 50: A secondary structure element with three types of base pairs at one position

and two types at another (green and ocre dots).
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Figure 51: Two compensatory mutated base pairs strongly support this secondary struc-
ture element at the position 3215 - 3245.
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Figure 52: Because of the redundant nature of the HBV genomes this predicted secondary
structure element represents again the same sequence as the known e-structure. This
structure is is exactly the same as the predicted secondary structure of the e-structure at

the beginning of these sequences. Two positions with two types of base pairs.
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Figure 53: The predicted secondary structure element for position 3270 - 3335. It is the

same as the e-structure at the beginning of the sequence. And it has the same sequence.
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Figure 54: The Hogeweg mountain representation of the e-structure at the end of the HBV

pregenome.
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6 Discussion

It was the aim of this thesis to use the information contained in the amino
acid sequences translated from the coding regions of a (virus) genome as a
means of improving the quality of the alignment of the genomic DNA or RNA
sequences. The program RALIGN is the first implementation of this approach.

RALIGN is written in ANSI C and hence easily portable to different oper-
ating systems. It was developed on PC’s running Linux and works well with
different Unix dialects. The standard multiple alignment package CLUSTAL
W is invoked by means of a system call.

The results reported in the previous sections show that RALIGN yields
significantly improved aligmnments, compared to the output of the CLUSTAL
W alignments of the same nucleic acid sequences. As examples for the signifi-
cant reduction of the number of short gaps we have discussed the alignment
of complete HIV-1 RNA genomes. While the length of the entire alignment
was almost the same, we found the number of gaps was reduced by 44% up
to 70 % in certain parts of the multiple alignment. The RALIGN approach
guarantees that insertions and deletions within coding regions correspond
exactly to insertions and deletions at the protein level. A number of very
short gaps is therefore often collected into a single longer one.

As a first application for the combination of amino acid and nucleic acid
based alignments, the output of RALIGN was used as the basis for the search
of conserved RNA secondary structure elements. The programs alidot and
pfrali can be used to scan a sample of RNA sequences for conserved sec-
ondary structure elements and to predict their consensus structure. A good
multiple alignment and structure predictions for each of the sequences under
consideration are required as input for this procedure.

Not surprisingly, the performance of the pfrali program depends on

the quality of the multiple sequence alignment that is used as an input.
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Table 1: Summary of predicted secondary structure elements in the RNA pregenome of

Human Hepatitis B Virus.

Position Figures Remark

20-100 29, 30, 31 | e-element
620-670 33,34,35 |7

1200-1320 | 37-42 possible enhancer
1392-1420 | 43, 44 ?

2700-2730 | 47, 48,49 | 7

3215-3245 | 50, 51 ?

3270-3335 | 52, 53, 54 | repeat of €

Although the results are surprisingly robust with respect to minor alignment
problems, we expect that alignment inaccuracies will become a substantial
problem when dealing with more diverse data sets. Hence, the advantages of
RALIGN are demonstrated here in the example of viral sequences.

A number of probably significant secondary structure elements were pre-
dicted from a sample of 16 sequences pregenomic RNA of different isolates
of the Human Hepatitis B virus, see table 1. In particular, the occurrance
of consistent and, in particular, compensatory mutations strongly supports
a predicted base pair The well-known e-structure was correctly predicted by
both alidot and pfrali from the RALIGN alignment of human hepatitis B
virus genomes. Furthermore, a number of secondary structure elements have
been detected by this method that have not been described in the literature
so far.

The region around positions 1200-1320, see figure 37, is of particular
interest. The ENH enhancer element is located in this area. Whether the
potentially conserved structural elements detected here are related to the

functioning of ENH is unknown. It would certainly be very interesting to see
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if mutations that affect the secondary structure but are neutral at the level of
the proteins have an effect on the viability of the virus. Unfortunately, only
experimental evidence will eventually decide whether the RNA structure in

the region is of importance for the viability of the virus.
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7 Directions for Future Improvements

The RALIGN procedure could be improved in various ways in the future:

Instead of just looking for open reading frames one could use for instance
hidden Markov Models to search for likely coding regions. These methods is
fairly good at descriminating between open reading frames that do not code
for a protein and actual coding sequences, see e.g. [9].

The alignment might be further improved by using alternative hierachies
of open reading frames. In particular, it might be advantageous to use the
more conserved (instead of the longer) ORF's with higher priority. In general,
the current mechanism for detecting homologous reading frames is not very
robust. The procedure could probably be improved significantly by explicitly
comparing the pairwise sequence homologies of all ORFs.

Even in the case of overlapping reading frames, it might be useful to
consider the alignments of each reading frame and to combine them, for
instance, using local optimzation rules, instead of selecting a single reading
frame.

In some cases, CLUSTAL W introduces gaps into the ‘tagging sequences’
that are used to combine the alignments of the individual ORF's. At present,
RALIGN returns an error message if this problem occurs. While this a rare
problem, a more reliable procedure would be desireable.

We have been able to show that RALIGN is capable of substantially improv-
ing the quality of alignments. It will be necessary in the future to demonstrate
this effect quantitatively. In particular, a detailed statistics of the distribu-
tion of types and lengths of gaps produced by different alignment procedures,
including RALIGN, as a function of the average sequence homology in the sam-
ple is still missing.

Currenly, RALIGN invokes CLUSTAL W using a system call. One might want

to use different multiple alignment procedures instead, if only for the sake
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of comparison. On the other hand, system calls cause a substantial loss in
performance, so that it would be desirable to have the multiple alignment
procedure available as a run-time library.
The user interface is fairly terse in the present implementation. A graph-
ical user interface, following the example of CLUSTAL X would be desirable.
Finally, RALIGN at present does not produce auxiliary information such as
phylogentic trees. While it is straight forward to implement such procedures,

this was beyond the scope of this work reported here.
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8 Appendix A

8.1 The manual page
8.1.1 NAME

ralign - combined amino acid and nucleic acid based alignments

8.1.2 SYNOPSIS

ralign [-c[CTN]] FN FN FN ... [-c[CTN]] FN FN FN ...

8.1.3 DESCRIPTION

Ralign reads GenBank files and files in Pearson’s format. It finds all theoreti-
cally possible open reading frames which have a minimal length. It is possible
for the user to define one or more than one codon tables for each sequence or
a group of sequences. Every input file can be processed using its own codon
table. The standard codon table is the universal genetic code. The found
coding regions get translated, using the correct codon table, and the result-
ing protein sequences are compared to the protein sequences in the GenBank
file, if available. Two output files are created: a text file (ORF.ral) which
contains all data about the found open reading frames, either derived by
reading the data in the GenBank file or as a result of the automatic search.
The second file is a PostScript output (ORF.ps) which gives a graphical
representation of the found open reading frames either in one of the three
frames or as derived from the GenBank file input with all introns. Ralign
then chooses the coding regions which are maintained through the align-
ments as protein sequences. Ralign checks, going from the longest coding
region to the shorter ones, which of these regions are located at the same
position in a list sorted by size. In the case of overlapping coding regions

the highest priority is given to the longest ORF. The shorter overlapping
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ORF then consists only of these parts which are not covered by the longer.
This assumption is presented to the user in the file ORFinput.ral and can
be altered. Then the ORF's get aligned as proteins (using CLUSTAL W) while
the alignments are sorted by the length of the open reading frames. After
the protein alignments the non coding regions get aligned as nucleic acids
(using CLUSTAL W). Finally the partial alignments are merged and tested for
alignment mistakes and the complete sequences are written into a resulting
alignment file in CLUSTAL W style.

8.1.4 OPTIONS

—-c CTN where CTN is a codon table name. The following codon tables are

available:

univ: universal genetic code (standard)
acet: Acetabularia

ccyl: Candida cylindrica

tepa: Tetrahymena, Paramecium, Oxytrichia, Stylonychia, Glaucoma
eupl: Euplotes

mlut: Micrococcus luteus

mysp: Mycoplasma, Spiroplasma

mitocan: canonical mitochondrial code
mitovrt: Vertebrates - mitochondrial code
mitoart: Arthropods - mitochondrial code

mitoech: Echinoderms - mitochondrial code
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mitomol: Molluscs - mitochondrial code
mitoasc: Ascidians - mitochondrial code
mitonem: Nematodes - mitochondrial code
mitopla: Plathelminths - mitochondrial code
mitoyea: Yeasts - mitochondrial code
mitoeua: KEuascomycetes - mitochondrial code

mitopro: Protozoans - mitochondrial code

8.1.5 VERSION

This man page documents version 1 of ralign.

8.1.6 AUTHOR

Roman R. Stocsits

8.1.7 BUGS

Comments and bug reports should be sent to roman@tbi.univie.ac.at.
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9 Appendix B

9.1 Program Description

struct seq_identification *process_command(int argc,

char **argv) ;

This routine takes over the integer value argc which represents the number of
arguments, the program was started with, and the two dimensional character
array **argv which lists all arguments. These arguments are on one hand
the paths and the names of the input sequence files and on the other hand
the synonyms for the codon tables that should be used for finding the open
reading frames in the sequences and for translating them. Every desired
codon table follows the argument '-c’ and is used then by the program for
all the input sequence files that follow this codon table name in the command
line till the next ’~¢’ with an codon table name.

The standard codon table is the universal genetic code. This will be used
if no other codon table name is specified and it will work well in most cases.

The sequence input files can contain one ore more sequences, they can
be GenBank files or files in Pearson’s format. If the sequences have distinct
names within the files, these names are used. If the sequence input file
contains just the sequence without any name, the name and path of the file
become the sequence name. This routine also creates an array of structures
of the type seq_identification, one structure for each input sequence. It
also writes the desired codon table and the file name into this structure. If
some of the input files are GenBank files it calls the routine readGBF (see
below) for them, otherwise, if Pearson’s sequence files should be handled, it
calls readText (see below) and gives up a pointer at the file to be read to
the subroutine. Finally, the information derived through these subroutines,

is written into the structure array of the type seq_identification.
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main
process_command
readGBF or readText
readAAseq
make_ps
create_data
getORF
compare ‘
translateORF
compareAAseq
choose_ORFs
verifyl
write_file
main
read_input
control_ralign

read_clustal

remove_endgaps

create_gap_data

prepare_further_aln

write_ORFralx

control_noncode

read_clustal

merge_alignments

make_output

| =

Figure 55: This flow chart gives a graphical representation of the main subroutines of

RALIGN. See the text for further description.
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char *xreadGBF(FILE *fp);

This routine reads GenBank files and extracts some necessary information like
the name and the length of the sequence.

It also reads the nucleic acid sequence and starts a small subroutine
char *readAAseq(char *line,FILE *fp); which reads the amino acid se-
quence in the GenBank file, if available. Finally, it gives the name of the
sequence, the nucleic acid sequence and the protein sequence back to

process_command as a double character pointer.
char **xreadText (FILE *fp);

This routine takes over a pointer at either a file in Pearson’s format, which
contains one or more sequences with names, or a file which only contains
one sequence without any name. It reads the names, if available, and the
sequence(s) and gives them back to process_command as a triple character
pointer which contains names and sequences sorted by the succession of their

input.
void use_me_this_way(void);

If the program gets started in a not correct way, e.g. with wrong usage of the
codon table names, this routine displays some information about the correct

commands and the available codon tables and exits the program.
void make_ps(void);

This routine opens a file pointer and writes all necessary data for creating
a PostScript output into this file. This PostScript output gives some
graphical representation of the found open reading frames and the structure
of exons and introns in the nucleic acid sequences.

The data about the ORFs per se is not yet written into this file, but
just the surrounding PostScript source code and the commands. The data

about the coding regions is linked later to this PostScript environment.
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struct ORFdata **create_data(struct seq_identification *SID);

This routine takes over the formerly created pointer at the structure of the
type seq_identification and creates a two dimensional array of structures
of the type ORFdata.

It calls the subroutine getORF (see below) and passes the information in
the structure seq_identification on to this subroutine. The transmitted
information is the nucleic acid sequence, the names of the sequence and the
file, the name of the used codon table and a pointer at the PostScript file
which the data about the open reading frames and the introns and exons
are appended to. Every found coding region, whether derived through the
GenBank file information or as a result of the open reading frame search
of getORF , is written into a discrete structure of the type ORFdata. Also
all available information about the ORFs is written into these structures
and some variables which are part of the structure ORFdata and get used
in later parts of the program are initialized and set to zero. The first array
of struct ORFdata are all coding regions in one nucleic acid sequence (this
array is the result of the routine getORF), the second array are the nucleic
acid sequences (with all open reading frames).

A text file called ORF.ral is created also by this routine which contains
information about all open reading frames found.

Then the translation routine translateORF is called and translates all
open reading frames into protein sequences. Also these protein sequences are
written into the ORFdata structures. Finally, after this, a small subroutine
compareAASeq is called which checks for differences between the translated
protein sequences and the protein sequences derived from GenBank files, if

availlable.
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struct ORFdata *getORF(char *FileName, char *seq, char *CTN,
FILE *0RFps, char *SeqName) ;

This routine is called by create_data and it takes over the information
stored in the structure seq_identification. For every structure variable,
of which the data come, an array of the structure ORFdata is created, one
structure variable for each found coding region. In the case of GenBank files
the information about exons and introns (if present) is read and the coding
regions are linked, the positions of start- and stop-codons, the length of the
found coding region and the coding region itself as a sequence are written into
the structure ORFdata. Beside this all GenBank files and, of course, all other
files containing sequences are scanned in all three frames for further start-
and stop- codons considering the codon table which is used for the sequence
looked at. Substrings are forbidden, what means that an open reading frame
which has the same stop-codon as a longer coding region, starting prior to
this shorter one, is not recognized as an own ORF. And a recognized coding
region which is written into its own structure ORFdata must also have a
definitive minimum length.

Then the array of ORFdata structures is sorted by length of the found
open reading frames using the gsort function which needs a compare function
static int compare(const void *a, const void *b);.

Finally, all data about the exons and introns, about the GenBank derived
and search derived open reading frames, are appended to the PostScript

file which shows these data then as a graphical output.
char *translateORF(char *orf, char *CodonTableName) ;

This routine takes over a character pointer which represents the nucleic acid
sequence of an open reading frame and a certain codon table name. It then
translates the sequence into protein using the desired codon table and gives

back the protein sequence.
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struct temp_no *choose_ORFs(struct ORFdata **allORF, struct

seq_identification *SID);

This routine takes over the double array of structures of the type ORFdata,
which represents all found coding regions, and the array of structures of the
type seq_identification, which contains the input sequences’ data. It
makes a first choice of coding regions which should get aligned as a protein
alignment, in principle, it chooses all open reading frames that have a earlier
defined minimum length and constructs an array of structures called temp_no
which consist in an integer value for the number of the input nucleic acid
sequence and an array of integer values for the numbers of the certain open

reading frames choosen.
struct temp_no *verifyl(struct temp_no *inputno);

This routine gets the formerly constructed array of temp_no structures and
modifies it. All open reading frames that were choosen by choose_0ORFs in
all input nucleic acid sequences, and that are conserved enough to stand on
the same positions in the lists of coding regions sorted by length, become

verified as choosen. And the modified structure temp_no array is given back.
int write_file(struct temp_no *inputnol);

This routine takes over the array of structures of the type temp_no and writes
a file called ORFinput.ral. This file contains the information which open
reading frames were choosen automatically for protein alignment. Also a
message is brought if the automatic choice of coding regions fails, because
the sequences’ genetic structures seem to be too divergent for combined align-
ments. After this point of the program the user gets a chance for intervening:
it is possible to change the automatically choosen ORF's, to edit this file and
to tell the program which ORF's should be aligned on the level of protein. If
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one wants to edit ORFinput.ral, an emacs window is opened by the program,
the changes can be made and saved. Before starting the protein alignments
the program reads this file and respects changes which overrule the automatic
choice.

Finally, an integer value is returned which gives the number of expected
protein alignments to be carried out.

Annotation: it is possible that some open reading frames are choosen for
protein alignment which lie completely within another, larger coding region
in one of the two other frames. This is no ’bug’, the reason for this is that
after the protein alignments the end gap containing regions of the alignments
are cut away, so that just the central 'block’ of each alignment is the result.
And it is possible that such a shortened open reading frame sequence is not
still long enough that the second, shorter coding region still lies completely
within it, but the ends of the second sequence may project beyond the ends
of the now shorter first coding region. The cut away end gap containing
parts of the larger ORF could be covered now by the second ORF that lies
within, and so they could also get aligned on the level of protein as part of
the second ORF.

struct aln_results read_clustal(FILE *aln);

This routine takes over a pointer at a alignment results file of CLUSTAL W.
It reads the names of the aligned sequences and the sequences themselves as
they got modified by the alignment and contain gaps now at certain positions.
The names and the sequences belonging to them are written into a structure
of the type aln_results as parts of an array of character pointers. This

structure is given back.
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struct aln_results remove_endgaps(struct aln_results

ORFlaln_results);

The input into this routine is the formerly constructed structure of the type
aln_results containing the results of the protein alignment. The first im-
portant function of this routine is to remove the tags which were appended
to the protein sequences prior to the alignment in the case that these open
reading frames had overlapping regions with other ORFs. Always, if the
program has to handle overlapping coding regions, a certain hierarchy is es-
tablished which gives the longer coding region higher priority. In an area
of overlapping ORFs the ORF with highest priority gets aligned without re-
strictions. Then the end gap containing parts of the alignment are cut away
and become part of the alignment of the ORFs with lower priority. As a
result of this the sequence ends, which were part of the prior alignment and
were cut away and appended to these sequences of second priority, have to
lie one above each other in the alignment. This is achieved by appending
the same nonsense tag to each sequence at this certain end. But after the
alignment these tags have to be removed again, of course.

The second function of this routine is to remove these regions at the two
ends of the alignment which contain end gaps. The end parts are cut away
as long as the longest end gap, so that, as a result, the aligned sequences
begin in each case with a letter (an amino acid). The cut away sequences
and also the lengths of these sequences are written into a structure of the

type aln_results, together with the aligned sequences and their names.

struct ORFdata **create_gap_data(struct aln_results ORF_noend,

struct ORFdata **allORF, int no_aln, int *orfnosi);

This routine transfers the information of the structure aln_results to the

double array of the structure ORFdata which represents the open reading
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frames. The cut away sequences, their lengths and also the resulting aligned
central sequences are transferred, the definitive starting- and end points of
the open reading frames in the input nucleic acid sequences are written into
this double array structure. And also the rank of the alignment regarding
the level of priority in the case of overlapping coding regions and a marker

that this ORF was used for protein alignment, are recorded.

struct ORFdata *xprepare_further_aln(struct ORFdata **allORF,

int *orfnosl);

This routine is of major importance if the program has to handle overlap-
ping open reading frames. Again the double array of structures of the type
ORFdata is taken over, representing the found coding regions, and also an
integer array that holds the information which ORF's are used for an align-
ment on the level of protein. The routine manages the organization between
the different open reading frames, e.g. the beginning and end of a coding
region after cutting away the end gap containing regions, or if a second ORF
with lower priority is still overlapping after this modifications. In the case
of overlapping ORFs it is not possible that the end of the first coding region
exactly fits the beginning of the second in an other frame, even if their ends
are adapted each other. The reason for this is that a coding region in an
other frame is shifted one or two nucleotides against the first coding region.
This fact is also respected and managed by this routine. Before starting
the protein alignments the starting- and end-positions of the coding regions
are determined and prepared for the alignment. This preparation includes
appending the tags to the ORFs in order to lay the ends of the sequences
exactly one above the other during the alignment in the case of overlapping
open reading frames. The tags consist in the string ‘THISISATAG’ which is
appended twelve fold at the ends that lie immediately in the neighbourhood

of a coding region with higher priority. It is also possible that a coding region
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is bordered by two open reading frames with higher priority at both ends, so
that the tags are appended at both sides of this ORF. The sequences which
were prepared for the alignments this way are written into the ORFdata struc-
tures, each sequence into the ORF’s structure it belongs to. And the double

array of structures is given back.
int write_ORFralx(struct ORFdata *#*allORF, int *orfnos2);

This routine takes over the structures of the type ORFdata which were pre-
pared for the protein alignments, and the integer array that contains the
numbers of the open reading frames which get aligned as proteins. It writes
an input file for CLUSTAL W and gives back a marker which shows that a file

has been written.
int **read_imput(int alnno, struct seq_identification *SID);

The routine reads the file ORFinput .ral which could be modified by the user
and produces the integer arrays which hold the information about the open
reading frames that were choosen by the program or the user for alignment

on the level of proteins.

struct ORFdata **control_ralign(struct ORFdata **allORF,

int **orfnos);

This routine is of central importance for the control of the alignments of the
open reading frames as proteins. It manages the alignments of the different
priorities and starts CLUSTAL W by a system call. It also calls and man-
ages the formerly explained subroutines read_clustal, remove_endgaps,
create_gap_data, prepare_further_aln and also write_ORFralx. It gives
back the double array of the structure ORFdata which now contains all

changes made by the called subroutines.
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struct aln_results *control_noncode(struct ORFdata **allORF,

struct seq_identification *SID, int alnno);

This is the routine that controls and manages the alignments on the level of
nucleic acids of the non coding regions between the ORFs. First, it creates
the CLUSTAL W input files containing the sequences with the tags for lying the
ends of the sequences one above the other in the alignments. Second, it calls
CLUSTAL W and the read_clustal subroutine after the alignment. It creates
an array of the structure aln_results which contains the results of each
nucleic acid alignment of the non coding regions and it manages the order of
the alignments. It also cuts away the tags after the alignments, attached on
one or both sides of the sequences. Finally, it returns the array of the result

containing structure aln_results.

struct aln_results merge_alignments(struct aln_results *final,

struct ORFdata **allORF, struct seq_identification *SID);

This routine takes over the double array of the structure ORFdata which con-
tains the results of the protein alignments, and the array of the structure
aln_results which contains the results of the non coding regions’ align-
ments, and it also takes over the array of the structure seq_identification
which is used to check the order of the manipulated sequences. By this
routine the resulting parts of the single alignments are merged again to
the complete sequences, now containg all gaps. It also calls the subroutine
rev_translate which writes the protein sequences as a result of the protein
alignments back into nucleic acid sequences. The complete sequences are fi-
nally written back into a structure of the type aln_results which contains,

of course, also all names.
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char *rev_translate(struct ORFdata ORF) ;

A reverse translation is done by this routine. It takes over one structure of
the type ORFdata, which represents one open reading frame that was aligned
as a protein sequence. It uses the nucleic acid sequence of this coding region,
which is also stored in the structure, to construct the reverse translated
sequence with all gaps. Every gap in the protein sequence results in a gap of
three fold length on the level of nucleic acids. The nucleic acid sequence is

given back.
int make_output(struct aln_results last);

This routine uses the structure of the type aln_results produced by
merge_alignments to construct an output file in the style of CLUSTAL W
output files. The head of the file is modified: it contains a short comment
which tells the user that this file was created by RALIGN.

int test(struct seq_identification *SID,

struct aln_results last);

This routine finally checks if the merging of the partial alignments was suc-
cessful or if some pieces of the tags were inserted into the sequences by an
alignment error (when CLUSTAL W inserts a gap into the tags, this occurs).
It is also checked whether the sequences after all manipulations are the same

as the input sequences or some undefined mistake changed them.
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9.2 The structures

struct ORFdataf{
char *foundExon, *aaseq, *seqname, *beginAAseq, *endAAseq;
char *centerAAseq, *prep_aln_aaseq;
char exon_info[20];
int start, stop, ORFlen, ORFcount, AAlen, SE(Qcount;
int blockstart, blockstop, endAA, beginAA, rank_of_aln;
int used_for_aln, prep_start, prep_stop;
int start_overlap_minuslor2, stop_overlap_minuslor2;
int found_higher_rank, higherrankORFarr;

};

This structure contains the nucleic acid sequence of the found open reading
frame, the amino acid sequence, the name, the cut away end gap contain-
ing sequences, the central alignment sequence, the sequence prior to the
alignment, information if the found exons are search derived or GenBank file
derived, the starting point, the end, the length, the number of the ORF, the
length of the protein sequence and the number of the input sequence. Fur-
ther some information which is used by the program to manage the different

alignments on the level of proteins and nucleic acids.

struct seq_identification {
char *sequ, *FileName, *CodonTableName, *read_aaseq;
char *seqname;

};

This structure contains the input nucleic acid sequence, the name of the
input file, the desired codon table, the amino acid sequence as derived from

the GenBank file and the name of the sequence.
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struct temp_no {
int SEQno, *0RFno;
};

This structure contains the information which ORFs get aligned as proteins.

struct aln_results {

char **alnseqs, **names;

int gaplenl, gaplen2, *beginAA, *endAA;
};

This structure represents the results of alignments. The aligned sequences,
their names, the lengths of the cut away end gap containing parts and infor-

mation about the number of amino acids cut away in a certain case.
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