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Abstract

To date, few attempts have been made to benchmark alignment algorithms
upon nucleic acid sequences. Frequently, sophisticated PAM or BLOSUM
like models are used to align proteins, yet equivalents are not considered
for nucleic acids; Instead, rather ad hoc models are generally favoured. Here
we systematically test the performance of existing alignment algorithms on
structural RNAs. The goals of this work are: (1) To determine conditions
where it is appropriate to apply common sequence alignment methods to
the structural RNA alignment problem. This indicates where and when re-
searchers should consider augmenting the alignment process with auxiliary
information, such as secondary structure. (2) To determine which sequence
alignment algorithms perform well under the broadest range of conditions.
We find that sequence alignment alone, using the current algorithms, is gen-
erally inappropriate below 50-60% sequence-identity, secondly we note that
the probabilistic method ProAlign and the aging Clustal algorithms gener-
ally out-perform other sequence-based algorithms, under the broadest range
of applications.
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Introduction

Motivation

The use of multiple sequence alignments is an essential step for many RNA
sequence analysis methods (e.g. RNA structure analysis [1–5], RNA homol-
ogy search [6, 7], ncRNA detection [8, 9] and RNA based phylogenetic in-
ference [10, 11]). Structural alignment of RNA is however an open problem.
An algorithm for simultaneous structural RNA sequence alignment, struc-
ture prediction and phylogenetic reconstruction has been proposed [12], yet
current implementations are limited in terms of functionality and sequence
size [13–18]. A second structural RNA alignment approach employs (pre-
dicted) structures and aligns these directly [19–21], again these are gener-
ally limited in terms of sequence size, but primarily suffer from the inaccu-
racy of single sequence structure prediction [22–24] (although, pruning low
probability base-pairs yields modest improvement [25, 26]). In addition, al-
gorithms which attempt to include RNA structural information for sequence
alignment fail when structure is not conserved (e.g. methylation-guide snoR-
NAs, Air-RNA). Many of these methods are also impractical when sequence
length is large or when single sequence structure prediction [27,28] performs
poorly [24].

The performance of current sequence alignment methods has been thoroughly
analysed in terms of protein alignment accuracy [29–32]. Benchmarking has
also been performed for simulated non-coding DNA [33]. However, the results
of these studies do not explore methods for the specific problem of aligning
structural RNAs. In this work we extend these studies and test the perfor-
mance of current alignment algorithms upon structural RNA data-sets.

The aims of this work are two-fold. Firstly, to identify the “twilight zone”
of RNA sequence alignment - the homology range below which sequence
alignment alone is unlikely to produce reliable results and researchers should
seriously consider augmenting the alignment process with auxiliary informa-
tion such as secondary structure. Secondly, to identify algorithms capable of
reliably aligning structural RNA sequences under a range of sequence identi-
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ties

Alignment algorithms

The simplest form of an alignment is the pairwise sequence alignment. This
can be performed by aligning sequences globally [34] or locally [35], both em-
ploy dynamic programming, thus resulting in a quadratic time complexity.
Different scoring schemes may be used, which already produce varying results.
The alignment of multiple sequences is far more complex, as the mathemat-
ically optimal solution imposes exponential complexity. Therefore heuristics
are used, which do not guarantee an optimal solution, but perform multiple
sequence alignment in reasonable time.

One common approach is called progressive alignment [36], which builds a
multiple alignment from pairwise alignments. The idea is that an alignment
of sequences, which have more recently diverged, is more likely to be reliable.
Thus high scoring pairwise alignment are aligned first and next closely related
sequences (or alignments of sequences) are added progressively. The order of
this progressive alignment is, in most cases, defined by a guide tree, which is

created beforehand from a distance matrix, produced by aligning all n(̇n−1)
2

possible pairs of sequences first. The basic drawback of this method is the
fact that gaps introduced in an early step cannot be removed during the later
addition of sequences, e.g. errors made in an early step propagate during the
alignment process (“Once a gap always a gap”). So called iterative methods
prevent this by realigning sequences or sequence groups in the multiple align-
ment, thus, theoretically optimising the alignment until successive iterations
fail to improve the alignment or reach a predefined limit (convergence).

Another class of algorithms is called consistency based. Here a multiple align-
ment is constructed by extracting (maximum-scoring) pairwise alignments
from a library such that these combined pairwise solutions are not contradic-
tory or mutually exclusive.

Probabilistic methods are an increasingly popular way of generating solu-
tions to biological problems. The basic premise is to produce a model that
one believes best describes the system behaviour. Model parameters are sub-
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sequently estimated from reliable data. In terms of sequence alignment a
pairwise HMM based approach has been proposed [37], and now implemented
and extended to multiple sequence alignment [38,39].

The structural RNA alignment approach of Sankoff [12], merges the recur-
sions of Smith-Waterman [35] type sequence alignment and Nussinov (max-
imal base-pairing) [40] or Zuker-Stiegler (energy based) [41] RNA structure
prediction [15]. The basic idea is to implicitly include base-pairing inter-
actions into the alignment procedure such that homologous base-pairs are
aligned correctly. Unfortunately, the algorithm is computationally expensive
(O(n3m) in time, and O(n2m) in space, where n is the sequence length and
m is the number of sequences). Current implementations, Dynalign [13, 14],
Foldalign [16], PMcomp [15] and Stemloc [17, 18], are restricted implemen-
tations of the Sankoff-algorithm which impose practical limits on the size or
shape of substructures. Additionally, sensible score routines such as thermo-
dynamics [13,14], a combination of sequence and thermodynamic scores [16]
and partition-function derived probability-matrices [15], can be used to score
alignments.

Figure 1 shows a classification of all the programs used in this study into the
above categories.

Materials and Methods

Accuracy measures

In order to evaluate alignment methods on structural RNAs we use two in-
dependent measures. The first is the traditional sum-of-pairs score (SPS)
employed in many previous alignment benchmarks [29,32,33]. SPS is defined
as the fraction out of all possible character pairs that are aligned in both the
predicted and reference alignments. Perfectly predicted (concordant) align-
ments receive an SPS of one, absolutely imperfectly predicted (discordant)
alignments receive an SPS of zero. Although, for nucleotide alignments an
SPS of zero is rarely observed. Essentially, SPS provides a measure of the
sensitivity of the prediction. The second measure, dubbed the “structure con-
servation index” (SCI) provides a measure of conserved secondary-structural
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information contained within the alignment [9]. It is a derivative of the score
calculated by the RNAalifold consensus folding algorithm [5, 42] which is
based upon the sum of a thermodynamic and covariance term and, in con-
trast to the SPS, is independent from a reference alignment. The SCI is close
to zero if RNAalifold identifies no common RNA structure in the alignment,
whereas a set of perfectly conserved structures has a SCI ≈ 1. A SCI > 1
indicates that there is a conserved RNA secondary structure which is, in ad-
dition, supported by compensatory and/or consistent mutations preserving
the common structure. We want to note that the SCI scores alignment ac-
curacy only in terms of secondary structure information. For example, if the
helices of a secondary structure are accurately aligned, it does not affect the
SCI whether the loop regions are well aligned in terms of sequence similarity.
The SCI specifically points out the structural aspect of alignment accuracy
and therefore appears to be a useful measure in addition to the SPS scores.

Alignment programs

We tested 11 sequence alignment programs and 4 structural alignment pro-
grams (see supplementary materials, Table 1). Where previous alignment
benchmarks have only considered the default or “out of the box” behaviour
we try testing a range of parameter combinations for each alignment method.
Algorithm options are summarised in the supplementary materials (see Ta-
bles 2 & 3).

Test data-sets

We generated four diverse structural RNA data-sets of Group II introns, 5S,
rRNA, tRNA and U5 spliceosomal RNA. The sequences and the reference
alignments for calculating the SPS score were obtained from the Rfam v5.0
database. SRP from the SRPDB database was included in the original data-
set but was later discarded due to poor comparability between predicted and
structural alignments contained in this data-set (the results suggest that a
fraction of the SRP reference sequences have been mis-aligned). Using the
same procedure as described previously [42], we generated approximately
100 sub-alignments for each family. The alignments contained five sequences
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each and encompassed a range of sequence identities. This large data-set
(hereafter referred to as data-set 1) was divided into high (≥ 75% sequence-
identity, 73 alignments), medium (< 75% and ≥ 55% sequence-identity, 73
alignments) and low (< 55% sequence-identity, 242 alignments) sequence ho-
mology groups. An additional tRNA data-set was generated with just two
sequences to each alignment (hereafter referred to as data-set 2). This was
used to contrast pairwise structural alignment methods and sequence align-
ment methods.

Caveat: tools improve

We note here that our data reflect the state of the art in early 2005. Most of
the tools tested are relatively recent, and frequently still under development.
Hence, not all the below observations will remain reproducible. In fact, we
hope this study helps to obtain better results in the future.

Results

Data-set 1: applicability of pure sequence alignment to ncRNA sequences

All 11 sequence alignment algorithms were tested upon data-set 1. The re-
sults and relative algorithm ranks for each homology group are summarised
in Table 1. We experimented with a variety of algorithm parameters. The
results using default and any parameter combinations that increased algo-
rithm performance are summarised in Figure 2. In order to measure relative
algorithm performances a ranking for each algorithm (and parameter setting)
was calculated within each of the three homology ranges. The rank is based
upon the product of mean SCI and mean SPS scores.

For the high similarity data-sets (sequence-identity ≥ 75%), there is little
difference in accuracy across most of the algorithms considered here (see
Table 1). Align-m and Handel rank well on this data-set, yet the relative
performance of both these methods dropped rapidly with decreasing sequence
homology. Interestingly, for Align-m, this is the opposite to what has been
observed for protein-based results [43].

6



PCMA ranked well on both the high and medium similarity data-sets, how-
ever the relative performance of this method dropped on the low similarity
data-set.

ClustalW, MUSCLE, PCMA, POA (with both global and progressive modes
- hereafter referred to as POA (gp)), ProAlign, Prrn and T-Coffee (when
ClustalW is used to generate a library of pairwise alignments) perform com-
paratively well across all homology ranges, with little significant variation be-
tween these methods. Only ClustalW, ProAlign and POA (gp) consistently
ranked in the top 10 across all the data-sets. There is some redundancy in
ranking algorithms over all the combinations of algorithm parameters we use
here, obviously some combinations produce similar (or even identical) results.
However, this has had little impact on our conclusions.

The results suggest that∼ 60% sequence-identity is a crude threshold, whereby
the structural content of predicted sequence alignments diverges from refer-
ence structural alignments (see Figures 2&3).

Data-set 2: comparison of structural and sequence methods

Now we contrast the relative performance of the comparatively good sequence
based methods identified in the previous section with structural alignment
methods using a smaller tRNA data-set. The structure based methods are
generally computationally more intensive than the sequence based methods
- hence the small size (in terms of the number of sequences and the sequence
length) of this data-set.

We use data-set 2 to compare the relative performances of structure-based
methods (e.g. Dynalign, Foldalign, PMcomp and Stemloc) to the “better”
sequence based methods identified in the previous section (e.g. ClustalW,
MUSCLE, PCMA, POA (gp), ProAlign and Prrn). We observe a dramatic
divergence in relative performances below ∼ 60% sequence-identity between
the structure and sequence based methods (see Figure 3).

The structural methods Dynalign, Foldalign and PMcomp show high con-
servation of structural information (SCI) across all homology ranges. How-
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ever, the SPS of Dynalign and PMcomp are significantly lower than that of
Foldalign. The difference is most marked in the high to medium homology
range. This is possibly because the current versions of Dynalign and PMcomp
optimise scores solely based on secondary structure information and hence are
likely to produce rather different alignments to those used in the test data-set,
where sequence information is also included. Stemloc performs comparatively
well in terms of SCI for sequence-identities above 40%. In terms of SPS how-
ever, Stemloc behaves much like the purely sequence-based methods. Given
the apparent sophistication of this method and large computational resources
required to run the algorithm [17, 18] these results are rather disappointing.
We hypothesise perhaps these are due to an overemphasis upon the sequence
based component of the algorithm.

All of the above data-sets are freely available from:
http://www.binf.ku.dk/users/pgardner/bralibase/. As novel and up-
dated algorithms become available updated results will also be made available
from the webpage.

Discussion

An aim of this work is to determine the boundaries between when pure se-
quence alignment methods perform well and when augmentation of the align-
ment with structure is necessary. We wish to highlight that benchmarks based
purely upon structural protein alignments do not adequately test all the uses
of sequence alignment. Also, we are pleased to note that our two independent
measures of alignment fitness (SCI and SPS) produce similar results.

In some cases we found altering algorithm parameters produced a dramatic
improvement over the defaults (e.g. T-Coffee performance improves using
Clustal to generate a library of pairwise alignments and POA performance im-
proves dramatically using a combination of the global and progressive modes).

We find the conclusions of previous studies based upon structural protein
alignments do not necessarily hold for the alignment of structural ncRNA.
For example, DIALIGN, identified as a method which performed well for low
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homology protein alignment did not generally improve (relative to the alter-
native methods) on low homology data-sets [32]. Another surprising discovery
was that T-Coffee, touted as an excellent method for high homology data-
sets, did not perform well (again, relative to the alternative methods) on the
ncRNA data-sets [32]. Another surprise was that the supposedly out-dated,
yet still widely used method ClustalW, performed consistently well across
all homology data-sets. This is possibly a consequence of the fact that more
recent algorithms are heavily optimised for protein alignment. The relatively
new methods ProAlign, POA (gp) and MUSCLE also performed consistently
well. ProAlign in particular produced (comparatively) reliable alignments and
ranked in the top 5 across all homology ranges. This is possibly due to the fact
that ProAlign is one of the few algorithms to use a scoring scheme derived
from reliable nucleic acid sequence alignments. The performance of POA (gp)
is also remarkable, not only because it employs a very fast method (said to
accurately align 5,000 EST sequences in 4 hours on a Pentium II [44]) but
also because it performed consistently well over all test-sets.

Another conclusion of this work is that the “twilight-zone” of ncRNA align-
ment - the homology-range where little-to-no structural information of pre-
dicted alignments (using the current state of the art algorithms) for struc-
turally homologous sequences is retained - is in the 50-60% sequence-identity
range. This is dramatically higher than that of protein sequences which is
10-20% [29]. Much of this difference is, of course, due to the different alpha-
bet sizes and the generally limited models and score-matrices for nucleotide
alignment.

It is interesting to note that three of the structural methods (Dynalign,
Foldalign and PMcomp) for a short homology range (40-60% sequence-identity)
have higher SCI scores than the reference alignment and that in these same
regions there is a dip in the performance when Dynalign, Foldalign and
PMcomp performance is measured using SPS. This suggests that the ref-
erence alignments themselves may be improved upon in this homology range.

Based upon these results the Foldalign score routines seem to have opti-
mised the delicate balance between the sequence and structure based scores.
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This implementation of Sankoff’s algorithm employs a light-weight energy
model [13, 41, 45, 46] in concert with substitution matrices similar to those
of RIBOSUM [47] and BLOSUM [48] which seem to produce excellent pre-
dictions. However, the computational complexity of this algorithm is still an
issue, global alignment is restricted to sequences of approximately 200 nu-
cleotides or less, in practice. Further optimization may increase this bound,
however.

The profile based approach of Hofacker et al. (pmcomp --fast [15,49]), holds
promise for producing fast and reasonably accurate alignments in satisfac-
tory time across all homology ranges. It by no means produces “optimal”
alignments in terms of sequence or structure, but is a reasonable compromise
between the sequence and structure based methods in terms of improved ac-
curacy for the former and dramatically reduced computational requirements
for the latter. This method is in the process of being re-implemented in C

with affine gap costs and an adjustable sequence-weighting parameter. This
is available as “RNApaln” with the Vienna package version 1.5 or greater
(pers. commun. Ivo Hofacker).

Summary

The results and main conclusions of our study can be summarised as follows:

• The two independent measures of global alignment accuracy SPS and SCI
are generally in agreement. These measures only differ significantly on
methods, such as Dynalign and PMcomp, that perform only structural
alignment. The SCI is, therefore, a useful score for assessing the accuracy
of structural RNA alignments.
• The relative performance of multiple sequence alignment programs on RNA

alignments can differ remarkably from the performance observed on protein
alignments.
• The multiple sequence alignment algorithms ClustalW, MUSCLE, PCMA,

POA (gp), ProAlign and Prrn perform well on high-to-medium homology
data-sets.
• ClustalW, ProAlign and POA (gp) consistently ranked in the top 10 across
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all homology ranges.
• The “twilight-zone” of ncRNA alignment is in the 50-60% sequence-identity

range.
• Below this limit, algorithms incorporating structural information (Dynalign,

Foldalign, PMcomp, Stemloc) outperform pure sequence based methods.
However, these algorithms are computationally demanding which severely
limits their use in practise.

Future directions

One rather interesting result of this study is that the structure profile align-
ment method (pmcomp --fast) produces reasonable structural alignments
across all homology ranges in a dramatically short time. This method in
combination with, as yet undeveloped, iterative alignment refinement strate-
gies seems poised to become a method of choice for RNA researchers in the
near future. This also has interesting implications for the notoriously difficult
problem of ncRNA homology search. A combination of a database of locally
stable regions [50] (analogous to the index creation of the BLAST procedure)
and the profile alignment method is likely to produce a superior homology
detection tool. This application and the extension of this method to multiple
alignment is an area of active research.

Other potentially fruitful research areas to explore are: (1) The implementa-
tion of light-weight Sankoff-like algorithms, which produce reasonable align-
ments in a short time-frame and use score routines combining energy and
sequence scores similar to those of Foldalign. (2) In analogy to the im-
provement of structure prediction accuracy by including stacking parameters
(nearest-neighbour model), perhaps the alignment of RNA sequences over a
di-nucleotide alphabet could produce improvements in sequence-based align-
ment. (3) The current score matrices for nucleotide alignment are generally
ad hoc, it is likely that significant improvements could be gained by using
RIBOSUM-like matrices [47] for scoring alignment. (4) “Intelligent” align-
ment algorithms which employ sequence information when this is reasonable,
or structure alignment when this is better.
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Note added to proof

Since embarking on this project the alignment algorithms Align-m, Handel
and MAFFT have been updated. Preliminary analysis of the updated algo-
rithms suggests that improvements to Align-m and Handel have resulted in
modest performance increases across the high, medium and low similarity
groups of data-set 1. The improvements to MAFFT however have resulted
in major performance increases across all similarity groups of data-set 1. In
fact, across all similarity groups MAFFT (ver. 5) now ranks second only to
ProAlign. However, gap-parameters for this algorithm have been estimated
directly from data-set 1, this bias could be alleviated by determining optimal
gap-parameters for all methods prior to benchmarking. Preliminary work in
this direction shows algorithm performances on RNAs can in some cases be
enhanced by optimising gap-parameters (personal communication K. Katoh).
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[39] Löytynoja, A. and Milinkovitch, M. C. (2003) A hidden Markov model for progressive multiple
alignment. Bioinformatics, 19(12), 1505–1513.

[40] Nussinov, R., Piecznik, G., Grigg, J. R., and Kleitman, D. J. (1978) Algorithms for loop
matchings. SIAM Journal on Applied Mathematics, 35, 68–82.

[41] Zuker, M. and Stiegler, P. (1981) Optimal computer folding of large RNA sequences using
thermodynamics and auxiliary information. Nucleic Acids Res., 9, 133–148.

[42] Washietl, S. and Hofacker, I. (2004) Consensus folding of aligned sequences as a new measure
for the detection of functional RNAs by comparative genomics. J Mol Biol, 342(1), 19–30.

[43] Van Walle, I., Lasters, I., and Wyns, L. (2004) Align-m: a new algorithm for multiple alignment
of highly divergent sequences. Bioinformatics, 20(9), 1428–1435.

[44] Lee, C., Grasso, C., and Sharlow, M. F. (2002) Multiple sequence alignment using partial order
graphs. Bioinformatics, 18(3), 452–464.

[45] Mathews, D., Sabina, J., Zuker, M., and Turner, H. (1999) Expanded sequence dependence of
thermodynamic parameters provides robust prediction of RNA secondary structure. J. Mol.
Biol., 288, 911–940.

[46] Xia, T., SantaLucia, J., Burkard, M., Kierzek, R., Schroeder, S., Jiao, X., Cox, C., and Turner,
D. (1998) Thermodynamic parameters for an expanded nearest-neighbor model for formation
of RNA duplexes with Watson-Crick base pairs. Biochemistry, 37(42), 14719–14735.

[47] Klein, R. and Eddy, S. (2003) RSEARCH: finding homologs of single structured RNA sequences.
BMC Bioinformatics, 4(1), 44–44.

[48] Henikoff, S. and Henikoff, J. (1992) Amino acid substitution matrices from protein blocks. Proc
Natl Acad Sci U S A, 89(22), 10915–10919.

[49] Bonhoeffer, S., McCaskill, J., Stadler, P., and Schuster, P. (1993) RNA multi-structure
landscapes. A study based on temperature dependent partition functions. Eur Biophys J, 22(1),
13–24.

[50] Hofacker, I., Priwitzer, B., and Stadler, P. F. (2004) Prediction of locally stable RNA secondary
structures for genome-wide surveys. Bioinformatics, 20(2), 186–190.

15



Figure legends
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Fig. 1. An overview of alignment programs used in this work. Programs were classified into the
categories described in detail in the “Alignment algorithms” section.
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Figure 2
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Fig. 2. Figure A displays the structure conservation index (SCI), figure B displays sum-of-pairs
score (SPS). Both measures of structural RNA alignment correctness are plotted as functions of
the mean-pairwise-sequence-identity (calculated using the reference alignments). The curves are fit
to data-set 1 (see text for details) using lowess (Local Weighted Regression) smoothing. At most,
two curves are plotted for each alignment package - one corresponding to the default parameters,
the other corresponds to best parameter combination we could identify.
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Figure 3
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Fig. 3. SCI (figure A) and SPS (figure B) as functions of the sequence-identity for data-set 2 (see text
for details). Five structural algorithms are shown; The Sankoff-based methods Dynalign, Foldalign,
PMcomp and Stemloc and the base-pair-probability-profile alignment method implemented in PM-
comp (fast). These are contrasted with hand-curated-structural alignments and six of the better
sequence-based alignment algorithms (ClustalW, MUSCLE, PCMA, POA (gp), ProAlign, Prrn).
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High homology Med. homology Low homology

75% ≤ Seq. Id. 75% < Seq. Id. ≤ 55% Seq. Id. < 55%

Algorithm SCI SPS Rank SCI SPS Rank SCI SPS Rank

Structural 0.9789 1.0000 0 0.9297 1.0000 0 0.7846 1.0000 0

Align-m (1) 0.9827 0.9600 5 0.8453 0.8825 22 0.4957 0.6748 25

Align-m (2) 0.9827 0.9600 6 0.8453 0.8825 21 0.4957 0.6748 24

Align-m (3) 0.9778 0.9593 7 0.8040 0.8742 26 0.4691 0.6635 29

Align-m (4) 0.9778 0.9593 8 0.8040 0.8742 25 0.4691 0.6635 28

Align-m (5) 0.8995 0.9419 30 0.7597 0.8583 30 0.4777 0.6460 30

Clustal 0.9438 0.9741 9 0.9100 0.9194 2 0.6064 0.7423 8

Clustal (qt) 0.9315 0.9743 12 0.8996 0.9123 9 0.6076 0.7345 9

DIALIGN 0.9071 0.9577 27 0.8018 0.8712 27 0.4979 0.6659 26

DIALIGN (o) 0.9077 0.9601 26 0.8568 0.8860 20 0.5202 0.6721 23

DIALIGN (it) 0.8590 0.9491 34 0.7519 0.8556 31 0.4669 0.6546 32

DIALIGN (it,o) 0.8492 0.9486 35 0.7092 0.8456 33 0.4467 0.6467 33

Handel 0.9604 0.9560 11 0.8570 0.8954 19 0.5360 0.7283 19

MAFFT (fftns) 0.8321 0.9145 36 0.5864 0.8030 37 0.3538 0.6448 37

MAFFT (fftnsi) 0.8840 0.9427 32 0.6655 0.8378 36 0.3845 0.6634 36

MAFFT (nwns) 0.9297 0.9502 25 0.6712 0.8349 35 0.3941 0.6724 35

MAFFT (nwnsi) 0.9330 0.9526 22 0.7004 0.8451 34 0.4071 0.6812 34

MUSCLE 0.9222 0.9684 19 0.8988 0.9181 5 0.6065 0.7668 2

MUSCLE (nj) 0.9268 0.9707 16 0.8841 0.9110 17 0.5902 0.7503 12

MUSCLE (mi32) 0.9222 0.9683 21 0.8959 0.9167 8 0.6069 0.7666 1

MUSCLE (mi32,mt6) 0.9222 0.9683 20 0.8959 0.9167 7 0.6068 0.7664 3

MUSCLE (nj,mt6) 0.9268 0.9707 15 0.8841 0.9110 16 0.5902 0.7503 11

MUSCLE (nj,mi32) 0.9268 0.9708 14 0.8855 0.9112 14 0.5897 0.7501 14

MUSCLE (nj,mi32,mt6) 0.9268 0.9708 13 0.8855 0.9112 13 0.5898 0.7501 13

PCMA 1.0030 0.9635 3 0.9196 0.9059 3 0.5339 0.6890 20

PCMA (agi20) 1.0030 0.9635 2 0.9255 0.9068 1 0.5621 0.7058 16

PCMA (agi60) 1.0030 0.9635 1 0.8938 0.8941 18 0.5270 0.6827 21

POA 0.8478 0.9644 33 0.7666 0.8739 29 0.4656 0.6740 27

POA (g) 0.9253 0.9722 17 0.8836 0.9130 15 0.5581 0.7543 15

POA (p) 0.8668 0.9656 31 0.7814 0.8814 28 0.5079 0.6964 22

POA (gp) 0.9444 0.9726 10 0.8929 0.9188 10 0.5843 0.7726 6

ProAlign (bw400) 0.9978 0.9631 4 0.9163 0.9072 4 0.6045 0.7490 5

Prrn 0.9364 0.9458 24 0.9036 0.9064 11 0.5903 0.7549 10

Prrn (S10) 0.9371 0.9458 23 0.8997 0.9086 12 0.5964 0.7596 4

T-Coffee 0.8867 0.9656 29 0.8129 0.8989 24 0.5322 0.7337 18

T-Coffee (c) 0.9201 0.9733 18 0.8956 0.9194 6 0.5972 0.7543 7

T-Coffee (f) 0.8867 0.9656 28 0.8129 0.8989 23 0.5322 0.7337 17

T-Coffee (s) 0.7892 0.9536 37 0.7151 0.8637 32 0.4447 0.6934 31

Table 1
The table displays mean SCI and mean SPS scores computed for data-set 1 (see text for details).
Data-set 1 has been divided into 3 homology groups: the high-homology group (75% ≤ seq. id.), the
medium-homology group (75% < seq. id. ≤ 55%) and the low-homology group (seq. id. < 55%).
Rankings are computed from the product of SCI and SPS. The top ten ranks are highlighted in bold.
Abbreviations of the parameter switches used to produce these results are shown in parentheses -
further details of these can be found in supplementary materials.
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