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Abstract

Most functional RNA molecules have characteristic structures that are highly conserved in
evolution. Many of them contain pseudoknots. Here we present a method for computing
the consensus structures including pseudoknots based on alignments of a few sequences.
The algorithm combines thermodynamic and covariation information to assign scores to
all possible base pairs, the base pairs are chosen with the help of the maximum weighted
matching algorithm. We applied our algorithm to a number of different types of RNA
known to contain pseudoknots. All pseudoknots were predicted correctly, and more than
85% of the base pairs were identified.
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Introduction

Functional RNA molecules typically have characteristic structures that are highly con-
served in evolution. Many of them contain functionally important pseudoknots [58]. Com-
parative sequence analysis revealed conserved pseudoknots e.g. in TRNAs [6], RNase P

RNAs [5, 24], and tmRNA [65].
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The prediction of RNA pseudoknots, however, is still largely an open problem. Thermo-
dynamic structure prediction based on the standard energy model is NP-complete [44, 1]
in general, albeit restricted classes of pseudoknots can be dealt with by polynomial al-
gorithms. Nevertheless, these approaches are expensive in terms of CPU and memory
usage [52, 51, 25, 1, 11] and in addition suffer from uncertainties of the energy model for
pseudoknots [22].

Comparative sequence analysis methods are successful in predicting the consensus struc-
tures when a larger number of homologous RNA sequences is available [9, 23]. These
approaches do not distinguish between pseudoknotted structures and structures without
pseudoknots. Because of large datasets required for this approach it is limited to a few
classes of well-studied RNAs, however.

Consensus structures of a moderate number of related RNAs can be obtained from com-
binations of thermodynamic with comparative techniques. For the cases of structures
without pseudoknots a variety of computer programs are available [41, 34, 43, 36, 31|,
which significantly improve the quality of the predicted structure in comparison with
thermodynamic predictions on individual sequences.

The same idea can be applied to the pseudoknotted case: Tabaska et al. used Maximum
Weighted Matching (MWM) for this purpose [56]. A matching in a graph is a collection
of edges that pair-wisely do not have vertices in common. The predicted RNA structure
is obtained as the matching that maximizes the sum of edge weights that are calculated
from a combination of mutual information scores with helix scores for every possible base
pair in a given multiple sequence alignment. Tabaska’s helix score assigns a good pair
score to Watson-Crick and GU pairs, a negative pair score to every other type of base
pair and a penalty for gaps. Thus it incorporates thermodynamic information (in a very
simplified way) into the initial weight matrix. The MWM problem for any given weight
matrix can be solved in O(n?) time and O(n?) memory [16], i.e., with the same effort as
RNA folding problem for the pseudo-knot free case [48]. The problem with this type of
approach is of course the quality of the initial weight matrix which often requires many
sequences in the input alignment. In practice, the MWM approach is also plagued by a
large number of spurious base pairs.

A related approach by Ruan et al. [54] uses the same weight matrix as Tabaska’s program
but replaces the solution of the MWM Problem by an iterated loop matching algorithm.
One first solves the Maximum Circular Matching [48] to obtain a pseudoknot-free sec-
ondary structure. All nucleotides of the helix with the highest score are 'removed’ and
the computation is repeated on the remaining bases. The procedure is iterated until no
further base pairs can be found. This approach, which is implemented in the program
ilm, appears to reduce the number of spurious base pairs and works well on alignments
of smaller sets of sequences.
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Figure 1. Superposition of two disjoint secondary structures forming a bi-secondary structure.
The example shows the accepted structure of RNase P RNA [24].

The algorithm hxmatch! described in this contribution uses MWM but differs from
Tabaska’s approach in two respects: We use a different scoring scheme and we post-
process the result of the MWM computation restricting ourselves to so-called bi-secondary
structures. A bi-secondary structure can be understood as superposition of two disjoint
secondary structures, see Figure 1. The classes of bi-secondary structures and planar
structures are closely related. They become identical, when the backbone is regarded as
a circle. For a rigorous definition and mathematical properties of bi-secondary structures
we refer to [26]. The virtue of bi-secondary structures is that they capture a wide variety
of RNA pseudoknots, while at the same time they exclude true knots.

Nested pseudoknots are expected to be rare because the additional spatial constraints
incur sizeable destabilizing entropy contributions. In fact, the majority of highly nested
base-pairing patterns does not correspond to a feasible 3D structure that obeys restrictions
on bond-length, the structure of helices, etc. In addition, the formation of longer nested
helices is kinetically unfavorable because it would require to thread parts of the RNA
molecule through loops.

Comparing different classes of pseudoknots is not a straightforward task. The class of
pseudoknots that can be predicted by dynamic programming algorithms is often given
implicitly by the recursions of the algorithm. Condon et al. [10] developed a method,
which maps structures to a string representation, that allows to compare and classify the
structures that can be handled by different algorithms. They show, that the pseudoknot
class of Dirks and Pierce [11] is a subset of the class of Akutsu [1], which in turn is
a subset of the class of the Rivas and Eddy [52] algorithm. Reeder and Giegerich [51]
consider the class of recursive pseudoknots, following the definition of Akutsu [1], further
restricted by three rules of canonization. Therefore the class of Reeder and Giegerich
is a subset of the class of Akutsu. From the definitions of recursive pseudoknots, which
define the class of Akutsu, it follows immediately that all pseudoknots contained in this
class are bi-secondary structures. Since there are bi-secondary structures which are not
in the class of Akutsu (see below), this class is a subset of bi-secondary structures. The
class of Rivas and Eddy (R&E class) is neither a subset of bi-secondary structures, since
there are non-bi-secondary structures contained (e.g. a-operon mRNA structure), nor are
bi-secondary structures a subset of the R&E class, since there are bi-secondary structures
not contained in the R&E class. One example of a bi-secondary structure not in the R&E
class, and therefore also not in the class of Akutsu, is given in [44].

Ipronounce h-x-match or helixmatch
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Almost all known RNA pseudoknots fall into the class of bi-secondary structures. Pseu-
dobase [60] contains 245 examples of pseudoknotted structures which are all bi-secondary
structures, with the single exception of the Escherichia coli c-operon mRNA [57]. The
CRW database [6] contains four RNA families with pseudoknots, one of them, the group
IT intron, has a non-bi-secondary structure [46]. The class of Rivas and Eddy contains
the structure of the a-operon mRNA, but not the structure of group II intron [10].

A detailed description of our algorithm is given in the next section. We demonstrate the
properties of the algorithm by applying it to a number of RNA families with and without
pseudoknotted structures. Hxmatch is based on alignments of a few sequences, and com-
bines thermodynamic and covariation information. As demonstrated in the results section
the algorithm works well on automatically produced alignments of short sequences (up to
a length of about 120 nucleotides). Since the structure space of a sequence scales expo-
nentially with sequence length, the amount of covariation needed for a reliable prediction
is higher for longer sequences. When sequence similarity is low, the alignment gener-
ated from sequences alone are usually not structurally correct. Conversely, high sequence
similarity results in alignments that are structurally correct, but do not provide enough
covariation. However, based on structurally correct alignments (taken from databases)
with a mean pairwise sequence identity of about 0.60 hxmatch works well.

Methods for producing multiple RNA sequence alignments that are structurally correct
have become a topic of intense interest. While several approaches have been developed
recently, most are either computationally very expensive or use coarser heuristics [19, 49,
28, 55, 29]. Moreover, with the exception of [35], these approaches exclude pseudo-knots.
Throughout this work we have therefore used either hand curated alignments from the
databases, or pure sequence alignments as generated by Clustalw.

Method

The hxmatch algorithm starts from a multiple alignment and generates a scoring matrix
that assigns a weight to each possible base pair. This yields a weighted graph I'®© where
the nucleotides form the vertex set and the edge set contains all base pairs with positive
weight. In the next step an MWM algorithm finds the matching on I'®© that maximizes
the sum of the edge weights. The base pairs contained in the matching include isolated
base pairs and do not necessarily form a bi-secondary structure. Therefore the maximum
matching needs to be post-processed. During post-processing several edges are deleted
from the original input graph resulting in a modified weighted graph I'. The compu-
tation of the maximum matching and post-processing are iterated to convergence. The
crucial part of hxmatch is the improved scoring procedure which we describe in detail in
the following.
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Base Pair Scoring. Starting from a RNA sequence alignment A of NV sequences a scoring
matrix II is generated from the combination of the thermodynamic score, derived from
the stacking energies of helices, and the covariation score, which is based on the number
of mutations for a given alignment position.

Thermodynamic score. For each sequence v € A all base pairs 7j contained in the set
of allowed base pairs B = {GC,CG, AU,UA, GU, UG} which are part of a possible helix
with minimum length 3 are tabulated. The energy of each helix is calculated using the
(experimentally determined) standard energy model for thermodynamic RNA folding [45].
The weight H}; of a base pair in sequence « is the energy of the longest helix the base
pair is part of, multiplied by (—1) to obtain positive weights. The entry in the combined
scoring matrix HZ% of the alignment is then

1
E[A E &

acA

Covariation score. We use here a co-variance score instead of the mutual information
scores [9] preferred by many authors. The reason is that mutual information measures do
not make explicit use of the RNA base-pairing rules. While this allows the identification
of non-canonical base pairs and tertiary interactions it is less sensitive to information
that supports conserved helices: consistent, non-compensatory mutations, in which only
one side of a base pair is mutated, e.g., GC to GU, yield a score of 0 just as GC to GA
mutations. The covariance score

(2) Cij = Z [ii(XY)Dxy xv fi (XY7)

XY, X'Y'

was introduced in [31]. Here f;;(XY) denotes the frequency of a pair of type XY at
positions ¢ and j of the alignment A. The 16 x 16 matrix D has entries Dxy xy+ = 0 if
either XY = X'Y" or if XY or X'Y”’ is not a “legal” base pair. Otherwise Dxy x/y' =1
for consistent, non-compensatory mutations (i.e., XY, X'Y’ € B and either X = X' or
Y =Y’). Finally Dxy xy' = 2 for compensatory mutations (XY, XY € B, X # X',
and Y # Y').

While consistent mutations add to the weight of a base pair, non-consistent mutations
incur a penalty. We denote the fraction of inconsistent sequences for positions ¢ and j,
i.e. sequences that cannot form a base pair between positions ¢ and j, by ¢;;. They are
taken into account by forming the combined score

(3) Bij = Cij — ¢14;
Together with the helix score we obtain the combined weight
(4) 7Tij = Hﬁ + ¢2Bij

where ¢ and ¢, are scaling factors, their default values are given in Table 1. Note that
¢9 has the dimension of an energy and is given in kcal/mol.
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Figure 2. Penalty for long range base pairs. The penalty for long range base pairs is in the
order of magnitude of 10% of the maximum weight.

The MWM algorithm does not account for any dependencies between base pairs. There-
fore dependencies between base pairs, i.e. the formation of helices, have to be reflected
by the score of each base pair. Therefore we do not use m;; itself but rather include an
additional aggregation step. We determine all maximal stem-loop structures ¥ consisting
of helices of length at least 3 and bulges with a single base pair which consist of base
pairs with positive weight 7;;. The weight of the stem-loop structure W is the sum of the
weights of its base pairs:

(5) we =Y m;

ijew
Finally, we assign to each base pair ij the weight IT}; of the stem-loop structure with the
largest weight that passes through it: IT}; = wy for all ij € ¥ with m;; > 0.
This strongly favors base pairs that are part of longer helices, the weight is essentially
proportional to the square of helix length. This score compensates the tendency of the
MWM algorithm to produce many short helices.

Energy based prediction methods tend to predict long range base pairs much less reliably
(38, 12], and predicted long range pairs account for many of the false positives. In high
quality structures determined by comparative analysis 75% of the base pairs span less than
100 nucleotides [47, 12]. Furthermore, the stacking energy of long-range helices of natural
RNA’s increase with the range of the helix [18, 17], i.e. where the functional structure
of an RNA molecule requires long-range pairs, evolution selects unusually stable helices.
A likely explanation is that short range pairs are favored by the folding kinetics [27]. To
avoid producing too many long range pairs, a penalty is applied to base pairs spanning
more than 400nt, see Figure 2:

(6) I/, = I, —0.1(j —i—400) if 400 < j —i < 800
(7) I, = 11, — 40 if j —i > 800

This penalty function was determined empirically.

It is easy to take into account scores from other sources. For example, RNAalifold [31],
which is part of the Vienna RNA Package [33, 32|, calculates the consensus secondary
structure without pseudoknots for a set of aligned sequences, furthermore it calculates the
base pairing probabilities in addition to the minimum free energy structure. RNAalifold
takes into account phylogenetic information by adding a covariance score to the energy
function of the standard energy model [64, 45]. Hxmatch provides the option -A for
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Table 1. Parameters of hxmatch

Parameter Default

& 0.8

P2 60 kcal/mol
A 75 keal/mol
Pmin 0.90

IT* 25 keal/mol

assigning a bonus A to all base pairs contained in the RNAalifold prediction, option -AP
assigns a bonus AP = 2A X In(p/pmin) to all base pairs with base pairing probability p
exceeding a threshold py,, refer to Table 1.

Finally, all base pairs with a score smaller than a threshold IT* get zero weight. The
resulting final weights II,; are then used for the MWM computation.

All parameters have been empirically optimized, their default values are given in Table 1.
The value of ¢y scales the covariation score so that the ratio of the range covered by the
covariation score to the range covered by the thermodynamic score is approximately 3:1.
The value of IT* is in the order of magnitude of 5% of the maximum weight.

Maximum Weighted Matching. The input graph I'®©) for the maximum weighted
matching algorithm consists of the vertex set V' = {1,...n}, where n is the length of the
alignment, and the edge set formed by all base pairs with score II;; > 0. We use the
algorithm for maximum weighted matching of H. Gabow [16] implemented by Edward
Rothberg [53].

Post-processing. The maximum weighted matching obtained for the input graph I'® is
not necessarily a bi-secondary structure. Furthermore isolated base pairs are contained in
the matching. Therefore the outcome of the MWM algorithm needs some post-processing.
All isolated base pairs and helices with length 2 are deleted from the outcome, and the

remaining helices are extended further, if the corresponding base pairs are contained in
the graph I'©),

We use the following greedy procedure to derive a bi-secondary structure from the match-
ing. The helices are ordered by descending weight. Initially all helices are assigned to
Qu, the subset of helices which are drawn in the upper half plane of the linked diagram
representation (see Figure 3). Then we go through the sorted list of helices and assign
all helices conflicting with a higher ranked helix (temporarily) to £2;. Subsequently the
helices contained in 27, are scanned and all helices conflicting with a higher ranked helix
of Q5 are deleted from the graph. Figure 3 shows an example of the classification of the
helices.



WITWER ET AL.: CONSENSUS RNA STRUCTURE INCLUDING PSEUDOKNOTS 8

Helix | Weight | assigned to

« 100 Qu
4 90 Qp,
€ 70 Qr,
X 65 deleted
B 45 Qu

Figure 3. Classification of helices: Since helix x is inconsistent with the higher ranked helix
a € Qp and helix § € Qp, it is deleted to obtain a bi-secondary structure.

We then remove from the original graph I'©) all base pairs conflicting with the bi-secondary
structure predicted in the first round. This yields a modified graph T'™ which serves
as input for a second run of the maximum weighted matching algorithm. This allows
additional base pairs to be added to the bi-secondary structure of the previous run, but
may again yield a non-bi-secondary structure. Therefore, the two steps (MWM and post-
processing) are iterated until the outcome stays constant. For the datasets investigated
at most 4 iterations were needed.

We also considered “filled-in” structures obtained by computing the thermodynamically
most favorable structure consistent with the predicted consensus structure (using RNAfold
-C [32]). The constraints include all base pairs drawn in the upper half plane of the linked
diagram representation, while bases involved in base pairs drawn in the lower half plane
are constrained to be unpaired. The base pairs from the lower half are then re-inserted
into the RNAfold -C prediction. The net effect of this procedure is to add most of the
thermodynamically reasonable additional base pairs that are consistent with the computed
consensus structure when we are interested in the structure of a single sequence.

CPU Time and Memory Usage. Tabulating all possible helices for the individual se-
quences requires O(Nn?) time and O(n?) memory, with N being the number of sequences
and n being the length of the alignment. Scanning the combined helix score for helices
allowing bulges of size one, requires less than O(n?) time, since helix lengths are (almost)
independent of n [15, 30] and the mean number of alternatively helices a base pair is part
of is small in practice. The MWM algorithm requires O(n?) time and O(n?) memory.
Since N < n the overall complexity is O(n?) time and O(n?) memory. RNAalifold is
also O(n?) in time and O(n?) in memory. The hxmatch program in combination with
RNAalifold needs only seconds for the structure prediction of a 16STRNA on a Linux PC
with a Dual XEON P4 2.2 Ghz. For comparison ilm [54] takes about 5hmin for the same
task.

Results

The performance of hxmatch is tested by applying the algorithm to a number of differ-
ent types of RNA known to contain pseudoknots, as well as to different RNA families
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Table 2. Sequences used for prediction

N n  Reference organism range len RP PK
tRNA - - consensus complete 73 21 0
Gammaretrovirus - - U00220 894-994 101 32 O
55 rRNA - - consensus complete 117 40 O
Coronavirus 9 0.94 724675 7290-7352 63 18 1
HDV 15 0.91 AJ309880 318-405 88 27 1
Tombusvirus 12 0.92 U80935 4686-4776 91 24 1
Enterovirus 12 0.87 MS88483 7302-7404 103 38 1
a-operon mRNA 24 0.79 M12432 572-683 112 22 2
SRP RNA 8 0.59 Halobacterium halobium complete 305 86 1
tmRNA 8 0.60 FEscherichia coli complete 362 106 4
RNase P RNA 8 0.58 Agrobacterium tumefaciens complete 404 124 2
Telomerase RNA 8 0.64 Homo sapiens complete 452 102 1
16S rRNA 8 0.63 FEscherichia coli complete 1542 478 2

We list the number of sequences N of the alignment, the mean pairwise sequence identity n of the
alignment, the name resp. the NCBI accession number of the reference organism, its sequence length,
the number of base pairs RP of the reference structure and the number of pseudoknots PK of the
reference structure. The sequences were taken from the following sources: tRNA, Gammaretrovirus,
5S rRNA, Coronavirus, Hepatitis delta virus (HDV), Tombusvirus: Rfam [21]; Enterovirus: NCBI;
The alignments were taken from the following sources: a-operon mRNA: Rfam [21]; SRP RNA:
SRPDB [20]; tmRNA: tmRNA Database [37]; RNase P RNA: RNase P Database [4]; Telomerase
RNA: Rfam [21]; 16S rRNA: The Comparative RNA Web Site [6];

known not to contain pseudoknots. All predictions were generated using hxmatch -A and
hxmatch -AP respectively, results of the “filled-in” structures are given as well.

We compared hxmatch with other algorithms: RNAfold [32] computes the minimum free
energy structure of a single sequence without pseudoknots based on the standard ther-
modynamic energy model. RNAalifold [31] predicts the consensus structure for a given
alignment without pseudoknots. Pknots [52], an algorithm able to predict pseudoknots by
dynamic programming, generates the minimum free energy structure for a single sequence
based on the standard thermodynamic model augmented by parameters describing the
thermodynamic stability of pseudoknots. Pknots has a rather high complexity of O(nS)
in time and O(n*) in memory, therefore the length of sequences that can be analyzed is
restricted to about 150 bases and it is not possible to compare the results of the com-
plete RNA sequences. Ilm [54] predicts the consensus structure for a given alignment
with pseudoknots. All programs were applied with default parameter settings, except for
pknots. With default parameter settings pknots missed all pseudoknots of the partial
sequences known to contain pseudoknots (see below). However, setting wkn = 0.88 re-
sults in the correct prediction of most pseudoknots, while it does not introduce spurious
pseudoknots in the sequences without pseudoknots. Hxmatch results are compared to that
of RNAalifold and ilm based on the same alignments and to the structure prediction of
RNAfold and pknots on the reference sequence.
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Table 3. Sequences without pseudoknots

RNAfold alifold pknots ilm hxmatch -AP
Raw Filled

SS SP SS SP sS SP PP SS SP PP SS Sp PP SS Sp
tA 52 52 95 100 52 52 0 95 91 0 91 100 0 95 95
tB 100 91 100 100 100 96 0 81 71 0 57 57 0 67 54
tC 91 100 91 100 91 95 0 71 68 1 62 100 0 91 100
tD 52 52 91 100 52 52 0 43 39 0 57 86 0 91 91
tE 100 100 100 100 76 70 0 81 7 1 100 100 0 100 100
tF 100 91 100 100 100 95 0 71 50 1 57 52 1 67 48
tG 95 91 95 91 96 87 0 90 83 1 86 86 1 91 86
tH 81 71 76 100 76 67 0 76 59 2 76 64 2 81 63
tav 84 81 94 99 80 7 0 76 67 - 73 81 - 85 80
gA 75 71 91 100 53 49 0 75 71 1 84 90 0 94 91
gB 72 70 66 78 41 43 1 83 82 0 84 90 0 94 91
sA 43 47 65 93 60 60 0 63 81 1 55 88 0 70 78
sB 73 83 85 100 65 74 0 75 96 0 63 81 1 78 84
av. 72 72 83 95 65 64 - 76 78 - 72 85 - 84 84

tA-tH: tRNA datasets; tav: average from all tRNA datasets; gA, gB: Gammaretrovirus datasets; sA,
sB: 5S rRNA datasets; av: average from all datasets, av=(tav+gav+sav)/3, where gav is the average
of gA and gB, and sav is the average of sA and sB ; alifold = RNAalifold; SS = 100 x T'P/RP;
SP =100 x TP/(TP+ FP); RP = number of base pairs in the reference structure; 7P = number of
true positive predicted base pairs; F'P = number of false positive predicted base pairs; PP = number
of predicted pseudoknots; For the hxmatch prediction the data for the filled-in structure are given
additionally to the data of the raw prediction (refer to text).

All predictions were compared to the accepted structure of the reference organism listed
in Table 2. For the data taken from Rfam [21], the consensus structure given at Rfam
for the respective family was taken as reference structure. In all other cases the reference
organism was chosen at random, if more than one reference structure is available. The
choice of the reference sequence does not seem to have a great effect on the quality of
prediction, compare Table 5.

Quality of prediction is given in terms of sensitivity and specifity. Let RP be the number
of base pairs in the reference structure, T'P the number of correctly predicted base pairs
(true positives) and F'P the number of predicted base pairs that are not contained in the
reference structure (false positives). Then sensitivity is defined as SS = 100 x TP/RP,
and specifity is defined as SP = 100 x TP/(TP + FP) [3].

Sequences known not to contain pseudoknots. We tested our program on a number
of sequences which have structures without pseudoknots. We used 8 datasets of tRNA,
and 2 datasets each for Gammaretrovirus and 5S rRNA. Structure predictions were based
on automatically produced alignments using Clustalw [59]. All datasets contain 12 se-
quences, which were chosen at random from Rfam subject to the restriction that no
pairwise sequence identity is lower than 0.70. This ensures a reliable alignment calculated
by Clustalw. The mean pairwise sequence identity of the alignments is between 0.82 and
0.90. The predictions were generated using hxmatch -AP with default values used for all
parameters. The quality of prediction results is given in Table 3.
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Table 4. Quality of predictions of partial viral RNA sequences - Clustalw alignments

RNAfold alifold pknots ilm hxmatch -AP
Raw Filled
SS SP SS SP S§S SP PK SS SP PK SS SP PK SS SP
Coronavirus 56 56 56 56 83 7 1/1 94 100 1/1 94 85 1/1 94 81
HDV 41 39 0 0 85 Tro1/1 59 55 1/1 70 86 1/1 96 81
Tombusvirus 79 82 38 39 79 70 1/1 58 58 1/1 92 100 1/1 92 92
Enterovirus 69 94 55 85 76 97 0/1 68 93 1/1 79 31 1/1 82 32

SS = 100 x TP/RP; SP = 100 x TP/(TP + FP); RP = number of base pairs in the reference
structure; T'P = number of true positive predicted base pairs; F'P = number of false positive predicted
base pairs; PK = (number of correctly predicted pseudoknots)/(number of pseudoknots in the reference
structure);

The best results, both in terms of sensitivity and specifity, are obtained by RNAalifold
since it relies on the full energy model and additionally takes into account sequence
covariation. The quality of results of RNAfold and pknots is comparable, and pknots
predicts pseudoknot-free structures for all examples except one.

Sensitivity of the raw hxmatch prediction is comparable to ilm, but hxmatch shows higher
specifity. I1m predicts false pseudoknots in about half of the examples, hxmatch predicts
pseudoknotted structures for one third of the datasets. Nevertheless, both sensitivity and
specifity of the filled hxmatch prediction are comparable or slightly better than RNAfold
and pknots.

Escherichia coli a-operon mRNA. In order to evaluate the effect of restricting the
structure space to bi-secondary structures we have also considered the a-operon mRNA
which is not within this class. It may be surprising that the performance of hxmatch is
comparable to the other programs despite the restriction to bi-secondary structures. In
fact, neither ilm nor pknots find the helix which violates the bi-secondary structure con-
straint. All three algorithms predict a bi-secondary structure with two helices forming a
pseudoknot (refer to supplemental material). The predicted structure of hxmatch without
restricting the output to a bi-secondary structure gives a bi-secondary structure as well.

Partial sequences known to contain pseudoknots. Structure predictions for the
partial viral sequences were based on automatically produced alignments using Clustalw
[59]. Datasets were chosen such that the mean pairwise sequence identity is as low as pos-
sible subject to the restriction that no pairwise sequence identity is lower than 0.70. The
predictions were generated using hxmatch -AP with default values used for all parameters.
The quality of prediction results is given in Table 4.

The pseudoknotted structures in the 3" UTR of Coronavirus[62], Tombusvirus [13, 50]
and Enterovirus [61] and in the Hepatitis delta virus (HDV) ribozyme [14, 39] have been
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pknots ilm hxmatch

Figure 4. Predicted structures of the three algorithms for tombusvirus compared to the reference
structure [13, 50]. Black: true positive base pairs; red: false positive base pairs; green: false
negative base pairs;

shown to be necessary for viral replication. Hxmatch results are compared to that of
RNAalifold and ilm based on the same alignments and to the structure prediction of
RNAfold and pknots on the reference sequence.

Since RNAfold and RNAalifold can not deal with pseudoknots, they have very low sen-
sitivity for these examples, where up to half of the base pairs are violating secondary
structure constraints. With default parameter settings pknots missed all pseudoknots.
However, setting wkn = 0.88 results in the correct prediction of the pseudoknot in all
datasets except enterovirus. Hxmatch and ilm identify the pseudoknot in each dataset.
Sensitivity and specifity of pknots and hxmatch are comparable, while sensitivity of ilm
is notably lower for two of the four datasets. The graphical representation of the results
for one example, tombusvirus, is shown in Figure 4.

Complete sequences known to contain pseudoknots. In each of the five test cases,
we predicted the structure of a reference sequence based on an alignment of 8 sequences,
taken from the databases given in the caption of Table 2. Datasets were chosen such that
the mean pairwise sequence identity of the alignments is about 0.60. The predictions were
generated using hxmatch -A, which means the RNAalifold prediction is included in the
computation of the initial weight matrix. Default values were used for all parameters.

We compared the quality of hxmatch predictions for one of the datasets, RNase P RNA,
using different reference organisms, results are given in Tab. 5. Values of sensitivity and
specifity lie in between 83 and 93, but the quality of prediction is essentially the same since
the raw hxmatch prediction misses only one helix in two of the examples (Agrobacterium
tumefaciens and Mycobacterium avium) and identifies all helices in the other examples.
The filled-in hxmatch prediction contains all helices for all six test cases.

A comparison of hxmatch with RNAalifold and ilm is given in Table 6, and Figure 5
shows, as an example, the prediction results for RNase P RNA. These sequences are
already too long to use pknots. Using pknotsRG-mfe [51] is possible, but for these larger
examples pknotsRG-mfe predictions were either identical or worse than RNAfold (data
not shown).
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Table 5. Quality of predictions: RNase P RNA, different reference organisms

hxmatch -A
Raw Filled
reference organism SS SP SS SP
Alcaligenes eutrophus 73 93 88 86

Agrobacterium tumefaciens 77T 89 93 89
Bacteroides thetaiotaomicron 77 93 88 89
Clostridium acetobutylicum 82 93 83 83
Escherichia coli 76 95 90 90
Mycobacterium avium 72 94 88 88

SS and SP are defined in Table 4.

SRP RNA: SRP RNA has a long, double helical structure with one pseudoknot structure
close to the 5’ end [40], which can be viewed as ’kissing hairpins’. Our structure prediction
is based on the alignment of 8 archaeal sequences. Using hxmatch in combination with
RNAalifold identifies all helices correctly and in the filled structure prediction only 3
base pairs are missed. The 18 false positive base pairs extend existing helices.

tmRNA: The structure of tmRNA contains four H-type pseudoknots and is roughly glob-
ular [65]. The consensus structure predicted by our program is based on the alignment of
8 bacterial tmRNA sequences. Using hxmatch in combination with RNAalifold identifies
all helices correctly, and there are two additional helices. The filled structure misses 5
base pairs and predicts 9 false positive base pairs, 7 of them forming the two additional
helices.

RNase P RNA: The structure derived by sequence comparison contains two long-range
pseudoknots [5, 24]. Our prediction is based on 8 bacterial sequences. The raw prediction
contains 17 helices out of 18, the filled structure identifies all 18 helices, 9 base pairs are
missed. No false positive helices are predicted, the 14 additional predicted base pairs
extend existing helices.

Table 6. Quality of predictions of complete RNA sequences - database alignments

alifold ilm hxmatch -A
Raw Filled

SS SP SS SP PK SS SP PK SS SP
SRP RNA 90 88 86 67 0/1 92 85 1/1 97 82
tmRNA 59 &4 90 72 4/4 84 91 4/4 95 92
RNase P RNA 72 86 6 76 1 / 2 77 89 2 / 2 93 89
Telomerase RNA 72 77 57 39 0 / 1 8 79 1 / 1 8 59
16S rRNA 80 87 84 76 2/2 78 86 1/2 85 80

SS, SP and PK are defined in Table 4.
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Figure 5. Predicted structures of the three different algorithms for RNase P RNA compared to
the reference structure [24]. Black: true positive base pairs; red: false positive base pairs; green:
false negative base pairs;

Telomerase RNA: The reference structure is based on sequence comparison combined with
chemical and mutational probing [7, 8, 2, 42]. Our prediction uses 8 vertebrate sequences.
The raw prediction identifies 5 helices out of 6 correctly, but 3 additional helices are
predicted. In the filled structure 13 base pairs are missed, and 7 additional helices are
predicted.

1658 rRNA: The reference structure has been derived by comparative sequence analysis
[6] and confirmed by crystallography [63]. Our prediction is based on 4 bacterial and 4
archaeal sequences. The hxmatch/RNAalifold prediction misses only 3 helices, where one
of the missing helices corresponds to a long-range pseudoknot of length 3. In the filled
structure only two helices are missed and 7 helices are predicted that are not part of the
reference structure.

Comparison with ilm shows similar sensitivity as the raw prediction of hxmatch, but
the hxmatch prediction has a higher specifity. Furthermore, ilm could not identify all
pseudoknots in three of the investigated datasets. The sensitivity of RNAalifold is lower
than hxmatch, mostly because the base pairs involved in the formation of pseudoknots
are missing.

We also compared the prediction results based on the datasets of SRP RNA, tmRNA,
telomerase RNA and 16S rRNA used in the work of Ruan et al. [54] (refer to supplemental
material). Again, the percentage of correctly predicted base pairs of the filled hxmatch
prediction is the same or higher as in the ilm predictions. All pseudoknots are predicted
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Table 7. Quality of predictions of complete RNA sequences - Clustalw alignments

RNAfold alifold ilm hxmatch -A
T = IT* (default) T=5xII*

SS  SP SS SP SS SP PK SS SP PK SS SP PK
SRP RNA 58 49 64 80 71 54 1/1 70 83 1/1 61 85 1/1
tmRNA 49 47 47 82 67 54 3/4 51 69 1/4 41 96 0/4
RNase P RNA 77 77 40 88 67 59 1/2 46 80 1/2 41 96 1/2
Telomerase RNA 74 50 75 76 67 40 0/1 78 76 1/1 60 84 0/1
16S rRNA 43 42 68 85 69 57 0/2 65 81 0/2 63 90 0/2

T ... Threshold. SS, SP and PK are defined in Table 4.

correctly with the exception of a single long-range pseudoknot of length 3 in 16STRNA,
which was missed by both ilm and hxmatch. Only for the dataset of the 5’end of telom-
erase RNA the sensitivity of the hxmatch prediction is lower (only 54%) than that of the
ilm prediction. This is due to the fact that one helix consisting of 19 base pairs can be
formed only in 4 sequences of the dataset (which contains 9 sequences). Since hxmatch is
designed to have a high specifity, base pairs that are incompatible with more than half of
the sequences of the dataset are not contained in the prediction.

Table 7 shows the quality of predictions for the same sequences that were used in Table
6, but this time using alignments generated by Clustalw. Pure sequence alignments with
rather low similarity are only partially structurally correct. As a result, the accuracy is
notably lower for all three algorithms. For comparison the quality of RNAfold prediction
is given as well. Sensitivity of hxmatch is about the same as for RNAfold, but specifity
is higher. Additionally, a score is available for each base pair, reflecting the strength of
evidence for that base pair. When only the highest scoring base pairs (those with a score
greater than 5 x IT*) are taken, sensitivity decreases slightly, but specifity is high. In the
above examples no false positive helices are contained in the output.

Accurate predictions of longer sequences require more covariation information than for
short sequences. For sequences longer than about 120 nucleotides we found that align-
ments with mean sequence identity above 0.8 were insufficient, resulting in low sensitivity
and specifity less than 50.

Discussion

In this paper we present an algorithm for prediction of consensus structures including
pseudoknots based on alignments of a few sequences. Structure prediction of short se-
quences, up to a length of about 120 nucleotides, can be calculated from automatically
generated alignments. The quality of hxmatch predictions is higher compared to ilm and
at least comparable to pknots. The latter requires only a single sequence as input, but is
suitable only for short sequences because of its high time and memory demands. Although
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hxmatch occasionally predicts spurious pseudoknots for structures known to be pseudo-
knot free, the accuracy of prediction is still high and at least comparable to RNAfold and
pknots.

For our tests on complete RNA sequences we have used the high quality alignments avail-
able from the sources listed in Table 2. Since the configuration space available becomes
much larger with increasing sequence length, the amount of covariation required for a
reliable prediction is higher for longer sequences. Automatically generated alignments
with mean pairwise sequence identity of about 0.60 are typically not structurally correct.
Using the manually refined alignments all helices are predicted correctly for all datasets
with sequence length smaller than 500 nucleotides. Even for 16S RNA with a sequence
length of n ~ 1500, only three helices out of 49 are missed. The specifity is higher than
80 % in all cases except telomerase RNA. The lower specifity for telomerase RNA may be
due to the fact that the reference structure is based on only 35 sequences and therefore
may be incomplete. Alternatively, only parts of the structure might actually be conserved.
The sensitivity and specifity achieved by hxmatch for the investigated datasets is higher
than that of ilm and RNAalifold, and our algorithm identifies all pseudoknots correctly.

With automatically produced sequence alignments the accuracy for the complete RNA
sequences is notably lower. However, a score is available for each base pair, reflecting the
strength of evidence for that base pair. Taking only the highest scoring base pairs yields
a high specifity (no false positive helices are predicted) and still identifies about half of
the base pairs correctly.

We conclude that hxmatch is capable of predicting pseudoknotted RNA structures from
small samples of RNA sequences efficiently and with high accuracy, at least where accurate
alignments with a sufficient amount of sequence covariation are available. Despite recent
progress [19, 49, 28, 55, 29, 35], it remains an important problem to efficiently produce
structurally correct sequence alignments, even in the case of secondary structure without
pseudoknots. Our algorithm could form a starting point for a sampling approach to
simultaneous alignment and structure prediction.

Availability and Supplemental material

The source code, data and results are accessible at http://www.tbi.univie.ac.at/
papers/SUPPLEMENTS/HXMATCH/
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