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Summary: A self-consistent minimal cell model with a physically moti-
vated schema for molecular interaction is introduced and described. The ge-
netic and metabolic reaction network of the cell is modeled by multidimen-
sional nonlinear ODEs, which are derived from biochemical kinetics. The
strategy behind this modeling approach is to keep the model sufficiently
simple in order to be able to perform studies on evolutionary optimization
in populations of cells. At the same time the model should be complex
enough to handle the basic features of genetic control of metabolism and
coupling to environmental factors. Thereby the model system will provide
insight into the mechanisms leading to important biological phenomena like
homeostasis, (circadian) rhythms, robustness, and adaptation to a changing
environment. One example of modeling a molecular regulation mechanism,
cooperative binding of transcription factors, is discussed in detail.
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Introduction

One of the great unsolved problems of biology is the intricate procedure that
transforms heritable genetic information into the observable physical, chemi-
cal and biological characteristics of an organism subsumed in the phenotype.
Unfolding a genotype in order to yield the corresponding phenotype is com-
monly a complex process that involves a great variety of molecular players.
In case of multicellular organisms this process involves not only the forma-
tion of new cells by division but also cell differentiation and development, the
next higher hierarchical level. Understanding the unfolding of a genotype,
often subsumed under the notion of a “genotype-phenotype map”, is further
complicated by the fact, that the “interpretation” of the genotype by the
molecular machinery of the cell is strongly influenced by environmental and
epigenetic factors. At the present state of knowledge, a theoretical model
which adequately describes the genotype-phenotype map at molecular level
for a whole organism seems to be a hopeless task.

The simplest evolving entity, one can think of, comprises heritable in-
formation in a nucleotide sequence and a phenotype derived from it in one
and the same object. The information stored in the sequence materializes
as a self-replicating molecular species in the form of an RNA molecule. The
structure of the RNA molecule is established by interactions of individual
nucleotides joined by the polymer chain and determines the function of the
molecule. In that sense the sequence carries the “heritable” information for
the formation of the phenotype, which in turn is the molecular structure
upon which selection acts in the evolution experiment [1, 2]. The folding
process of RNA at the secondary structure level is accessible also to mathe-
matical analysis and computer simulation, and can be viewed therefore as an
abstract model of a genotype-phenotype map (The ‘RNA model’ is described
in [3, 4]).

Intensive studies of the RNA sequence to structure map during the last
decade revealed how the properties of this map influences the dynamics of
evolutionary optimization. While being tremendously successful in eluci-
dating the mechanisms governing molecular evolution [5–7], many concepts
of biological genotype-phenotype maps, like signal transduction or develop-
mental processes, have no concrete analogue [8] within the RNA model. The
restriction of the phenotype to the structure of a single molecule makes it im-
possible to discuss aspects of organization since ‘division of labor’ is one of the
key issues in biology that determines the properties of genotype-phenotype
maps. In particular, the most striking deficiency is the absence of any form
of control and regulation in the RNA model. It is indeed the regulatory
network that builds the link between the genotype and the visual features of
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the phenotype [9, 10].
In this contribution we describe a model, which comes a step closer to

biological genotype-phenotype maps while remaining sufficiently simple to
allow for large scale evolutionary studies on the system.

The basic idea is to build a deterministic hierarchical mapping which
in a sense encrypts a dynamical system representing the phenotype within
a string (being the genotype). This approach separates the genotype, upon
which the genetic variation operators act, from the phenotype which is under
selection pressure. The dynamical system itself is a minimal version of a
gene regulatory and metabolic network1 represented by a system of ordinary
differential equations (ODEs).

Related Work

Our model follows the spirit of related work in the area of artificial regula-
tory network (ARN) models. Kauffman [11] used random boolean networks
(RBN) to model gene regulatory networks. RBNs show a broad range of dy-
namical behavior from cyclic and multiple attractors to chaos. Most of this
interesting dynamical features however vanish if the updating rule for the
temporal evolution of the network’s state is changed from a synchronous to a
biologically more realistic, asynchronous one. Moreover, random boolean net-
works show only a limited ability to structurally represent genes and genomes.

Reil [12] introduced the concept of an artificial genome to overcome this
structural weakness of RBNs. The artificial genome is essentially a bio-
logically inspired representation of genes and their interactions. The model
allows to manipulate the topology of the gene regulatory network at the level
of the genome (implemented as string of digits) by a set of genetic variation
operators which closely resemble their natural counterparts. This permits
to study questions regarding the evolution of the ARN and it’s quantized
boolean dynamics from the point of view of the changing genome.

Delleart and Beer [13], Eggenberg [14] and later Bongard [15] embedded
an ARN analogously to Reil’s approach, into a hand-coded morphogenetic
system to evolve “multi-cellular” objects capable of performing some prede-
fined tasks. Bongard showed that within this framework commonly termed
artificial embryogeny (AE) (see [16] for a recent review), gene reuse and
modularity in terms of regulatory circuits can arise.

1Since gene regulation and metabolic control is intimately coupled in cellular
dynamics we suggest to use the term genabolic network for the functional combi-
nation of genetics and metabolism.

3



Banzhaf [17] refrained from the boolean paradigm and expressed the dy-
namics of his ARN model in ordinary differential equations (ODEs). Many
dynamical phenomena of natural gene regulatory networks i.e. point attrac-
tors, damped oscillations and heterochronic control [18] are reproduced by
the ARN model. By introducing an arbitrary “virtual” binding site for a de-
sired output function, networks could be evolved where the activation pattern
of the virtual binding site follows a predefined mathematical function [19].
The model we propose differs from prior work with respect to the following
points:

First, the competition of molecular species that bind to regulatory regions
of genes is modeled explicitly in mass-action-governed elementary reactions.
The reason for this decision lies in the facts that (i) competition for a common
resource is obviously one of the core reactions in gene regulatory networks
which warrants an accurate mechanistic description (ii) mechanistic details
can have unexpected consequences [20] in terms of dynamic phenomena, es-
pecially if coarse-grained approximations i.e. Michaelis-Menten type kinetics
or concentration weighted mean values are used.

Second, the genome and the gene products are modeled entirely in RNA
molecules. At the level of RNA secondary structure efficient, well-established
algorithms exist to compute nearly any desired molecular property. In par-
ticular the statistical properties of the sequence to structure map and its
implications for the evolutionary process have been profoundly enlightened.
Therefore operations on RNA molecules, as used in the presented model,
possess a certain degree of physical realism which is lacking if binary or real-
valued vectors are used.

Third, molecular interactions, another key feature of gene regulatory net-
works, are modeled within the framework of RNA secondary structures. This
move provides us with a physically meaningful temperature dependent en-
ergy function which is not given for Hamming-distance based approaches for
bit strings.

Finally, the model is equipped with a minimal version of a metabolism
and a simple membrane similar to [21].

Model Description

A basic requirement for a model to be suitable for studying evolution is to be
self-contained in the sense that it does not require input of parameters on the
fly. This has been achieved in the RNA model by defining rules that provide
the frame for the computation of the required parameters. The development
of our model pursues the same strategy. In particular, the decoding step
is done in such a way, that all the relevant parameters needed to compute
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the time evolution of the dynamical system are calculated from within the
model. This enables the individual system to freely explore genotype space2

by increasing its complexity without imposing limitations from the exterior.
In molecular terms the genotype is thought to be a DNA or RNA molecule,
which is transcribed in pieces to yield RNA that in turn is the source of var-
ious other molecules in the system. Two different scenarios are conceivable:
(i) RNA is translated to yield protein molecules or processed to yield regula-
tory RNA molecules of the si-RNA type [22], or (ii) all molecular species of
the gene regulatory and metabolic network are entirely represented as RNA
molecules. There are no proteins involved in the second model and all regu-
latory and housekeeping functions are executed by ribozymes. Model (ii) is
introduced here. It is based on the empirical evidence that natural occurring
RNAs can fulfill a wide scope of different functions.

The Genotype-to-Phenotype Map

The genotype is represented by an RNA string of appropriate length. The
genes which may overlap along the genome are structured as follows: The
starting point of a gene is marked by a short sequence pattern which is
reminiscent to the TATA-box of eukaryotic genes. Upstream of this sequence
pattern two regulatory sites are located and in downstream direction a fixed
length coding region follows (see figure 1).

Gene products fall into two major classes, (i) transcription factors (TF)
and (ii) structural RNAs. While the former constitute the gene regulatory
network, the latter fulfill metabolic tasks. The function of a given RNA
molecule is determined by means of an energy-based comparison with classes
of target structures: The sequence is folded into all target structures yield-
ing a series of free energy values, and the lowest free energy value determines
the function of the molecule. Since the probabilities of the predefined target
structures obtained by folding random sequences is easily computable, the
distribution of functions in the ensemble of gene products can be influenced
by choosing target structures of different probabilities. This approach is sup-
ported by the fact that the function of naturally occurring RNAs is commonly
determined by the structure and not by the sequence. A point mutation in
a gene may or may not alter the function of the transcript depending on the
degree of neutrality of the structure formed by the gene product. This proce-
dure ensures a unique mapping (with exception of rare event that two folds

2Depending on the question to be addressed by the simulation the genotype
space can be restricted to all (4n) polynucleotide sequences of constant chain
lengths n or the length may variable with insertion and deletion operators act-
ing on genotypes.
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of the sequence yield identical minimum free energies) and a tunable degree
of redundancy. The problems arising from direct encoding of the phenotype
by the genotype [23] are avoided thereby. Both, unique assignment and high
degree of redundancy increase the accessibility of phenotypes leading to an
increased evolvability of the population [24]. The latter effect is well known
from simulation of RNA optimization where GC-only sequences are much
harder to optimize by evolution than AUGC sequences because they have a
lower degree of neutrality [25] (for a discussion on the parallels of the evolu-
tionary search on neutral networks between RNA and genetic programming
we refer the reader to [26]).

The Gene Regulation

Transcription factors (TFs) are grouped further into two types, activators
and repressors. These molecules bind to one of the two binding sites in the
upstream regulatory region (URS) of the gene. The activity of the gene is
regulated by the fraction of repressors or activators bound to the URS. For
modeling the transcriptional activity, we apply the common three state regu-

lated recruitment mechanism observed with bacterial genes (See [27], pp.13-
42): (i) Free genes are transcribed at a low basal rate, (ii) genes with acti-
vators bound to the regulatory region are transcribed at high rate, and (iii)
genes with bound repressors are silenced. The transcription rate itself also
depends on the concentration of active nucleotides, the analytic expressed of
the dependence was adopted from the mechanism of RNA replication by the
replicase of the phage Qβ[28].

In order to regulate transcription the binding affinities of the whole en-
semble of transcription factors (TFs) have to be transformed into a gene
activity signal that falls into one of the three transcription states: basal, ac-
tive, and silenced. Since the structure of the regulatory network itself should
be a target of evolution, a model based on molecular interactions is required
that decides upon two questions: (i) Which transcription factor (TF) binds
to the distinct URS of the gene, and (ii) to what extend is the URS bound
by the different TFs. Heteroduplex formation or RNA-RNA hybridization
[29, 30] is used to quantify the binding strength of a given TF to a given
regulatory site. The free binding energies computed in this way can be used
directly to calculate dissociation constants, and under the assumption that
association of the TF/URS complex is limited by diffusion, rate constants for
complex formation and dissociation. Since computation of binding constants
is straightforward, the topology of the genabolic network is readily recalcu-
lated, if some of the genes in the network changed sequence upon action of
the genetic variation operators on the genome.

6



The definition of the model parameters provides an opportunity to design
more complex regulatory mechanisms. As an example we present the con-
sideration of cooperativity in TF binding. There are several possibilities to
introduce cooperativity: (i) The effector molecule itself is a dimer, tetramer
or even higher aggregate and oligomer formation is a cooperative process or
(ii) alternatively two molecules bind to the binding sites within the URS and
a stabilizing interaction between the two ligands leads to cooperative binding
as sketched in figure 2. Whereas the first phenomenon leading to coopera-
tivity is well known in biophysics, the direct cooperative interaction between
two bound molecules has been studied much less frequently. For this reason
we performed a large scale investigation with random RNA sequences. Two
molecules were bound to the two URS binding sites and they are cofolded
under the constraint that their structures bound to the URS sites are pre-
served. A negative free energy leads to an additional stabilization of the
TF/URS complexes and results in cooperative binding (table 1). The re-
sults in the table present a ‘proof of concept’ of our model for cooperative
interactions. A reasonable fraction of random sequences with sufficient GC
content are suitable as regulators with cooperative interactions since they
form stable aggregates. The fraction of stable complexes with only AU base
pairs is very low. Pure AU sequences are characterized by relatively high free
energies of cooperative binding but too low energies of interaction with the
URS. In pure GC sequences we find reasonably strong binding to the URS
and cooperativity of the same order of magnitude. Mixed sequences may
be preferable since they have acceptable binding strength with still domi-
nating cooperativity. The energetic differences between heterodimers and
homodimers (self-cooperativity in table 1) are negligibly small.

The Metabolism

The metabolic RNAs are ribozymes which are capable of catalyzing either a
chemical reaction that activates a mediator molecule or a reaction that trans-
forms membrane precursor molecules into membrane building molecules (see
figure 3). The active mediator, in turn, transfers energy to monomeric build-
ing blocks and converts it into active species, which can be directly used for
transcription (or transcription and translation in case we use a model with
mRNAs and proteins). Eventually we end up with biopolymers, RNAs (or
RNAs and proteins), which may enhance their own production by produc-
ing more ribozyme in the manner of an auto-catalytic cycle. Catalysts are
assumed to require specific predefined structural elements. The catalytic ef-
ficiency of a molecule in the catalysis of a metabolic reaction is derived from
the activating energy Ea = εn−ε0 that is required for the transition from the
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minimum free energy structure into the (lowest) suboptimal state, Sn, that
carries the required element and constitutes the active form of the ribozyme
(figure4). This concept for the evaluation of catalytic efficiency can also be
interpreted as a distance measure between structures on an energy scale. It
is preferred here over simpler distance measures like the Hamming distance
based string comparison methods, because it retains the useful and realis-
tic statistical properties of the RNA sequence to secondary structure map
as exemplified by the evolutionary fitness landscape [5, 31]. Moreover the
activation concept allows for an optimization of the catalytic efficiencies of
ribozymes through accumulation of mutations that reduce Ea by stabilizing
the suboptimal structure Sn relative to the minimum free energy conforma-
tion S0. Ideally, if their minimum free energy structure S0 is identical to the
target structure Sn, exp(Ea/RT ) = 1, and the ribozyme catalyzes mediator
activation at maximum velocity.

After the determination of the parameters by the respective mapping, the
genabolic network is translated into a set of ordinary differential equations.
In order to describe the system in a general and easily accessible format, it is
implemented in the widely used Systems Biology Markup Language (SBML)
[32]. From the concentration time course fitness values can be deduced to
drive an evolutionary optimization procedure (see Figure 5). The integrator
front end currently used is the SBML-ODE Solver, a versatile integrator for
continuous ODE systems [33]. Due to the use of SBML a variety of integra-
tors and analysis software can easily be adopted and a flexible handling is
facilitated.

Results

Mutation studies without selection have already been performed and they
show that a sufficiently high fraction of mutations gives rise to viable regula-
tory networks. To test the capabilities of the model we designed the following
experiment. We ask the question: Is a cell with an initial random genome
capable of adapting its cell volume to a predefined target volume during an
mutational adaptive walk? Figure 6 shows the dynamical behavior of the fi-
nal cell of the adaptive walk. The balance between regulatory and metabolic
dynamics indeed adjusts the cell’s volume exactly to the target volume. Fig-
ure 7 shows the respective gene regulatory and metabolic reaction network.

There is also a substantial fraction of neutral mutations, which was found
to be a conditio sine qua non for efficient evolutionary optimization [5, 31, 34].
In order to study evolutionary phenomena, we have to consider genome repli-
cation and variation (mutation and/or recombination) too. The secondary
structure computations can be readily extended to DNA-DNA and DNA-
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RNA interactions since the same folding routines can be used with other sets
of empirical parameters [35, 36]. The evolutionary evaluation of different
genabolic networks is base on their fitness that results from a sophisticated
interplay of replication rate and metabolic efficiency.

Conclusions and Outlook

With the presented model at hand several pending problems can be ap-
proached. The encryption of all relevant system information within a string
genome allows the description and evolution of genabolic networks in an
entirely independent fashion. No external sources of additive information
are necessary, the system is self-determined and closed as far as rules and
system-sustaining model functions are concerned. In contrast to prior exclu-
sively RNA based auto-catalytic systems, the genotype and the phenotype in
the presented model constitute separate objects. This allows an unhindered
evolvability of the minimal cell on the way from a random dynamical network
to an adapted functional system.

Due to the regulation mechanisms implemented, in particular the direct
interaction of the transcription factors in a cooperative manner, the model
allows for studies of the evolution of a great variety of regulatory networks.
Experiments regarding an optimization of certain qualities or functions, for
example high adaptability, high robustness, insensitivity to environmental
stress, are conceivable.

The natural selection criterion is a short time of self-reproduction for the
individual system. This reproduction efficiency will be a function of the cell’s
replication machinery and the cellular metabolism. Our model encodes all
these features in the genome and the system itself unfolds the phenotype.
One way is the use of a growing cell membrane as indicator for cell growth
and replication. This approach includes an explicitly modeled membrane
as described, for example, in the chemoton systems [37]. At a certain size
and concentration of the cell components the individual could ready for cell
division, giving an additional input to the fitness measure for selection.

Further extensions of the system are easily implemented due to the modu-
lar SBML format. Several aspects are of special interest: The extension of the
system to a second class of biomolecules and for this goal lattice proteins with
monomer sequences encoded in the transcribed structural molecules would
be an excellent candidate. The introduction of membrane bound transporter
molecules which are responsible for the exchange of high and low energy
compounds fueling the minimal cell would allow a direct interaction with
the environment. A further evolutionary step, the adaptation of the trans-
porter to operate on a larger variety of molecules is likely to enable cell-cell
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communication. SBML on the other hand supports also the idea of a com-
partmentalization of this model. This would enable a spatial separation of
different metabolic processes in a manner that is closer to physiology.
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molecules. In M. Lässig and A. Valleriani, editors, Biological Evolution and
Statistical Physics, pages 56–83. Springer-Verlag, Berlin, 2002.

[5] W. Fontana and P. Schuster. Continuity in Evolution: On the Nature of
Transitions. Science, 280:145–165, 1998.

[6] P. Schuster. Evolution in silico and in vitro: The RNA model. Biol. Chem.,
382:1301–1314, 2001.

[7] P. Schuster. Molecular insight into the evolution of phenotypes. In J. P.
Crutchfield and P. Schuster, editors, Evolutionary Dynamics – Exploring the
Interplay of Accident, Selection, Neutrality, and Function, pages 163–215.
Oxford University Press, New York, 2003.

[8] W. Fontana. Modelling ’Evo-Devo’ with RNA. BioEssays, 24:1164–1177,
2002.

[9] E. H. Davidson. Genomic Regulatory Networks. Academic Press, 2001.

[10] W. Banzhaf and J. Miller. The Challenge of Complexity, chapter 1. Kluwer
Academic Publishers, 2004.

[11] S. A. Kauffman. The Origin of Order. Oxford University Press, 1993.

10



[12] T. Reil. Dynamics of gene expression in an artificial genome-implications for
biological and artificial ontogeny. Advances in Artificial Life–Proceedings of
the 5th European Conference on Artificial Life (ECAL ’99), 1674:457–466,
1999.

[13] F. Dellaert and R. D. Beer. A Developmental Model for the Evolution of
Complete Autonomous Agents. In P. Maes, M. J. Mataric, J.-A. Meyer,
J. Pollack, and S. W. Wilson, editors, From Animals to Animates 4: Proceed-
ings of the 4th Conference on Simulation of Adaptive Behavior, Cape Cod,
Massachusetts USA, September 9-13 1996. MIT Press.

[14] P. Eggenberg. Evolving morphologies of simulated 3d organisms based on
differential gene expression. In P. Husbands and I. Harvey, editors, Proceedings
of the 4th European Conference on Artificial Life (ECAL ’97), London, UK
Europe, September 9-13 1997. MIT Press.

[15] J. Bongard. Evolving modular genetic regulatory networks. In Proceedings of
the IEEE 2002 Congress on Evolutionary Computation (CEC ’02), volume 2,
pages 1872–1877, Honolulu, HI USA, May 12-17 2002. IEEE Press.

[16] K. O. Stanley and R. Miikkulainen. A taxonomy for artificial embryogeny.
Artificial Life, 9(2):93–130, 2003.

[17] W. Banzhaf. On the dynamics of an artificial regulatory network. In
W. Banzhaf, T. Christaller, P. Dittrich, J. T. Kim, and J. Ziegler, editors, Ad-
vances in Artificial Life–Proceedings of the 7th European Conference on Arti-
ficial Life (ECAL ’03), pages 217–227, Dortmund, Germany Europe, Septem-
ber 14-17 2003. Springer.

[18] W. Banzhaf. Artificial Regulatory Networks and Genetic Programming, chap-
ter 4. Kluwer Academic Publishers, 2003.

[19] D. P. Kuo, A. Leier, and W. Banzhaf. Evolving Dynamics in an Artificial Reg-
ulatory Network Model. In X. Yao, E. Burke, J. Lozano, J. Smith, J. Merelo-
Guervs, J. Bullinaria, J. Rowe, P. Tino, A. Kabán, and H.-P. Schwefel, editors,
Proc. of the Paralell Problem Solving from Nature Conference, volume LNCS
3242, pages 571–580. Springer, 2004.

[20] B. N. Kholodenko and H. V. Westerhoff. The macroworld versus the mi-
croworld of biochemical regulation and control. TIBS, 20(2):52–54, 1995.

[21] P. J. Kennedy and T. R. Osborn. A model of gene expression and regulation
in an artificial cellular organism. Complex Systems, 13:33–59, 2001.

[22] M. T. McManus and P. A. Sharp. Gene silencing in mammals by small
interfering RNAs. Nature Rev.Genetics, 3:737–747, 2002.

11



[23] P. Bentley and S. Kumar. Three Ways to Grow Designs: A Comparison of
Embryogenies for an Evolutionary Design Problem. In W. Banzhaf, editor,
Genetic and Evolutionary Computation Conference (GECCO ’99), pages 35–
43, Orlando, Florida USA, July 14-17 1999.

[24] M. Ebner, M. Shackleton, and R. Shipman. How Neutral Networks Influence
Evolvability. Complexity, 7(2):19–33, 2001.

[25] P. Schuster and P. F. Stadler. Modelling conformational flexibility and evo-
lution of structure – RNA as an example. In U. Blastolla, M. Porto, H. E.
Roman, and M. Vendruscolo, editors, Structural Approaches to Sequence Evo-
lution: Molecules, Networks, Populations, Biological and Medical Physics,
Biomedical Engineering, chapter 1, pages 1–34. Springer-Verlag, Berlin, 2006.

[26] W. Banzhaf and A. Leier. Evolution on Neutral Networks in Genetic Pro-
gramming, chapter 14. Kluwer Academic Publishers, 2006.

[27] M. Ptashne and A. Gann. Genes & Signals. Cold Spring Harbor Laboratory
Press, Cold Spring Harbor, NY, 2002.

[28] C. K. Biebricher, M. Eigen, and W. C. Gardiner. Kinetics of RNA replication.
Biochemistry, 22(10):2544–2559, 1983.

[29] R. A. Dimitrov and M. Zuker. Prediction of hybridization and melting for
double-stranded nucleic acids. Biophys. J., 87:215–226, 2004.

[30] S. H. Bernhart, H. Tafer, U. Mückstein, C. Flamm, P. F. Stadler, and I. L. Ho-
facker. Partition Function and Base Pair Probabilities of RNA Heterodimers.
Algo. Mol. Biol., 2006.

[31] W. Fontana and P. Schuster. Shaping space. The possible and the attainable
in RNA genotype-phenotype mapping. J.Theor. Biol., 194:491–515, 1998.

[32] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P.
Arkin, B. J. Bornstein, D. Bray, A. Cornish-Bowden, A. A. Cuellar, S. Dronov,
E. D. Gilles, M. Ginkel, V. Gor, I. I. Goryanin, W. J. Hedley, T. C. Hodg-
man, J. H. Hofmeyr, P. J. Hunter, N. S. Juty, J. L. Kasberger, A. Kremling,
U. Kummer, N. Le Novère, L. M. Loew, D. Lucio, P. Mendes, E. Minch,
E. D. Mjolsness, Y. Nakayama, M. R. Nelson, P. F. Nielsen, T. Sakurada,
J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spence, J. Stelling, K. Taka-
hashi, M. Tomita, J. Wagner, and J. Wang. The systems biology markup
language (SBML): a medium for representation and exchange of biochemical
network models. Bioinformatics, 19(4):524–531, 2003.
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Table 1: Binding energies of random RNA pairs of length 25 to two URS RNAs of length 5. Different base compositions in
the short RNA sequences from pure AU to pure GC were studied. The free energies for cooperative interaction (∆Gcoop) are
calculated for the conformations of lowest free binding energies (∆Gbind) as indicated in figure 2 and given with the standard
deviation.

Sequence Sample Sample size: Hetero-cooperativity Self-cooperativity

%AU #URS Sequence Stable −∆Gcoop −∆Gbind Stable −∆Gcoop −∆Gbind

pairs (%) [kcal·mol−1] [kcal·mol−1] (%) [kcal·mol−1] [kcal·mol−1]

100 11 1000000 0.1 ± 0.1 3.13 ± 2.26 0.32 ± 0.22 0.2 ± 0.3 4.00 ± 2.77 0.32 ± 0.21

90 56 824301 1.0 ± 1.2 3.02 ± 2.21 0.58 ± 0.55 0.9 ± 1.1 3.71 ± 2.65 0.72 ± 0.68

80 223 364473 8.8 ± 9.2 2.90 ± 2.15 0.87 ± 0.76 7.5 ± 8.5 3.53 ± 2.57 0.92 ± 0.78

70 557 163760 18.4 ± 12.7 2.85 ± 2.12 1.14 ± 0.98 14.2 ± 10.1 3.35 ± 2.46 1.17 ± 0.99

60 1021 62027 31.6 ± 14.3 2.80 ± 2.10 1.45 ± 1.17 23.9 ± 11.7 3.24 ± 2.39 1.47 ± 1.18

50 1265 28598 42.7 ± 13.3 2.78 ± 2.08 1.74 ± 1.35 32.2 ± 11.8 3.20 ± 2.35 1.74 ± 1.32

40 1007 16860 53.8 ± 11.0 2.75 ± 2.07 2.09 ± 1.50 41.6 ± 10.9 3.17 ± 2.33 2.03 ± 1.45

30 574 14305 60.9 ± 9.6 2.75 ± 2.07 2.43 ± 1.66 48.4 ± 10.2 3.21 ± 2.34 2.33 ± 1.59

20 238 13105 65.7 ± 8.6 2.75 ± 2.06 2.69 ± 1.76 54.0 ± 9.6 3.27 ± 2.37 2.55 ± 1.67

10 35 12054 70.9 ± 7.0 2.76 ± 2.07 3.07 ± 1.91 58.9 ± 9.1 3.31 ± 2.39 2.85 ± 1.80

0 8 11860 73.3 ± 8.4 2.85 ± 2.11 3.51 ± 2.07 66.0 ± 4.1 3.67 ± 2.63 3.29 ± 1.98
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CCGAUAUACGCGUUUAUAUCUCCUAUUAGACGAUUUCGCCCAGGACCC

CUCCUAUUAGACGAUUUCGCCC

Transcription

URS
TATA−Box

coding sequence

FunctionBinding

Figure 1: Gene control structure of a typical gene in the proposed model. Up-
stream of the coding sequence (green), lie the promotor region or TATA-box (red)
and an upstream regulating sequence (blue), consisting of to transcription factor
binding sites. The function of the gene transcript is determined by folding into
secondary structures representing the different classes of functional RNAs.
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Figure 2: Cooperativity as modeled in the presented framework. Two TFs bind
to the regulatory URS. The stabilizing free energy between the two functional
structures enters additively into the regulatory mechanism.
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Figure 3: A sketch of the chemical reaction network of the presented model. The
RNA polymerase is assumed to be available in a fixed amount and recruited to
the genes (green) promoter region (red) at a rate determined by the TF s bound to
the upstream regulating sequence (blue). The RNA transcription rate depends on
the concentration of activated RNA building blocks (XA) and consumes nXA per
RNA. The RNAs decay to inactivated components (XI), which are reactivated
via consumption of activated energy rich metabolites (EA). The gene products
are categorized into structural (SR) and gene regulatory (TF ) RNAs. The SRs
catalyze the activation of metabolites (EI) and the incorporation of membrane
building blocks (M int

I ) into the membrane (M). The internal pool of M int
I is

coupled to the exterior pool (M ext
I ) via diffusion through the membrane. All

parameters for transcription factor binding to regulatory regions and the catalytic
efficiencies of structural proteins are obtained by a mapping process (see text for
details) and are therefore targets of evolution.
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Figure 4: Activation of the ribozyme. The active structure catalyzes the
metabolic reactions. The free energy needed to form the the secondary struc-
ture of the active ribozyme from the minimal free energy secondary structure of
the RNA is used to derive the catalytic efficiency of the ribozyme.
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Figure 5: Schematic representation of an evolutionary cycle. The topology of the
genabolic network together with the reaction parameters is decoded from the geno-
type. This information is translated into an ODE system which after numeric in-
tegration provides the concentration time coarse of the individual chemical species
(the phenotype) which in turn modulates via a fitness function the reproductive
efficiency of the genome.
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Figure 6: Integrated time course of a cell evolved via an adaptive walk targeting
a cell volume of 1. A genome of length 100 and a gene length of 20 nucleotides
were chosen. URS length was 5 per site and the promoter sequence motif was CC.
Genes, transcription factors and ribozymes are labeled GN , TF and SR. The
TF/gene complexes are labeled either CX or CI for activating or inhibiting com-
plexes. The first index denotes the gene, letters a and b the sites the transcription
factors bind to.

20



CI00a00__Formation

CI00a00

TF00

CI00b00__Formation

CI01a00__Formation

CI03b00__Formation

CI04b00__Formation

CI05a00__Formation CI05b00__Formation

TF00__Decay

CX00a00b00__Formation_from_CI00a00

CX00a00b00__Formation_from_CI00b00

CI00a03b00__Formation_from_CX00a03 CI03a03b00__Formation_from_CX03a03

CX05a00b00__Formation_from_CI05a00 CX05a00b00__Formation_from_CI05b00

CI05a00b03__Formation_from_CX05b03

GN00

polGN00__Binding

CX00a03__Formation CX00b03__Formation

polCI00a00__Binding

polGN00

polF

polCI00b00__Binding polCI01a00__Binding

polCI03b00__Binding

polCI04b00__Binding

polCI05a00__Binding polCI05b00__BindingpolGN01__Binding polGN02__Binding

polCX00a03__BindingpolCX00b03__Binding polCX01a03__Binding polCX03a03__BindingpolCX03b03__Binding polCX04b03__Binding polCX05a03__Binding polCX05b03__Binding

polGN03__Binding

polGN04__BindingpolGN05__BindingpolCX00a00b00__Binding

polCI00a03b00__Binding polCX00a03b03__Binding polCI03a03b00__Binding polCX03a03b03__Binding

polCX05a00b00__Binding

polCI05a00b03__Binding

polCX05a03b03__Binding

polGN00__Transcription

CI00b00

CI00a03b00__Formation_from_CI00b00

CI01a00

GN01

CX01a03__Formation

polGN01

polGN01__Transcription

CI03b00

GN03

CX03a03__FormationCX03b03__Formation

CI03a03b00__Formation_from_CI03b00

polGN03

polGN03__Transcription

CI04b00

GN04

CX04b03__Formation

polGN04

polGN04__Transcription

CI05a00

GN05

CX05a03__Formation CX05b03__Formation CI05a00b03__Formation_from_CI05a00

polGN05

polGN05__Transcription

CI05b00

XR

20

20

polGN02__Transcription

2020

20

20

RBB__Katabolism

YR

20

RBB__Anabolism__IntMet__EA00

SR01

SR01__Decay

EA00__Anabolism_kat_by_SR01

Mi__Anabolism_kat_by_SR01

20

polGN02

GN02

SR02

SR02__Decay

EA00__Anabolism_kat_by_SR02

Mi__Anabolism_kat_by_SR02

20

CX00a03

TF03

TF03__Decay

CX00a03b03__Formation_from_CX00a03 CX00a03b03__Formation_from_CX00b03 CX03a03b03__Formation_from_CX03a03CX03a03b03__Formation_from_CX03b03 CX05a03b03__Formation_from_CX05a03 CX05a03b03__Formation_from_CX05b03

CX00b03 CX01a03 CX03a03CX03b03 CX04b03CX05a03 CX05b03

20

SR04

SR04__DecayEA00__Anabolism_kat_by_SR04Mi__Anabolism_kat_by_SR04

20

SR05

SR05__Decay

EA00__Anabolism_kat_by_SR05

Mi__Anabolism_kat_by_SR05

20

CX00a00b00

CI00a03b00 CX00a03b03 CI03a03b00CX03a03b03

CX05a00b00

CI05a00b03

CX05a03b03

EI00

EA00

EA00__Katabolism

M

Mi

Membranedecay

Mi_Membranetransport

Mi_out

Figure 7: Reaction network of the cell in figure 6. The actual hyper graph
is displayed in the König representation as bipartite graph. Rectangular nodes
stand for reactions and circular nodes represent chemical species
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