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1 Introduction

The seminal work of Jacob, Monod, and Changeaux [1, 2] on the regulation
of gene expression in the lac operon initiated early studies on gene regulation
through repression by specific proteins which demonstrated the possibility of
oscillations in some special systems with few genes [3]. Numerical integration of
differential equations with delay were used to model cyclic repression systems of
the type 1 ⊣ 2 ⊣ . . . ⊣ n ⊣ 11 [4, 5] and showed that cycles with odd numbers
of genes exhibit oscillations over a wide range of conditions. Later work presented
stability analysis of equilibria in cyclic repressor systems [6, 7, 8], and eventually
the existence of oscillations resp. multiple stable steady states has been proven
for cycles with odd resp. even numbers of genes [9]. The mathematical analysis
of such feedback loops culminated in the establishment of a Poincaré-Bendixson
theorem [10]. For a comprehensive summary of biological feedback loops we refer
to the monograph by Thomas and D’Ari [11].

A milestone in understanding gene regulation by repression has been reached
by the experimental preparation of a three membered negative feedback loop,
called the “repressilator”, on a plasmid by Elowitz and Leibler [12]: Expressed
in E.Coli bacteria, the repressilator gave indeed rise to oscillations in living cells.
From now on, the availability of an experimental system provides an excellent
tool for testing predictions derived from theoretical models.

This attempt to revisit gene regulation models has been encouraged by the avail-
ability of efficient and fast numerical tools that can be applied jointly with math-
ematical analysis to gain detailed insight into dynamical systems. A study of
two gene systems is given in a separate paper [13]. Here we present an analysis
of repressilator systems with an arbitrary number of identical genes and with
arbitrarily strong repressor binding. As usual, we consider the concentrations of
mRNAs and proteins explicitly and assume finite lifetimes for all macromolecules
as expressed by first order degradation reactions. Genes are assumed to be present
in constant amounts, and transcription and translation are assumed to be slow
compared to the binding reactions of proteins to genes. However, we are able to
relax the usual assumption of excess protein regulators and compute the free and
total protein concentrations from the binding equilibria.

Two repressilator systems are considered in detail: (i) a repressilator with leaky
transcription and cooperative repressor binding, and (ii) a repressilator with
auto-activation and cooperative regulator binding. In the first system (which
is essentially the mathematical model used in [7, 8, 9, 12]) the oscillations for odd
numbers of genes are periodic, arising from a stable limit cycle. In the second
system (which has not been considered before) there may additionally be aperi-
odic oscillations resulting from an attracting heteroclinic cycle. We shall present

1 As common in the biochemical literature we denote inhibition by “⊣ ”.
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explicit stability criteria for all equilibria. For the interior equilibrium this allows
us to precisely locate the Hopf bifurcation that generates the limit cycle. For
the second system we also derive a precise stability criterion for the heteroclinic
cycle.

The paper is organized as follows: First, we derive the kinetic equations for the
two model systems, and then we work out the details of our analysis. Next, we
summarize the most important results, and finally we draw our conclusions.

2 Mathematical model

For our analysis of gene regulatory systems, we make the following assumptions:
(a) Genes are present in constant amounts. (b) Proteins bind to the regulatory
regions of the genes and either enhance or inhibit their expression. Binding reac-
tions are in equilibrium, i.e. binding is faster than transcription and translation.
(c) Transcription and translation are operating under saturated conditions, i.e.
polymerases and ribosomes, as well as nucleotides and amino acids abound. (d)
mRNAs and free proteins are degraded by first order reactions.

Under these assumptions, the crucial processes in a gene regulatory network
(binding, transcription, translation, and degradation) can be described by a sys-
tem of ODEs:

˙̄pi = kTL
i ri − dP

i pi (1a)

ṙi = kTS
i ai − dR

i ri (1b)

where:

ai = ai(p) (1c)

p̄i = p̄i(p) (1d)

The concentration of the mRNA transcribed from gene i is denoted by ri, the
total concentration of the translated protein is denoted by p̄i, and the respective
free concentration is denoted by pi. The transcriptional activity of gene i is given
by ai. The rate constants for transcription and translation are named kTS

i and
kTL

i , and the rate constants for mRNA and protein degradation are named dR
i

and dP
i .

Due to regulator binding, the transcriptional activities as well as the total protein
concentrations are functions of the free protein concentrations.2

2 The transcriptional activity of a gene can be seen as the “concentration” of the gene being
transcribed (at a certain level). Gene numbers are discrete and each gene has different levels of
transcription (e.g. zero, low, and high). A continuous function for the transcriptional activity
of a gene can be seen as a time average over time spans, which are long compared to regulator
binding, but short compared to transcription and translation.
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In particular, we are interested in the “repressilator”, a cyclic system of n genes,
where each gene is repressed by its predecessor in the cycle. More precisely, the
transcription of a certain gene is repressed by the product of the preceding gene.
In their mathematical model of the repressilator, Elowitz and Leibler [12] make
the additional assumption of identical genes. That is:

kTL
i = kTL, dP

i = dP (2)

kTS
i = kTS, dR

i = dR (3)

We retain this assuption and consider two special cases of repressilator systems:

(i) System “RepLeaky”
(The repressilator with leaky transcription)

In this system, genes are transcribed at a low rate, if they are repressed
(leaky transcription), whereas genes are transcribed at a high rate, if they
are not repressed. Repressor binding is assumed to be cooperative.

(ii) System “RepAuto”
(The repressilator with auto-activation)

In this system, genes are not transcribed, if they are repressed. Moreover,
the transcription of a certain gene can only be activated by its own product
(auto-activation). In other words, genes are transcribed if they are both not
repressed and auto-activated. Repressor and activator binding may affect
each other, i.e. regulator binding is assumed to be cooperative.

In the following, we determine the explicit form of the transcriptional activity
as well as the relation between total and free protein concentrations for the two
systems.

2.1 System “RepLeaky”

In the repressilator with leaky transcription and cooperative repressor binding,
each gene Gi can be bound by up to m products Pi−1 of the preceding gene. The

gene-repressor complex C
(m)
i is formed:

Gi + mPi−1 ⇋ C
(m)
i (4)

A variety of reaction mechanisms can yield this overall reaction, e.g. successive
binding:

G + mP ⇋ C
(1) + (m− 1)P ⇋ C

(2) + (m− 2)P ⇋ . . . ⇋ C
(m) (5)
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or multimer binding:

mP ⇋ P2 + (m− 2)P ⇋ P3 + (m− 3)P ⇋ . . . ⇋ Pm (6)

G + Pm ⇋ C
(m) (7)

(For better readability, we omitted the gene index.)

For any reaction mechanism, the binding function can be derived by using fast
equilibrium kinetics. In any case, the binding function is a rational function of
the free protein concentration,

c(m)(p) = ḡ
A(p)

B(p)
, (8)

where ḡ is the (constant) total gene concentration, A and B are polynomials of
degree m in variable p.

As an example, we derive the binding function for the simplest reaction mecha-
nism: single-step binding. In this case, the reaction mechanism is given by the
overall reaction (4). We find

c
(m)
i =

gi p
m
i−1

K
, (9)

where K is the dissociation constant. Mass conservation for genes amounts to:

ḡ = gi + c
(m)
i (10)

Using Eqs. (9) and (10), we obtain the desired binding function:

c
(m)
i = ḡ

pm
i−1

K + pm
i−1

(11)

This binding function can also be regarded as purely empirical. In this view,
the exponent m need not be an integer and is replaced by the Hill coefficient h.
Instead of the dissociation constant K a constant K̃ is used, which has the dimen-
sion of a concentration. In the following, we use the empirical binding function

c
(m)
i = ḡ s(

pi−1

K̃
), (12)

where:

s(x) =
xh

1 + xh
(13)

We still have to determine the transcriptional activity and the relation between
total and free protein concentrations.
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The transcriptional activity ai depends linearly on the free gene concentration gi

and this linear relation is determined by the following two limit cases:

gi = ḡ ⇒ ai = ḡ (14)

gi = 0 ⇒ ai = δ ḡ (15)

The leakiness δ ≪ 1 is the ratio of repressed to unrepressed transcription. As a
consequence, the transcriptional activity is determined by:

ai = (1− δ) gi + δ ḡ (16)

In the case of single-step binding, mass conservation for proteins amounts to:

p̄i = pi + m c
(m)
i+1 (17)

Using Eqs. (12), (16), and (17), we obtain the desired relations:

ai = ḡ

[

(1− δ) (1− s(
pi−1

K̃
)) + δ

]

(18)

p̄i = pi + m ḡ s(
pi

K̃
) (19)

Combining our findings, we are able to give a concise presentation of system
“RepLeaky”. Before doing so, we rescale time by the mRNA lifetime 1/dR, and
introduce the ratio β of degradation rates and the ratio σ of production rates to
degradation rates:

β =
dP

dR
, σ =

kTL kTS

dP dR
(20)

Next, we rescale protein concentrations by the constant K̃, and adjust mRNA
concentrations to protein concentrations:

x =
p

K̃
, y =

r

K̃

kTL

dP
(21)

Finally, we introduce the binding parameter γ and the combined parameter α:

γ = m
ḡ

K̃
, α = γ σ (22)

As a result, the ODEs describing the crucial processes in system “RepLeaky” can
be written as:

˙̄xi = β (yi − xi) (23a)

ẏi = α f(xi−1)− yi (23b)
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where:

f(xi−1) = (1− δ)(1− s(xi−1)) + δ (23c)

x̄i = xi + γ s(xi) (23d)

(Rescaled) total and free protein concentrations are denoted by x̄i and xi, respec-
tively, whereas mRNA concentrations are denoted by yi. For the elimination of
total protein concentrations, see section 2.3.

Remark: The mathematical models for the repressilator used in [7, 8, 9, 12]
correspond to the limit case γ = 0.

2.2 System “RepAuto”

In the repressilator with auto-activation, each gene Gi can be bound by its own
product Pi and by the product Pi−1 of the preceding gene. The gene-activator
complex C

A
i and the gene-repressor complex C

R
i are formed:

Gi + Pi ⇋ C
A
i (24)

Gi + Pi−1 ⇋ C
R
i (25)

In case activator and repressor share the same binding site, the system is com-
pletely determined by the above reactions. In case activator and repressor bind
to different sites, we also have to consider the gene complex C

AR
i containing both

regulators:

C
A
i + Pi−1 ⇋ C

AR
i (26)

C
R
i + Pi ⇋ C

AR
i (27)

Genes are transcribed only if they are both auto-activated and not repressed.
Hence, the transcriptional activity is given by the concentration of the gene-
activator complex:

ai = cA
i (28)

Under the equilibrium assumption, mass-action kinetics applied to reactions (24)
and (25) yields the following relations for the concentrations involved:

cA
i =

gi pi

KA
(29)

cR
i =

gi pi−1

KR
(30)

The dissociation constants for auto-activator and repressor binding are denoted
by KA and KR, respectively. In the case of two binding sites, we obtain additional
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relations from reactions (26) and (27):

cAR
i =

cA
i pi−1

KAR
=

cR
i pi

KRA
(31)

The dissociation constants for auto-activator and repressor binding fulfill the
well-known condition for cyclic reactions:

KAKAR = KRKRA (32)

Until further notice, we consider the two cases separately.

2.2.1 One binding site

In the simpler case of one shared binding site, mass conservation for genes and
proteins implies the following equations:

ḡ = gi + cA
i + cR

i (33)

p̄i = pi + cA
i + cR

i+1 (34)

Using Eqs. (29), (30), and (33), we are able to determine the concentration of
the gene-activator:

cA
i = ḡ

pi

KA
(1 +

pi

KA
+

pi−1

KR
)−1 (35)

(And similarly for the gene-repressor complex cR
i .) Inserting into Eq. (34), we

obtain a system of nonlinear equations for relating total and free protein concen-
trations:

p̄i = pi

[

1 +
ḡ

KA
(1 +

pi

KA
+

pi−1

KR
)−1 +

ḡ

KR
(1 +

pi+1

KA
+

pi

KR
)−1

]

(36)

2.2.2 Two binding sites

In the case of different sites for activator and repressor binding, mass conservation
for genes and proteins implies more complicated equations:

ḡ = gi + cA
i + cR

i + cAR
i (37)

p̄i = pi + cA
i + cAR

i + cR
i+1 + cAR

i+1 (38)

Still, using Eqs. (29), (30), (31), and (37), we are able to determine the concen-
tration of the gene-activator complex:

cA
i = ḡ

pi

KA

(

1 +
pi

KA
+

pi−1

KR
+

pi pi−1

KAKAR

)−1

(39)
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(And similarly for the complexes cR
i and cAR

i .) Inserting into Eq. (38), we again
obtain a system of nonlinear equations for relating total and free protein concen-
trations:

p̄i = pi

[

1 +
ḡ

KA
(1 +

pi−1

KAR
) (1 +

pi

KA
+

pi−1

KR
+

pi pi−1

KAKAR
)−1 (40)

+
ḡ

KR
(1 +

pi+1

KRA
) (1 +

pi+1

KA
+

pi

KR
+

pi+1 pi

KAKAR
)−1

]

In the special case of two independent binding sites, i.e.

KA

KRA
=

KR

KAR
= 1, (41)

we obtain decoupled non-linear equations:

p̄i = pi

[

1 +
ḡ

KA
(1 +

pi

KA
)−1 +

ḡ

KR
(1 +

pi

KR
)−1

]

(42)

Moreover, we note that the case of one binding site can be obtained from the
case of two binding sites by taking the following limit:

KA

KRA
=

KR

KAR
→ 0 (43)

Hence, we will treat the system with one binding site as a special case of the
system with two binding sites in the following.

Combining our findings, we are able to give a concise presentation of system
“RepAuto”. Before doing so, we rescale the system. Like in system “RepLeaky”,
we rescale time by the mRNA lifetime 1/dR, and introduce the parameters β and
σ given by Eq. (20). Next, we rescale protein concentrations by the dissociation
constant KA, and adjust mRNA concentrations to protein concentrations:

x =
p

KA
, y =

r

KA

kTL

dP
(44)

Finally, we introduce the repressor strength ρ, the cooperativity κ, and again the
binding parameter γ and the combined parameter α:

ρ =
KA

KR
, κ =

KA

KRA
=

KR

KAR
(45)

γ =
ḡ

KA
, α = γ σ (46)

As a result, the ODEs describing the crucial processes in system “RepAuto” can
be written as:

˙̄xi = β (yi − xi) (47a)

ẏi = α f(xi, xi−1)− yi (47b)
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where:

f(xi, xi−1) =
xi

1 + xi + ρ xi−1 + κ ρ xi xi−1

(47c)

x̄i = xi

[

1 + γ

(

1 + κ ρ xi−1

1 + xi + ρ xi−1 + κ ρ xi xi−1

+
ρ (1 + κ xi+1)

1 + xi+1 + ρ xi + κ ρ xi+1 xi

)]

(47d)

(Rescaled) total and free protein concentrations are denoted by x̄i and xi, respec-
tively, whereas mRNA concentrations are denoted by yi. For the elimination of
total protein concentrations, see section 2.3.

By setting κ = 1, we obtain the special case of two independent binding sites:

x̄i = xi

[

1 + γ

(

1

1 + xi

+
ρ

1 + ρ xi

)]

(48)

By setting κ = 0, we obtain the case of one binding site.

2.3 The elimination of total protein concentrations

Both in system “RepLeaky” and system “RepAuto”, the ODEs are defined for
total protein and mRNA concentrations. Still, they also contain free protein
concentrations. In vector notation we have:

(

˙̄x
ẏ

)

=

(

β (y − x)
α F (x)− y

)

(49)

where:

F (x) i =

{

f(xi−1) in system “RepLeaky”, see Eq. (23b)

f(xi, xi−1) in system “RepAuto”, see Eq. (47b)
(50)

Instead of expressing free by total protein concentrations via (a system of) nonlin-
ear equations (which is impossible analytically), we express total by free protein
flows via a linear transformation. Therefore we differentiate the mass conserva-
tion relation for proteins:

˙̄x =
∂x̄

∂x
ẋ = M(x) ẋ (51)

Using the inverse of the linear transformation, we obtain the desired ODEs for
free protein and mRNA concentrations:

(

ẋ
ẏ

)

=

(

β M(x)−1 (y − x)
α F (x)− y

)

(52)
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In system “RepLeaky”, the transformation matrix M(x) is diagonal, and hence
easily invertible:

M(x)i,j =







1 + γ
h xh−1

i

(1 + xh
i )

2 if j = i

0 otherwise
(53)

In system “RepAuto”, the transformation matrix M(x) is cyclically tridiagonal:

M(x)i,j =



























































1 + γ

(

(1 + κ ρ xi−1) (1 + ρ xi−1)
(1 + xi + ρ xi−1 + κ ρ xi xi−1)

2

+
ρ (1 + κ xi+1) (1 + xi+1)

(1 + xi+1 + ρ xi + κ ρ xi+1 xi)
2

)

if j = i

γ
ρ (κ− 1) xi

(1 + xi + ρ xi−1 + κ ρ xi xi−1)
2 if j = i− 1

γ
ρ (κ− 1) xi

(1 + xi+1 + ρ xi + κ ρ xi+1 xi)
2 if j = i + 1

0 otherwise

(54)

We can prove the following claim:

Claim 2.1 In system “RepAuto”, the matrix M(x) is invertible.

Proof. The matrix M(x) satisfies Mi,i > |Mi−1,i| + |Mi+1,i|. That is, M(x) is
diagonally dominant. Hence, M(x) is invertible. Moreover, the map x to x̄ is
one-to-one by a global inverse function theorem. �

For weak regulator binding, γ ≪ 1, total and free protein concentrations become
equal, x̄i = xi, and the linear transformation becomes the identity, M(x) = I.
Consequently, we obtain:

(

ẋ
ẏ

)

=

(

β (y − x)
α F (x)− y

)

(55)

This simplified system can be found in traditional treatments of gene regulatory
networks (e.g. the repressilator). We note, that the equilibria of the exact system
(52) and the simplified system (55) are the same.

3 Detailed analysis

The equilibria of system (52) are given by:

x = y = α F (x) (56)
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The Jacobian matrix at an equilibrium amounts to:

J(x) =
∂(ẋ, ẏ)

∂(x, y)
=

(

−β M(x)−1 β M(x)−1

S(x) −I

)

(57)

where:

S(x) = α
∂F (x)

∂x
(58)

Using the determinant formula for block matrices with commuting blocks, the
eigenvalues of the Jacobian matrix at an equilibrium can be determined as follows:

0 = |J(x)− λ I| (59)

=

∣

∣

∣

∣

−β M(x)−1 − λ I β M(x)−1

S(x) −(1 + λ) I

∣

∣

∣

∣

=
∣

∣β (1 + λ) M(x)−1 + λ (1 + λ) I − β S(x) M(x)−1
∣

∣

= |T (x) M(x)−1|

where:
T (x) = β (1 + λ) I + λ (1 + λ) M(x)− β S(x) (60)

As a result, the characteristic equation of an equilibrium is given by:

|T (x)| = 0 (61)

3.1 System “RepLeaky”

System “RepLeaky”, as given by Eqs. (23), is an instance of system (52). It is
specified by the vector F (x) and the matrix M(x):

F (x)i = f(xi−1) = (1− δ) (1− s(xi−1)) + δ (62)

M(x)i,j =

{

1 + γ s′(xi) if j = i

0 otherwise
(63)

where:

s(x) =
xh

1 + xh
(64)

For the following stability analysis, we also state the matrix S(x):

S(x)i,j = α
∂F (x)i

∂xj
= α

∂f(xi−1)

∂xj
= α f ′(xi−1) δi−1,j (65)

=

{

−α (1− δ) s′(xi−1) if j = i− 1

0 otherwise
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3.1.1 Equilibria

The equilibria of system “RepLeaky” are given by xi = yi = α f(xi−1). The
cyclic nature of the repressilator implies the following fixed-point equation:

(α f)n(xi) = xi (66)

For x ≥ 0, the sigmoid function s(x) is positive, bounded and monotonic. Via
the function f(x), these properties are transfered to the nth iterate (α f)n(x).

For n odd, the nth iterate is monotonically decreasing. Consequently, there is
exactly one fixed point xc, which is the fixed point of the first iterate, i.e. α f(xc) =
xc. The corresponding central equilibrium Ec is given by xi = yi = xc. That is,
at Ec all genes are equally regulated. (For a stability analysis of the central
equilibrium Ec, see section 3.1.2.)

For n even, the nth iterate is monotonically increasing. Again, there is the fixed
point xc and the corresponding central equilibrium Ec. (In case |α f ′(xc)| < 1,
the central equilibrium Ec is stable, whereas it is unstable otherwise. See section
3.1.2.) In case |αf ′(xc)| > 1, there are two more fixed points xd and xu (with
xd < xc < xu), which are fixed points of the second iterate, i.e. (α f)2(xd) = xd

and likewise for xu = α f(xd). Moreover, we claim that there are no further fixed
points. (See claim 3.1 at the end of this section.) The corresponding equilibria
Eodd resp. Eeven are given by xi = yi = xu for i odd (resp. even), and xi = yi = xd

for i even (resp. odd). That is, at Eodd all odd genes are upregulated and all even
genes are downregulated. At Eeven we find the reverse situation. (The equilibria
Eodd and Eeven are stable. See section 3.1.2.)

Interestingly, the critical quantity |α f ′(xc)| has the following property:

Fact 3.1 For given δ > 0 and h, the quantity Sc = |α f ′(xc)| has a maximum
(as a function of α):

Smax = h
1− δ1/2

1 + δ1/2
at αmax = δ−(h+1)/2h (67)

For δ = 0, Sc is monotonically increasing (as a function of α) with supremum
Ssup = h.

Fig. 1 shows the first and second iterate of α f(x) for different values of α, as well
as the resulting fixed points. Fig. 2 shows the fixed points of the second iterate
as a function of α.
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x
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0

1
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Figure 1: System “RepLeaky”. The first and second iterate of the function α f(x) for different
values of α, as well as the resulting fixed points. (δ = 10−3, h = 2, α = 1, 2, 3.) The fixed point
xc of the first iterate is always a fixed point of the second iterate. In case |α f ′(xc)| > 1, there
are two more fixed points xd and xu.

α

xc, xd, xu

10−2 100 102 104 106
10−2

100

102

104

Figure 2: System “RepLeaky”. The fixed points of the second iterate of the function α f(x)
as a function of α. (δ = 10−3, h = 2.) In case |α f ′(xc)| < 1, the fixed point xc is the only
fixed point and it is stable. In case |α f ′(xc)| > 1, the fixed point xc is unstable (indicated by
the dashed line), and there are two more fixed points xd and xu, which are stable.

For n even, we have claimed that the nth iterate of the function α f(x) has either
one or three fixed points. Finally, we prove this claim:

Claim 3.1 For n even, (α f)n(x) has either one or three fixed points.

Proof. We show that (α f)n(x) has only one inflection point. First of all, we
calculate the Schwarzian Derivative of s(x). From the general definition

SD(f) =
f ′′′(x)

f ′(x)
− 3

2

(

f ′′(x)

f ′(x)

)2

(68)

we obtain:

SD(s) = −h2 − 1

2 x2
(69)
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Clearly, the Schwarzian Derivative of s(x) is negative. Via the function f(x),
this property is transfered to the nth iterate (α f)n(x). (Since SD(f) < 0 and
SD(g) < 0 implies SD(f ◦ g) < 0.) Additionally, the derivative of the nth iterate
is positive. As a consequence, any extremum of this derivative is a maximum.
(From the definition of the Schwarzian Derivative.) Obviously, there can be only
one such maximum, i.e. only one inflection point of the nth iterate. �

3.1.2 Stability analysis of the central equilibrium

At the central equilibrium Ec, the matrix T (x) is circulant:

Ti,j =











T∆ = β (1 + λ) + λ (1 + λ) Mc if j = i

T− = β Sc if j = i− 1

0 otherwise

(70)

where:

Sc = −Si,i−1 = −α f ′(xc) = α (1− δ) s′(xc) (71)

Mc = Mi,i = 1 + γ s′(xc) (72)

Remark: The quantity Sc has already been defined in Fact 3.1. Obviously, the
two definitions are equivalent.

The characteristic equation amounts to:

|T | = (T∆)n + (−1)n−1 (T−)n = 0 (73)

We extract the nth root (using the roots of unity zk = ei2πk/n) and solve the
resulting quadratic equations for the eigenvalues:

0 = T∆ + T− zk (74)

= β (1 + λ) + λ (1 + λ) Mc + β Sc zk

= (1 + λ) (β + λ Mc) + β Sc zk

= (1 + λ) (β/Mc + λ) + (β/Mc) Sc zk

λk,± = −1 + β/Mc

2
±

√

(

1 + β/Mc

2

)2

− (β/Mc) (1 + Sc zk) (75)

The eigenvalue with the largest real-part is given by:

λmax = −1 + β/Mc

2
+

√

(

1 + β/Mc

2

)2

+ (β/Mc) (Sc z − 1) (76)
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where:

z =

{

1 n even

eiπ/n n odd
(77)

There is a crucial difference whether n is even or odd.

For n even, λmax is real-valued and its sign is determined by the sign of Sc − 1.
Consequently, the stability of the central equilibrium Ec is determined by:

ℜ(λmax) < 0 ⇔ Sc < 1 (78)

If Sc < 1, the central equilibrium Ec is asymptotically stable and it is the only
equilibrium. If Sc > 1, the central equilibrium Ec is unstable and there are two
more equilibria, Eodd and Eeven, which are asymptotically stable. At Sc = 1, the
system undergoes a supercritical pitchfork bifurcation.

The results from Smith [9, 14] allow us to make assertions about the global
dynamics.

Theorem 3.1 For n even, system “RepLeaky” has the following property: (i) If
Sc < 1, then the central equilibrium Ec is globally asymptotically stable. (ii) If
Sc > 1, then almost all orbits converge either to Eodd or to Eeven.

Proof. For γ = 0, the exact system (52) reduces to the simplified system (55).
This system has the desired property, as was shown in [9, Theorem 2.1] by ap-
plying Hirsch’s theory of monotone flows. The crucial idea is that for n even, one
can divide all 2n variables xi, yi into two disjoint groups, the odd-numbered and
the even-numbered, where within-group interactions are positive and between-
group interactions are negative. Hence, the simplified system (55) generates a
strongly monotone flow with respect to a certain cone in R

2n
+ [14]. For γ > 0, the

same argument applies: the exact system (52) is still a monotone system with
respect to this ordering, since the transformation matrix (53) does not change
the interaction pattern. M(x) is a diagonal matrix, with positive entries on the
diagonal. Indeed, for the within-group and between-group interactions we have
the following inequalities:

∂ẋi

∂yi

= β/Mii(xi) > 0 and
∂ẏi

∂xi−1

= α f ′(xi−1) < 0. (79)

All other off-diagonal entries in the Jacobian matrix are zero. �

For n odd, the central equilibrium Ec is the only equilibrium. Its stability is
determined by:

ℜ(λmax) < 0 ⇔ β/Mc

(1 + β/Mc)
2 <

1− Sc cos(π/n)

S2
c sin2(π/n)

(80)
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The stability criterion depends on n, Sc (i.e. on δ, h, and α), and β/Mc (i.e. also
on γ). Still, there are sufficient conditions for stability resp. instability of the
central equilibrium Ec, which do not depend on β or γ:

Sc <
2

1 + cos(π/n)
resp. Sc >

1

cos(π/n)
(81)

When the central equilibrium Ec looses stability, a periodic orbit appears. The
system undergoes a Hopf bifurcation. Near a bifurcation, the (scaled) angular
frequency of the oscillations amounts to:

ℑ(λmax) =
β/Mc

1 + β/Mc

Sc sin(π/n) (82)

The results from Mallet-Paret and Smith [10] allow us to make assertions about
the global dynamics.

Theorem 3.2 For n odd, system “RepLeaky” has the following property: (i)
Every orbit converges to Ec or to a periodic orbit. (ii) If Ec is unstable, then
there exists a periodic attractor.

Proof. Written in the coordinates (z1, z2, z3, z4, . . . ) = (y1, x1, y2, x2, . . . ), system
(52) is a cyclic feedback system, since żi depends on zi−1 and zi only. The
inequalities (79) translate into ∂żi/∂zi−1 being positive for i even and negative for
i odd. Hence, system (52) is a monotone cyclic feedback system. The assertions
follow then from the Poincaré–Bendixson theory for such systems [10]. �

3.2 System “RepAuto”

System “RepAuto”, as given by Eqs. (47), is an instance of system (52). It is
specified by the vector F (x) and the matrix M(x):

F (x)i = f(xi, xi−1) =
xi

1 + xi + ρ xi−1 + κ ρ xi xi−1
(83)

M(x) is defined in Eq. (54). For the following stability analysis, we also state the
matrix S(x):

S(x)i,j = α
∂F (x)i

∂xj
=



























α
1 + ρ xi−1

(1 + xi + ρ xi−1 + κ ρ xi xi−1)
2 if j = i

α
−ρ xi (1 + κ xi)

(1 + xi + ρ xi−1 + κ ρ xi xi−1)
2 if j = i− 1

0 otherwise

(84)
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3.2.1 Equilibria

The equilibria of system “RepAuto” are given by xi = yi = α f(xi, xi−1), or
equivalently by:

xi = 0 ∨ xi = g(xi−1) (85)

where:

g(x) =
α− 1− ρ x

1 + κ ρ x
(86)

In case xi > 0 for all i, the cyclic nature of the repressilator implies the following
fixed-point equation:

gn(xi) = xi (87)

On the interval [0, (α−1)/ρ], the function g(x) is positive and bounded. Moreover,
g(x) is monotonic and has no inflection point. On a suitable subinterval, also
the nth iterate gn(x) has these properties. As a consequence, the nth iterate
has exactly one fixed point xc, which is the fixed point of the first iterate, i.e.
g(xc) = xc. Equivalently, α f(xc, xc) = xc, and explicitly:

α = 1 + xc + ρ xc + κ ρ x2
c (88)

The corresponding central equilibrium Ec is given by xi = yi = xc > 0.

In case xi = 0 for some i, the remaining xj 6= 0 can be determined iteratively.
The corresponding equilibrium lies on the boundary of the state space R

2n
+ .

In general, the equilibria depend on the parameters α, ρ, and κ:

For α < 1, the only equilibrium is the origin O. (For α < 1, the origin O is
stable.)

For α > 1, we find the following equilibria: (i) the central equilibrium Ec and (ii)
a set of boundary equilibria.

For ρ < 1, the support S of any boundary equilibrium is a proper subset of
{1, 2, . . . , n}. For any such set S, there is a unique equilibrium ES with support
S given by xi = yi = 0 for i 6∈ S and xi = yi = g(xi−1) for i ∈ S. Altogether,
there are 2n − 1 boundary equilibria. (For ρ < 1, the central equilibrium Ec is
asymptotically stable, whereas all boundary equilibria are unstable. See sections
3.2.2 and 3.2.3.)

For ρ > 1, the support S of any boundary equilibrium is a sparse subset of
{1, 2, . . . , n} in the sense that it does not contain successive elements (modulo
n). Hence, |S| ≤ n/2. For any such set S, there is a unique equilibrium ES

with support S given by xi = yi = 0 for i 6∈ S and xi = yi = α − 1 for i ∈ S.
Interestingly, there are Ln boundary equilibria, where Ln is the nth Lucas number,
i.e. L1 = 1, L2 = 3, and Ln = Ln−1 + Ln−2 for n ≥ 3. For ρ > 1, there is again a
crucial difference, whether n is even or odd:
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For n even, the maximal support |S| = n/2 arises for Sodd = {1, 3, . . . , n −
1} and Seven = {2, 4, . . . , n}. The corresponding boundary equilibria Eodd and
Eeven are asymptotically stable, whereas all other equilibria, including the central
equilibrium Ec, are unstable. See sections 3.2.2 and 3.2.3. For the simplified
system (55) (i.e. γ = 0), the theory of monotone flows applies again and, as in
Theorem 3.1, almost all orbits converge either to Eodd or to Eeven.

For n odd, all boundary equilibria are unstable. There are three possible attrac-
tors: (i) the central equilibrium Ec, (ii) a periodic attractor in the interior (a
limit cycle), and (iii) an ”aperiodic” attractor on the boundary (a heteroclinic
cycle connecting unstable equilibria). See sections 3.2.2, 3.2.3, and 3.2.4.

3.2.2 Stability analysis of the central equilibrium

At the central equilibrium Ec, the matrix T (x) is circulant:

Ti,j =



















T∆ = β (1 + λ) + λ (1 + λ) M∆ − β S∆ if j = i

T− = λ (1 + λ) M± + β S− if j = i− 1

T+ = λ (1 + λ) M± if j = i + 1

0 otherwise

(89)

where:

S∆ = Si,i =
1 + ρ xc

α
(90)

S− = −Si,i−1 =
ρ xc (1 + κ xc)

α
(91)

M∆ = Mi,i = 1 + γ
(1 + κ ρ xc) (1 + ρ xc) + ρ (1 + κ xc) (1 + xc)

α2
(92)

M± = Mi,i−1 = Mi,i+1 = γ
ρ (κ− 1) xc

α2 (93)

Using the formula for circulant determinants (with the roots of unity zk = ei2πk/n),
we get a factorization of the characteristic equation:

|T | =
n−1
∏

k=0

(T∆ + T− zk + T+ z−1
k ) = 0 (94)
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Each factor yields a quadratic equation for the eigenvalues:

0 = T∆ + T− zk + T+ z−1
k (95)

= β (1 + λ) + λ (1 + λ) M∆ − β S∆

+ (λ (1 + λ) M± + β S−) zk

+ λ (1 + λ) M± z−1
k

= β (1 + λ) + λ (1 + λ) (M∆ + M± (wk + w−1
k ))− β (S∆ − S− zk)

= β (1 + λ) + λ (1 + λ) Mk − β Sk

= (1 + λ) (β + λ Mk)− β Sk

= (1 + λ) (β/Mk + λ)− (β/Mk) Sk

λk,± = −1 + β/Mk

2
±

√

(

1 + β/Mk

2

)2

+ (β/Mk) (Sk − 1) (96)

where:

Sk = S∆ − S− zk (97)

Mk = M∆ + M± 2 cos(2πk/n) (98)

In general, we have to consider the real-part of all eigenvalues. Since ℜ(λk,−) =
ℜ(λn−k,+) (except for n even and k = n/2, where we find λk,− < λk,+), we can
restrict ourselves to the positive branch of the square root:

λk ≡ λk,+ (99)

Again, there is a crucial difference whether n is even or odd.

For n even, we obtain the following criterion for the stability of the central equi-
librium Ec:

ℜ(λeven) < 0 ⇔ ∀k : ℜ(λk) < 0 (100)

where:
λeven = λn/2 (101)

The critical eigenvalue λeven arises for the branch k = n/2. The corresponding
value Seven is given by:

Seven = Sn/2 = S∆ + S− = 1 +
(ρ− 1) xc

α
(102)

Clearly, λeven is real-valued, and its sign is determined by the sign of Seven −
1 = (ρ − 1) xc/α. Consequently, the stability of the central equilibrium Ec is
determined by the parameter ρ only:

ℜ(λeven) < 0 ⇔ Seven < 1 ⇔ ρ < 1 (103)
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For ρ < 1, the central equilibrium Ec is asymptotically stable. (And all boundary
equilibria are unstable.) For ρ > 1, the central equilibrium Ec is unstable. (And
the two boundary equilibria Eodd and Eeven are asymptotically stable.) At ρ = 1,
the system undergoes a highly degenerate bifurcation, since also the number of
boundary equilibria changes drastically, from 2n − 1 for ρ < 1 to Ln for ρ > 1.

Remark: For the simplified system (55), i.e. for γ = 0, the theory of monotone
flows applies again. Consequently, Theorem 3.1 holds also for system “RepAuto”.

For n odd, we obtain the following criterion for the stability of the central equi-
librium Ec (see Claim 3.2 at the end of this section):

ℜ(λodd) < 0 ⇔ ∀k : ℜ(λk) < 0 (104)

where:
λodd = λ(n+1)/2 (105)

The critical eigenvalue λodd arises for the branch k = (n + 1)/2 (or equivalently
for the branch k = (n−1)/2). The corresponding values Sodd and Modd are given
by:

Sodd = S(n+1)/2 = S∆ + S− eiπ/n (106)

Modd = M(n+1)/2 = M∆ −M± 2 cos(π/n) (107)

Using these values, we can restate the stability criterion:

ℜ(λodd) < 0 ⇔ β/Modd

(1 + β/Modd)
2 <

1− ℜ(Sodd)

(ℑ(Sodd))
2 (108)

The stability criterion depends on Sodd (i.e. on n, α, ρ, and κ), and β/Modd (i.e.
also on γ). Still, we can specify sufficient conditions for the stability of the central
equilibrium Ec, which depend on Sodd, but not on β/Modd.

ℜ(
√

Sodd) < 1 ⇒ ℜ(λodd) < 0 (109)

ℜ(Sodd) > 1 ⇒ ℜ(λodd) > 0 (110)

For given n, there are regions in parameter space in which the stability of the
central equilibrium Ec only depends on α, ρ and κ. These regions of definite
stability (or instability) are separated by a region of indefinite stability, i.e. a
region in which the stability also depends on β and γ.

The region of definite stability, ℜ(
√

Sodd) < 1, is bounded by an implicit function
of n, α, ρ, and κ. In contrast, the region of definite instability can be given
explicitly:

ℜ(Sodd) > 1 ⇔ (ρ− 1/ cos(π/n)) (ρ− cos(π/n))

ρ
>

(1− cos(π/n))2

cos(π/n)
κ (α− 1)

∧ ρ > 1/ cos(π/n) (111)
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Fig. 3 shows the stability diagram of the central equilibrium Ec for the smallest
number of genes (n = 3) and different regulator binding, in particular for one
binding site (κ = 0) and two independent binding sites (κ = 1).

α

ρ

1 101 102
1

101

102

κ = 0

1
cos(π/n)

α

ρ

1 101 102
1

101

102

κ = 1

1
cos(π/n)

Figure 3: System “RepAuto” for n odd. Stability diagram of the central equilibrium for the
smallest number of genes (n = 3) and different regulator binding, in particular for one binding
site (κ = 0) and two independent binding sites (κ = 1). There are regions of definite stability
(below the solid line) and definite instability (above the dashed line), i.e. regions in which the
stability only depends on α and ρ (for given n and κ). In the intermediate region, the stability
of the central equilibrium also depends on β and γ.

When the central equilibrium Ec looses stability, a periodic orbit appears. The
system undergoes a Hopf bifurcation. Near a bifurcation, the (scaled) angular
frequency of the oscillations amounts to:

ℑ(λmax) =
β/Modd

1 + β/Modd

ℑ(Sodd) (112)

For n odd, we have claimed that the stability of the central equilibrium Ec is
determined by the eigenvalue λodd = λ(n+1)/2. Finally, we prove this claim.

Claim 3.2 For n odd, the stability of the central equilibrium Ec is determined by
the eigenvalue λodd = λ(n+1)/2:

ℜ(λodd) < 0 ⇔ ∀k : ℜ(λk) < 0 (113)

Proof. In general, the eigenvalues λk depend both on Sk and β/Mk. Still, by
analyzing the dependency on β/Mk, we obtain the following conditions depending
only on Sk:

ℜ(
√

Sk) < 1 ⇒ ℜ(λk) < 0 (114)

ℜ(Sk) > 1 ⇒ ℜ(λk) > 0 (115)
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Suppose ℜ(λodd) < 0. Then ℜ(Sodd) < 1 by Eq. (115). Together with 0 < S− < 1
and trigonometric identities, this yields ℜ(

√
Sk) < 1 for all k 6= (n ± 1)/2, and

consequently ℜ(λk) < 0 by Eq. (114). �

3.2.3 Stability analysis of boundary equilibria

For a boundary equilibrium with support S, the matrix T (x) contains rows with
only one non-zero entry (the diagonal entry). Every i 6∈ S (i.e. xi = 0) yields:

Si,i =
α

1 + ρ xi−1

(116)

Si,i−1 = 0 (117)

Mi,i = 1 + γ

(

1 + κ ρ xi−1

1 + ρ xi−1
+

ρ (1 + κ xi+1)

1 + xi+1

)

(118)

Mi,i−1 = Mi,i+1 = 0 (119)

Consequently, every i 6∈ S (and every i ∈ S with i− 1 6∈ S, i + 1 6∈ S) produces
a simple factor in the characteristic equation |T | = 0:

Ti,i = β (1 + λ) + λ (1 + λ) Mi,i − β Si,i = 0 (120)

λi,± = −1 + β/Mi,i

2
±

√

(

1 + β/Mi,i

2

)2

+ (β/Mi,i) (Si,i − 1) (121)

Clearly, the resulting eigenvalues are real-valued. Since λi,− < λi,+, we can
restrict ourselves to the positive branch of the square root:

λi ≡ λi,+ (122)

The sign of λi is determined by the sign of Si,i − 1. The value of Si,i depends on
xi−1 and xi. See Eq. (84).

For ρ < 1, we only consider i 6∈ S (i.e. xi = 0) and obtain the following cases:

xi−1 xi Si,i

0 0 α

0 < xi−1 ≤ α− 1 0 ≥ α
1+ρ (α−1)

(123)

In any case, we obtain Si,i− 1 > 0 and consequently λi > 0. Hence, all boundary
equilibria are unstable.
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For ρ > 1, we additionally consider i ∈ S with i−1 6∈ S, i+1 6∈ S (i.e. xi = α−1,
xi−1 = xi+1 = 0) to deal with all cases:

xi−1 xi Si,i

0 0 α

α− 1 0 α
1+ρ (α−1)

0 α− 1 1
α

(124)

Only a pair (xi−1, xi) = (0, 0) yields Si,i − 1 > 0 and consequently λi > 0. For
n odd, every equilibrium contains such a pair, hence all boundary equilibria are
unstable. For n even, the two equilibria Eodd and Eeven with support Sodd =
{1, 3, . . . , n−1} and Seven = {2, 4, . . . , n} do not contain such a pair. Hence, they
are asymptotically stable. All other boundary equilibria are unstable.

3.2.4 Stability analysis of the heteroclinic cycle

For α > 1 and ρ > 1, there are heteroclinic connections between unstable equi-
libria on the boundary. We assume γ = 0 in the following.

Claim 3.3 For α > 1 and ρ > 1, system “RepAuto” (with γ = 0) has the
following property: All orbits on the boundary converge to an equilibrium.

Proof. If initially xi−1 = yi−1 = 0, but xi + yi > 0, then xi(t) → α − 1 and
yi(t)→ α− 1. Once xi(t) is close enough to α− 1, even if the next species i + 1
is initially present, repression leads to its removal. In particular, xi > (α− 1)/ρ
yields

ẏi+1 < xi+1 − yi+1 (125)

and:
(xi+1 + β yi+1)

· < 0 (126)

Hence, xi+1(t)→ 0 and yi+1(t)→ 0.

If the next species is initially present, it will again converge to its equilibrium
values xi+2 = yi+2 = α− 1 and repress the next, etc. Hence, the orbit converges
to some boundary equilibrium. If only one species (say i− 1) is missing initially,
then the limit equilibrium has support {i, i + 2, . . . , i + 2⌊n

2
⌋ − 2}. �

This implies the existence of heteroclinic connections and cycles on the boundary.

For n ≥ 3 (and for each i = 1, . . . , n) the above proof shows that all orbits in the
4-dimensional boundary face containing only species i and i + 1 converge to Ei.
The closure of this boundary face contains two more equilibria, the repellor O
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and the saddle Ei+1. In particular, the one dimensional unstable manifold of Ei+1

converges to Ei. Hence there is a connection Ei+1 → Ei in this 4-dimensional
boundary face. All these connecting orbits together form a heteroclinic cycle
E1 → En → En−1 → · · · → E2 → E1. For n ≥ 4 these connecting orbits and
hence the full heteroclinic cycle are unstable within the (maximal invariant set
of the) boundary. This follows from the last sentence in the above proof.

However, for each odd n there is a heteroclinic cycle that is asymptotically stable
within the boundary. For n = 3 it is E1 → E3 → E2 → E1, whereas for
n = 5: E13 → E35 → E52 → E24 → E41 → E13, and for n = 7: E135 →
E357 → E572 → E724 → E246 → E461 → E613 → E135. For general odd n,
this heteroclinic cycle connects the n equilibria Ei,i+2,i+4,...,i+n−3, whose support
has the pattern ∗0 ∗ 0 · · · ∗ 00 (cyclically modulo n). The latter equilibrium is
asymptotically stable within the 2n−2 dimensional boundary face where species
i+n−1 = i−1 is missing, as shown above. So i+n−1 is the only unstable direction
at Ei,i+2,i+4,...,i+n−3, and in the face consisting of species i, i + 2, i + 4, . . . , i + n−
3, i + n− 1, all orbits converge to the ‘next’ equilibrium Ei+2,i+4,...,i+n−3,i+n−1.

For even n ≥ 6 there are similar additional heteroclinic cycles, but they are all
unstable. Indeed, there are orbits nearby converging to the equilibria Eeven and
Eodd, as shown above.

Theorem 3.3 For n odd, α > 1 and ρ > 1, system “RepAuto” (with γ = 0)
has a heteroclinic cycle connecting the n equilibria of support size n−1

2
. (i) The

system is permanent if λ+ n−1
2

µ > 0. (ii) The heteroclinic cycle is asymptotically
stable if λ + n−1

2
µ < 0, where:

λ = −1 + β

2
+

√

(

1 + β

2

)2

+ β (α− 1) > 0 (127)

µ = −1 + β

2
+

√

(

1 + β

2

)2

+ β

(

α

1 + ρ (α− 1)
− 1

)

< 0 (128)

Proof. See end of this section.

Near λ+ n−1
2

µ = 0, where the heteroclinic cycle changes stability, a new invariant
set is created in a heteroclinic bifurcation. We expect that this is a periodic orbit
of large period. A proof of this as well as a stability analysis of the bifurcating
orbit requires the computation and analysis of the Poincaré map and is outside the
scope of this paper, but see [15, p. 226-227] for a similar (but simpler) situation.

The stability criterion λ + n−1
2

µ < 0 is symmetric around the plane β = 1 (on
a logarithmic scale for β). By considering the limit cases β → ∞ and β = 1,
we obtain sufficient conditions for the stability of the heteroclinic cycle, which
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depend on n, α, and ρ, but not on β.

(λ + n−1
2

µ)β→∞ < 0 ⇒ λ + n−1
2

µ < 0 (129)

(λ + n−1
2

µ)β=1 > 0 ⇒ λ + n−1
2

µ > 0 (130)

For given n, there are regions in parameter space in which the stability of the
heteroclinic cycle only depends on α and ρ. These regions of definite stability (or
instability) are separated by a region of indefinite stability, i.e. a region in which
the stability also depends on β.

The regions of definite stability (or instability) can be given explicitly:

(λ + n−1
2

µ)β→∞ < 0 ⇔ ρ >
n+1

2
n+1

2
− α

∧ α < n+1
2

(131)

(λ + n−1
2

µ)β=1 > 0 ⇔ ρ <
n+1

2
(n+1

2
+ n−3

2

√
α)

(n+1
2
−√α)2 (1 +

√
α)

∨ α > (n+1
2

)2

(132)

Fig. 4 shows the stability diagram of the heteroclinic cycle for the smallest number
of genes (n = 3) and weak regulator binding (γ = 0).
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Figure 4: System “RepAuto” for n odd. Stability diagram of the heteroclinic cycle for the
smallest number of genes (n = 3) and weak regulator binding (γ = 0). There are regions
of definite stability (above the solid line) and definite instability (below the dashed line), i.e.
regions in which the stability only depends on α and ρ (for given n). In the intermediate region,
the stability of the heteroclinic cycle also depends on β.

We expect that Theorem 3.3 continues to hold also for γ > 0. However, at present
we do not have a proof of Claim 3.3 in that case. The remaining part of the proof
goes through as below. Only the stability criterion for the heteroclinic cycle is a
bit more complicated for n ≥ 5.
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Conjecture 3.1 For n odd, α > 1 and ρ > 1, system “RepAuto” has a het-
eroclinic cycle connecting the n equilibria of support size n−1

2
. (i) The system

is permanent if λ + µ + n−3
2

µ′ > 0. (ii) The heteroclinic cycle is attracting if
λ + µ + n−3

2
µ′ < 0, where:

λ = λi(0, 0, ∗) (133)

µ = λi(∗, 0, 0) (134)

µ′ = λi(∗, 0, ∗) (135)

The stability criterion of the heteroclinic cycle, given in Conjecture 3.1, depends
on certain eigenvalues of a boundary equilibrium. In the following, we determine
these eigenvalues.

For ρ > 1, the support S of any boundary equilibrium is sparse, i.e. either i 6∈ S
or i ∈ S with i − 1 6∈ S, i + 1 6∈ S. Consequently, all eigenvalues of a boundary
equilibrium are given by Eq. (121). Again, we restrict ourselves to the positive
branch of the square root, given by Eq. (122). Via Si,i and Mi,i, the eigenvalues
λi depend on xi−1, xi, and xi+1:

λi = λi(xi−1, xi, xi+1) (136)

= −1 + β/Mi,i

2
+

√

(

1 + β/Mi,i

2

)2

+ (β/Mi,i) (Si,i − 1)

For Conjecture 3.1 we have to consider the following cases (where we use the
symbol ∗ for the value α− 1):

xi−1 xi xi+1 Si,i Mi,i λi

0 0 ∗ α 1 + γ (1 + ρ 1+κ (α−1)
α

) λ

∗ 0 0 1 + γ (1+κ ρ (α−1)
1+ρ (α−1)

+ ρ) µ

∗ 0 ∗
α

1+ρ (α−1)
1 + γ (1+κ ρ (α−1)

1+ρ (α−1)
+ ρ 1+κ (α−1)

α
) µ′

(137)

We conclude this section with the proof of Theorem 3.3.

Proof of Theorem 3.3

Let S be the support of a boundary equilibrium, and S+1 the set of all successors
of elements in S. At the boundary equilibrium ES , each i ∈ S + 1 is a repressed
species and hence its decline is governed by the linearized system

ẋi = β (yi − xi), ẏi =
α

1 + ρ (α− 1)
xi − yi
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whose leading eigenvalue µ is negative. Let (1, uµ) (with uµ > 0) be the corre-
sponding left eigenvector, so that

(xi + uµ yi)
· = µ (xi + uµ yi) (138)

holds near ES .

If both i and i − 1 are not in S, then species i is not repressed, and hence its
invasion is governed by the linearized system

ẋi = β (yi − xi), ẏi = α xi − yi

whose leading eigenvalue λ is positive. Let (1, uλ) (with uλ > 0) be the corre-
sponding left eigenvector, so that

(xi + uλ yi)
· = λ (xi + uλ yi) (139)

holds near ES .

Let z = (x, y). We use the function

P (z) =
n

∏

i=1

(xi + ci(z) yi) (140)

as an average Liapunov function [15, 16].

We choose the functions ci(z) > 0 in a smooth way, such that ci(z) = uµ for z
close to any boundary equilibrium ES with i − 1 ∈ S and ci(z) = uλ for z close
to any boundary equilibrium ES with i− 1 /∈ S.

The function Ṗ (z)
P (z)

is bounded below and (138) and (139) imply that near ES

Ṗ (z)

P (z)
=

n
∑

i=1

(xi + ci(z) yi)
·

(xi + ci(z) yi)
= λ (n− 2 |S|) + µ |S|+ O(|z − ES |) (141)

Since |S| ≤ n−1
2

, the coefficient of λ is at least 1. Hence, if λ + n−1
2

µ > 0 then
Ṗ (z)
P (z)

> 0 near all boundary equilibria, and the system is permanent.

On the other hand, if λ + n−1
2

µ < 0 then Ṗ (z)
P (z)

< 0 near the equilibria ES with

|S| = n−1
2

, i.e. all the equilibria in the heteroclinic cycle described above. Since
this heteroclinic cycle is asymptotically stable within the maximal invariant set
of the boundary of the state space R

2n
+ , it is asymptotically stable also for the

full system. �

4 Main results

In this section we summarize the most important results derived in the previous
section. In particular, we present detailed stability diagrams for the two systems
under consideration.
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4.1 System “RepLeaky”

For system “RepLeaky”, the classification depends on the number of genes n,
the leakiness δ, the Hill coefficient h, the combined parameter α, the degradation
ratio β, and the binding parameter γ.

There is a central equilibrium Ec given by xi = yi = xc > 0, where xc solves
the equation xc = α [(1 − δ)(1 − s(xc)) + δ] defined by the sigmoid function
s(x) = xh/(1 + xh).

There is a crucial difference whether n is even or odd.

For n even, the central equilibrium Ec is globally asymptotically stable if Sc < 1,
where Sc = α (1 − δ) s′(xc). If Sc > 1, then almost all orbits converge to the
equilibria Eodd and Eeven, where only the odd (resp. even) numbered genes are
transcribed at a high rate. For given δ and h, a sufficient condition for the
stability of the central equilibrium Ec is given by Smax < 1, where Smax = h (1−
δ1/2)/(1 + δ1/2).

For n odd, the global attractor is either (i) the central equilibrium Ec or (ii) a
periodic attractor. The stability of the central equilibrium Ec is determined by

β/Mc

(1 + β/Mc)2
<

1− Sc cos(π/n)

S2
c sin2(π/n)

, (142)

where Mc = 1 + γ s′(xc). For given n, δ and h, a sufficient condition for the
stability of the central equilibrium Ec is given by Smax < 2/(1 + cos(π/n)). In
particular, for n = 3 and δ = 0 the central equilibrium Ec is stable if h < 4/3.

The transition from (i) to (ii) occurs via a Hopf bifurcation.

Fig. 5 presents the stability diagram of the central equilibrium Ec for the smallest
number of genes (n = 3), weak or strong repressor binding (γ = 0 or γ = 103),
leaky or non-leaky transcription (δ = 10−3 or δ = 0), and different Hill coefficients
(h = 1.5, 2, 2.5). Clearly, the stability diagram depends on α and β. For weak
repressor binding, γ ≪ 1, the stability diagram is symmetric around the plane
β = 1 (on a logarithmic scale for β).
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Figure 5: System “RepLeaky” for n odd. Stability diagram of the central equilibrium for
the smallest number of genes (n = 3) and either weak or strong repressor binding (γ = 0 or
γ = 103). Stability boundaries enclose the regions of instability (the regimes of oscillation).
Solid (dashed) lines denote leaky (non-leaky) transcription, whereas colors denote different Hill
coefficients. (Solid red, green, or blue lines correspond to δ = 10−3 and h = 1.5, 2, or 2.5.
Dashed green lines correspond to δ = 0 and h = 2.)

4.2 System “RepAuto”

For system “RepAuto”, the classification depends on the number of genes n,
the repressor strength ρ, the cooperativity κ, the combined parameter α, the
degradation ratio β, and the binding parameter γ.

For α < 1, the only equilibrium is the origin O, and it is the global attractor.

For α > 1, there is the central equilibrium Ec given by xi = yi = xc > 0, where
xc solves the equation α = 1+xc +ρ xc +κ ρ x2

c . Additionally, there are equilibria
on the boundary.

For ρ < 1, the central equilibrium Ec is asymptotically stable (presumably the
global attractor). There are 2n− 1 boundary equilibria all of which are unstable.

For ρ > 1, there are Ln boundary equilibria, where Ln is the nth Lucas number.
There is a crucial difference whether n is even or odd.

For n even, there are two asymptotically stable boundary equilibria, Eodd and
Eeven, where only the odd (resp. even) numbered genes are transcribed. All other
equilibria, including Ec, are unstable.

In contrast, for n odd, all boundary equilibria are unstable. There are three
possible attractors: (i) the central equilibrium Ec, (ii) a periodic attractor in the
interior (a limit cycle), and (iii) an ”aperiodic” attractor on the boundary (a
heteroclinic cycle connecting unstable equilibria).
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Figure 6: System “RepAuto” for n odd. Bifurcation diagrams in the (α, ρ)–plane for different
numbers of genes (n = 3 or n = 5) and different types of regulator binding (κ = 0 or κ = 1). For
α < 1, the only attractor of system “RepAuto” is the origin. For α > 1, there are three possible
attractors: the central equilibrium, a limit cycle, and a heteroclinic cycle. The diagram shows
the stability boundaries of the central equilibrium (red) and the heteroclinic cycle (green).
The central equilibrium is stable below the solid red line (and unstable above the dashed red
line), whereas the heteroclinic cycle is stable above the solid green line (and unstable below the
dashed green line). Between the dashed lines there is a stable limit cycle. Between solid and
dashed lines the stability (of the central equilibrium or the heteroclinic cycle) also depends on
β and γ.

The transition from (i) to (ii) occurs via a Hopf bifurcation. In the transition
from (ii) to (iii), the limit cycle approaches the boundary and its period grows
to infinity.

The main novel behavior in “RepAuto”, as compared to the traditional model
“RepLeaky”, is case (iii). It is known as May-Leonard behavior [15].

For given n and κ, the crucial parameters are α and ρ. Fig. 6 presents the
bifurcation diagrams for different numbers of genes (n = 3 or n = 5) and different
types of regulator binding (κ = 0 or κ = 1). (Recall that κ = 0 corresponds to
one binding site, whereas κ = 1 corresponds to two independent binding sites.)

For n = 3 the stability boundaries of the central equilibrium and the heteroclinic
cycle intersect at α = 1, whereas they do not intersect at α = 1 for n ≥ 5. We
also note that with increasing n the stability boundaries of the heteroclinic cycle
are stretched to the right, whereas with increasing κ the stability boundaries of
the central equilibrium are rotated counterclockwise.

For high cooperativity, κ ≫ 1, the central equilibrium and the heteroclinic cy-
cle can be stable at the same time. To illustrate this fact, Fig. 7 presents the
bifurcation diagram for the smallest number of genes (n = 3), high cooperativ-
ity (κ = 10), and high degradation ratio (β → ∞). (The latter is assumed for
reasons of simplicity.)
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Figure 7: System “RepAuto” for n odd. Bifurcation diagram in the (α, ρ)-plane for the
smallest number of genes (n = 3), high cooperativity (κ = 10), and high degradation ratio
(β → ∞). For α < 1, the only attractor of system “RepAuto” is the origin. For α > 1, there
are three possible attractors: the central equilibrium, a limit cycle, and a heteroclinic cycle.
The diagram shows the stability boundaries of the central equilibrium (red) and the heteroclinic
cycle (green). Below the red line the central equilibrium is stable, and above the green line the
heteroclinic cycle is stable. As a consequence, in region (a) there is a stable central equilibrium
and an unstable heteroclinic cycle, whereas in region (c) there is a stable heteroclinic cycle and
an unstable central equilibrium. In region (b) there is a stable limit cycle. Finally, in region
(d) both the central equilibrium and the heteroclinic cycle are stable.

5 Conclusions

Gene regulatory networks with a cyclic (and symmetric) topology, e.g. the re-
pressilator, can be easily analyzed for an arbitrary number of genes. Our study
confirms the previously derived result [9] and earlier suggested finding [5] that
odd numbers of genes in repression cycles may give rise to oscillations, whereas
even numbers of genes lead to multiple stable equilibria. The additional consid-
eration of arbitrarily strong regulator binding is more involved, since it requires
a distinction between total and free protein concentrations. However, mass con-
servation yields a (linear) relation between total and free protein flows, and total
protein concentrations can be eliminated. As in the simplified system with weak
regulator binding, the resulting kinetic equations are formulated for free protein
and mRNA concentrations. Moreover, the equilibria of the exact and the simpli-
fied system are the same. Only the stability of potential attractors is affected by
the binding strength of the regulators.
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Figure 8: System “RepAuto” for n odd. A sketch of the four dynamical scenarios for the
smallest number of genes (n = 3) and high cooperativity (κ ≫ 1). There are three possible
attractors (denoted by colors): the central equilibrium (red), the limit cycle (black), and the
heteroclinic cycle (green). Stable orbits are shown as filled circles or solid lines, unstable orbits
as empty circles or dashed lines. The ”eigenvalue” of the central equilibrium, λc = ℜ(λodd),
and the “eigenvalue” of the heteroclinic orbit, λh = λ+µ, are indicated on the coordinate axes.
In case (a) there is a stable central equilibrium and an unstable heteroclinic cycle, whereas in
case (c) there is a stable heteroclinic cycle and an unstable central equilibrium. In case (b) both
eigenvalues are positive and there is a stable limit cycle. Finally, in case (d) both eigenvalues
are negative and there is a stable central equilibrium and a stable heteroclinic cycle together
with an unstable limit cycle.

For odd numbers of genes n, the repressilator systems presented here in detail ex-
hibit three potential attractors: (i) the central equilibrium, (ii) a limit cycle, and
(for system “RepAuto”) (iii) a heteroclinic cycle connecting n unstable equilibria
on the boundary of the state space. For n = 3, the heteroclinic cycle connects
the single species equilibria E1 → E3 → E2 → E1. Note that the flow on the
heteroclinic cycle is opposite to the repression cycle 1 ⊣ 2 ⊣ 3 ⊣ 1.

Every single species equilibrium Ei in the heteroclinic cycle is a saddle: It is sta-
ble against invasion of species i + 1 (modulo 3), but unstable against invasion of
species i−1 (modulo 3). The results presented in the previous section allow for a
simple visualization of the repressilator dynamics in a plane spanned by the cru-
cial ”eigenvalue” of the central equilibrium, λc = ℜ(λodd), and the ”eigenvalue”
of the heteroclinic cycle, λh = λ + µ. See Figure 8.
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For different signs of the two eigenvalues, λc and λh, we have either a stable
central equilibrium or a stable heteroclinic orbit. If both eigenvalues are positive,
the central equilibrium and the heteroclinic orbit are unstable, and there is a
stable limit cycle. For two negative eigenvalues, both the central equilibrium
and the heteroclinic orbit are stable. In the ranges of marginal stability close to
λc = 0 or λh = 0 more complex dynamical situations may arise.

The most important biological implication of the existence of a heteroclinic cycle
in system “RepAuto” is the occurrence of an upper limit for the repressor binding
constant with respect to oscillations. Let us again consider the case n = 3. If
repressor binding exceeds the critical value reported here, oscillations die out and
the system approaches a state in which only one gene of the repressilator is active
and the other two are silenced. For the symmetric system discussed here, each of
the three genes has the same probability to stay active. However, in reality the
three binding constants are different and so are the probabilities for not becoming
silenced. Hence, one gene is preferentially chosen.
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