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Zusammenfassung

Das Verhalten von autokatalytischen Reaktionsnetzwerken unter Ein-
beziehung der Translation als intermediaren Schritt wurde mit analytischen

und numerischen Methoden untersucht.

Ein allgemeines chemisches Modell wurde erstellt, und die daraus hervorge-
henden kinetischen Differntialgleichungen untersucht. Als Spezialtalle wur-
den ein mutualistisches, aus dem Hypercyclusmodell von Eigen und Schu-
ster abgeleitetes Modell mit geschlossener cyclischer Katalyse und ein auf
wechselseitiger Konkurrenz nach dem Muster von Schlogl aufgebautes Mo-

dell herangezogen.

Das dynamische Verhalten im Limit langer Zeiten wurde fir drei un-
terschiedliche Randbedingungen untersucht, namlich im Evolutionsreaktor,
im gertihrten Durchlufireaktor und in einem gegeniiber Materieaustausch

abgeschlossenem Reaktionsgefafl.

Fir das mutualistische Model wurden die Bedingungen fiir das Auftreten von
Grenzcyclen untersucht. Auflerdem wurde chaotisches Verhalten im selben
Gebiet des Parameterraumes fiir die Selektionsmatix wie im reinen Replika-
torfall festgestellt.

Weiters wurde der Einflul von Mutationen sowohl auf den Replikationsteil,
als auch auf den Translationsteil untersucht, und critische Werte fir das

Auftreten von Bifurkationen ermittelt.

Dartiberhinaus konnte ein interessantes Verhalten bei der Einbeziehung
von Diffusion in die kinetischen Gleichungen festgestellt werden. Im mu-
tualistischen System kommt es bei Grenzcyclen zunachst zur Ausbildung
einer raumlich homogenen, aber zeitlich periodischen Losung, die aber bei
Erhohung der Diffusionskoeffizienten der Substrate auch raumlich inhomogen
wird, bis sie schieflich in eine raumlich inhomogene, aber zeitich stationare

Losung ibergeht.



Abstract

The behavior of a class of autocatalytic reaction-networks with translation

as intermediate step was investigated.

A general chemical model was derived, and the corresponding kinetic dif-
ferential equations were studied by both analytical and numerical methods.
Some special cases were considered: a mutualistic model, which was derived
from the hypercycle-model by Eigen and Schuster, and a competitive one,

based on competition and closely related to the Schlogl model.

Three different boundary conditions were used to describe the long time
behavior of the dynamical systems: the evolution-reactor, the continuously
stirred tank-reactor, and finally a closed system that admits only exchange

of energy.

Conditions for the existence of limit cycles were derived for the mutualistic
system. A strange attractor exists in the same region of the parameter-space

as in the pure replicator case without intermediates.

The influence of mutation was considered both to the replication-part and the
translation-part, and some critical values for the occurrence of bifurcations

were obtained.

Furthermore, the system displayed some interesting features with the intro-
duction of diffusion. When starting with a limit cycle in the mutualistic
system, a spatial homogeneous but cyclic solution was obtained for small
diffusion constants of the substrate. Increase in the diffusion-constants of
the substrates yields spatially inhomogeneous patterns. Further increase of
the diffusion constants tends to spatially inhomogeneous but stationary so-

lutions.
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1 INTRODUCTION 4
1 Introduction

1.1 Evolution

Very detailed knowledge of biological and biochemical processes governing
the reproduction of cells has been accumulated in the last decades. With
this knowledge, it became possible to ask questions concerning the physical
nature of life itself in a very detailed and precise way. Among many others,
this comprises questions about the uniqueness of the genetic code, about the

optimality of enzymatic action as well as the origin of life itself.

It is a well established fact that conditions on Earth in the beginning (that is
in the first hundreds of millions of years after its formation) would not have
admitted the existence of complicated bio-polymers [78, 44]. This raises the
question of emergence and evolution of these bio-polymers and the intricate

systems of interactions between them.

The logic of evolution may be condensed into the following statements [14]:

e natural selection is a consequence of self-reproduction under conditions

far from thermodynamic equilibrium.

e Variation is due to imprecise reproduction or other modifications in-

volved in the reproduction process.

e Fvolution is the result of variation and natural selection under condi-

tions far from thermodynamic equilibrium.

Charles Darwin was the first to stress this interplay of selection and variation
as the principle of evolution. To recognize the importance of advantages or
disadvantage, however slight, of individuals over others as the fundamental
driving force of selection seems to be one of the principal archievments of

Darwin’s work [10].

1.2 Self-Organization

“The self organization of matter associated with the origin of life must

have started from random events in a sense of non-existing of fundamental
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organization.” [12]. In his famous paper, which stimulated much research
in this field, Manfred Eigen sets out the development of a theory about
self organization. He addresses the question of self organizing matter into

replicating ‘individuals’.

Glansdorff and Prigogine [29] created a thermodynamic theory of open sys-
tems in the vicinity of a steady state and presented tools which enable the
quantitative treatment of this question. It follows that a system consisting
of information carriers organizing themselves in the above meaning, must

fulfill the following properties:

e The system must be open and far from internal equilibrium.

e The net formation rate of individual information carriers must be posi-
tive in the absence of (unspecific) growth restrictions. Furthermore the

spontaneous formation of information carriers will be neglected.

A computer model of molecular evolution has been developed by Walter
Fontana, Wolfgang Schnabl and Peter Schuster where evolutionary optimiza-
tion and adaptation has been studied. The object of interest are strings with
length v of symbols out of an alphabet of x characters. Usual k =4 or k = 2
associated with DNA (RNA)-sequences containing all four bases G, C, A, T
(U) or just two corresponding pairs (G, C or A, T(U)) respectively. These
sequences form exclusively either faithful or erroneous copying of sequences
already present [24] or with additional insertion- and deletion-steps [23], and

decompose according to a first order rate law.

Different computer models of self organization to this one mentioned above
has been established. Fontana set up a (stochastic) dynamical system in
which the objects are discrete symbolic maps, such that map j applied to
map ¢ yields map k [22].

Well established models of natural selection in the contexts of genetics, socio-
biology, prebiotic chemistry, immunology and ecology exhibit similar behav-

ior.
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1.3 Adaptation and Evolution

No population can grow forever at a constant rate. This fact, first force-
fully articulated by Malthus [39], represented one of the starting points of
Darwin’s thinking. An excess productivity can be sustained for a few gen-
erations at most; uncontrolled growth quickly reaches the limits of natural
resources. Some individuals are better adapted than others to the resulting
selection pressure. Their offspring will be more numerous. The driving force

of selection is therefore competition, both within and between species.

1.4 Types of Interaction

The analysis of the interaction between two species can be quite compli-
cated, involving the effects of exterior and interior parameters. As a first
approximation, however, one may distinguish (apart from the case of zero

interaction) three basic situations.

o Competition: Two species are rivals in the exploitation of a common
resource. The more there is of one species, the worse for the other
one. Because of the importance of competition as a limiting factor in

evolution, such situations have attracted considerable attention.

e Symbiosis: This is the reverse situation: both species benefit from each
other. The more there is of one species, the better for the other one.
Such mutualistic relationships have been treated by Eigen and Schuster
[15, 16, 17] In particular, there are good reasons to think that also
living cells of the type occurring in higher organisms are the outcome

of a symbiosis between more primitive organisms.

e Host-parasite relationship: The situation, here, is asymmetrical. The
parasites benefit from the host but they do it no good. Examples are

e.g. various viruses.
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2 Methods

2.1 Ordinary Differential Equations
2.1.1 Canonical Forms for Linear Operators

Let T : E — E be an operator. Its characteristic polynomial can be written

as
r

p(t) =TT (t =)™

k=1
where Ay are the r distinct eigenvalues and ny, are their multiplicities. Clearly
ny 4+ ny + ... + n, = dim E. The generalised eigenspace of T belonging to
Ar 1s defined as
E(T, ) =ker(T — X\p)™ C E

Proposition 2.1 (Primary decomposition theorem) Let T be an oper-
ator on a complex vector space E. Then E s the direct sum of the generalised
eigenspaces of T'. The dimension of the eigenspaces equals the multiplicity of

the corresponding eigenvalue.

We say an operator A is semisimple iff its complexification is diagonalizable.
It is nilpotent if there is an n € N such that A® = 0.

Proposition 2.2 For any operator T' € L(IR") there is an unique operator
S and N on IR" such thatT =S + N, SN = NS, where S is semisimple
and N s nilpotent.

The semisimple part S itself may be decomposed into a part Si corresponding
to real eigenvalues and a part S¢ corresponding to complex conjugate pairs
of eigenvalues. By an appropiate change in coordinates Sg may be rewritten

in diagonal form and S¢ then consists of 2 x 2 blocks of the form

CZ':(CL —b)
b a

where a and b are real This representation for S is called (real) canonical

form. If we allow for complex entries S is diagonalizable as a whole; instead
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of the matrices A; we have the pair of complex eigenvalues of A; in the

diagonal.

An elementary nilpotent block is a matrix of the form

0

Proposition 2.3 Let N be a nilpotent operator on a real vector space E.
Then E has a basis such that N is represented by a matriz of the form N =
diag(Ny,...,N,) in which Ny is an elementary nilpotent block and the size
of Ny is a nonincreasing function of k. The number r of blocks is equal to
dim kerA. Two nilpotent operators of the same vectorspace are similar iff

they have the same canonical form N.

Let us now consider an operator of the form 7" = A £ + N where E is the
unit operator and N is nilpotent. If we choose the basis such that the matrix
N is a nilpotent canonical form, we find the matrix representation of 7' to
be N 4+ A E. This matrix has block diagonal form with identical blocks of

the form

A
1

1 A
which are called elementary JORDAN blocks. The number of such blocks is

r=dim ker(7 — X)

and their size is 7, where m is the dimension of the vector space. If A is

complex the elementary blocks may be rewritten in real form for a pair of
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conjugate eigenvalues.

E,

Ey, D

D= @ —b and Fy = Lo
b a 0 1

Proposition 2.4 The canonical form for an arbitrary operator T may now
be written as the direct sum of matrices of the above form. It is Therefore

a block diagonal matriz consisting Jordan blocks corresponding to the eigen-
values A\, of T'. FEach block has size ny and is made up of dim ker(T — )

elementary Jordan blocks.

2.1.2 Linear ODEs with Constant Coefficients

Let T': E — FE be a linear operator . Its exponential is defined as
0o ik
expl = Z %
k=1
This series converges for all T € L(E). If Q = PT P! then the exponential
of () is given by
expQ =P -expT - P!

and if z is a real eigenvector of T' belonging to A, then z is also eigenvector

to exp I'belonging to e,

Let us now consider the solutions of the homogeneous linear system
r=A-x

Proposition 2.5 Let A be an operator on IR". Then the initial value prob-

lemz=A-x , z(0) = xg € IR" has the unique solution.

z(t) =exp(t-A) - xo
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The exponential of an elementary n-dimensional Jordan block B may be

readily calculated: with

1
t 1
] t 1
exp(t - B) = e P
Pn—1 Pn—2 oot 1

In coordinates we may write down the solutions of the initial value problem

as
-1 tk
_ M 0o .
z;(t) =e Z g%‘—ka
k=1 """
where z¥ denotes the coordinates of z.

If X is complex we identify €™ and IR*™ by the correspondence
(14w, 22+ Wy ooy T+ Win) = (T1, Y1, T2, Y2y o« oy Ty Yo

The solution is formally the same as above, but with the complex vector z
instead of the real vector z. With z) = 2? + ¢ y? we obtain the solution in
real variables:

—1
J tk

et Z — [;L‘?_k cos bt — y?_k sin bt]
k=0

zil(?) !

i=1 4k
t
at .0 _ 0 1
e ké Oﬁ [yj—k cos bt Ij—k sin bt]

yi(t)

where A\ = a + 1 b.

Proposition 2.6 FEvery trajectory of @ = Ax tends to 0 for t — oo, iff

every eigenvalue of A has negative real part.

Definition 2.1 Let (a,b) C IR be an open interval, U C IR" a region. A
map ® : U x (a,b) — R" is called the flow, if ®(®(x,t1),12) = ®(x,t1+1t2)
holds.



k&
YAl >
J
a

(a)
()

(e) (f)
Figure 1: Phase portraits a the two-dimensional ODE: Stable fixed points:
(a)-(d); Structurally stable: (a),(b),(e);
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The linear flow exp (tA) induced by the linear operator A is a contraction iff
the real parts of all eigenvalues of A are negative, i.e. if |exp(tA)x| decays
exponentially. If all eigenvalues have positive real parts this quantity grows
exponentially and the flow is called an expansion. If all eigenvalues of A are
nonzero the flow is called regular, and if the real parts of all eigenvalues are
nonzero we have a hyperbolic flow. If the flow is hyperbolic it is just the

direct sum of a contraction and an expansion.

We remember that when A is semisimple, the operator and thus also the
differential equation breaks down into a number of uncoupled equations of
dimensions one ore two. The classification of the one-dimensional flows is
straight forward. A qualitative summary of the two-dimensional case is given

in fig. 1 and a quantitative one in terms of trace and determinant of A in

fig.2.

2.1.3 Routh-Hurwitz Conditions

The Routh-Hurwitz criteria [41] are just stated without proof, which can be
found in [26]

We define the Hurwitz matrix H associated with the polynomial
Pp = A" + a1z 4.+ a1z + a0

as the n X n matrix

Up—1 Qp-3 Gp_5 0
Ay Gp_g Qp—g 0
Ap_1 CGp_3 0
H = ay, Gp_2 0
0  an_q 0
: : : ... 0
0 0 0 ... dg
The leading principal minors of the matrix are A; = |H(Z-+2-7m7n)| ; then if a,

> 0, all roots of p, have negative real part iff all of the following inequalities
hold:
A1>0, A2>O, A3>0, An>0
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Sinks Spirals Spirals
Tr <0, Det >0 D
et

Centers

Nodes
A <0, Tr<O

13

Sources
Tr >0, Det >0

A=0

Nodes
A <0, Tr>0

Saddles
Det< 0

Tr

Figure 2: Classification of the two-dimensional linear ODE & = Az in terms

of the invariant quantities A = det A and Tr A.

As an illustrative example, we take the case n = 4; then the following in-

equalities have to be fulfilled:

as aq 0
asz di
|Cl3| > 0, > 0, ay ag ag | > 0,
aq az
0 as dajp

writing out these determinants, we get

as
G263 — G104
2 2
ay1d2a3 — ayjd4 — Azdg
al(ayazas — ajaq — a3ag)

vV V. V V

as

4

o O o O

aq 0 0
a9 dog 0
>0
a3 dq 0
a4 daz Aao
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From the last two inequalities, for ag corresponds with the determinant of
the matrix, we get the condition for purely imaginary roots of the character-
istic polynomial. If ag > 0 only three inequalities is are responsible for the

existence of bifurcations.

As the coefficients of the characteristic polynomial of a matrix are invariant
under a similarity transformation of the matrix, the left hand sides of the

Routh-Hurwitz -conditions are invariant under that transformation too.

2.1.4 Nonlinear Dynamical Systems

A dynamical system is a way of describing the passage in time of all points
in a given state space S. Mathematically this space S will be an Euclidian

space or an open subset of an Euclidian space.

Definition 2.2 A dynamical system is a C' map S x IR — S. If we have
éi(x) = ¢p(xj;t), the map ¢ : S — S satisfies

o ¢g : S — is the identity;

o The composition ¢; 0 ¢ps = ¢psys for all st in IR.

Definition 2.3 Let E be an Fuclidean vector space; W C F and f: W —

E a continuous map. A solution of the (nonlinear) differential equation
&= f(x)

is a differentiable function v : J — W defined on some interval J C IR
such that for all t € J holds

So we repeat some fundamental theorems concerning existence, uniqueness

and continuity of solutions for ODEs of the above form.

Proposition 2.7 (Existence and Uniqueness) Let f € CY(W) and zo €

W. Then there is some open interval J C R and a unique solution

z:J — F satisfying z(0) = xq.
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Proposition 2.8 (Continuity of Solutions) Let f € C*(W) and y(t) be
a solution of & = f(x) defined on a closed intervalfty,t,] withy(to) = yo. There
is a neighborhood U C FE of yo and a constant k such that if zg € U, then
there is a unique solution z(t) also defined on [to,t1] with z(tg) = zo; and z
satisfies

ly(t) = 2(1)] < klyo — zole™!~)

Proposition 2.9 FEvery dynamical system on an Fuclidiean vectorspace

gives rise to a differential equation:

) 0
T = aqﬁt (z)

t=0

and conversely every autonmous differntial equation & = f(x) arising from
a C'-map defines a dynamical system: ¢(t,x) = u(t) is the solution of the
initial value problem with u(0) = x and & = f(x).

2.2 Limit Sets

It is not possible in general to calculate the solution curves u(t) explicitly. In
fact we don’t have to know the exact solutions for the investigation subjects
to this thesis. But we ought to know where a trajectory comes from, where

it goes to, i.e. the asymptotic behavior of a given trajectory.

Definition 2.4 A invariant set G for a flow ¢; is a subset G C E such that

$(z)€G for z€G YV tER
The most simple examples are fixed points z, i.e. (f(z) = 0).

Definition 2.5 z is called a fixed point ( or rest point or equilibrium ) of
a system of differential equations & = F(x), if F(z) = 0.

We divide the subspaces spanned by the generalized eigenvectors &, ..., &,

into three classes:
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o I, =span{{f,... £} is called the stable eigenspace.lt is spanned by

the generalized eigenvectors with eigenvalues with negative real part.

o [, =span{{},... £} is called the unstable eigenspace.lt is spanned

by the generalized eigenvectors with eigenvalues with positive real part.

o F. = span{&,..., &0} is called the center eigenspace.lt is spanned
by the generalized eigenvectors belonging to eigenvalues with vanishing

real part.

Definition 2.6 A point p € W is called nonwandering for the flow ¢, if, for
any neighborhood U of p, there exist arbitrarily large T' such that ¢,(U)NU #
0.

A nonwandering point lies on or near orbits which come back within a speci-
fied distance of themselves. Fixed points and periodic orbits are thus nonwan-
dering. The set of all nonwandering points is closed. Note that all invariant

sets consist of nonwandering points.

Definition 2.7 The w-limit of x, denoted by w(x), is the set of all points
p which have the following property: there are points ¢y (), ¢1,(z), ... on
the orbit of v and such that ¢4,(x) — p ast, — oo. Correspondingly the

a-limit a(z) with all points q for which such a sequence exists fort; — —oo.

Definition 2.8 A closed invariant set A C E is called an attracting set
if there is some neighborhood of A such that ¢i(x) € U for all t > 0 and
¢i(x) — A ast — oo forall x € U. The set U;5q ¢+(U) is the domain of
attraction of A.

There is an analogous definition for repelling sets.

Domains of attraction of disjoint attracting sets are necessarily nonintersect-

ing and seperated by the stable manifolds of non-attracting sets.

A fixed point z is stable if for every neighborhood V of z in U there is
a neighborhood Vi C V such that every solution z(zg,t) with z¢o € Vi is
defined and lies in V for all ¢t > 0. If, in addition, V; can be choosen such
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that z(xo,t) — T as t — oo then z is said to be asymptotically stable.
Asymptotically stable fixed points are called to be sinks. A fixed point is
called a source if there is a neighborhood U of & such that for every yo € U]
z there is a T' > 0 such that y(y,,T') ¢ U.

We close this section with a working definition of an attractor as given by

Guckenheimer and Holmes [30].

Definition 2.9 The closed set A isindecomposable if for every pair of points
x,y in A and for all e > 0 there are points X = xg,x1,...,2, =y and ty,... 1,
> 1 such that

dist(py, (i — 1),2;) < €

Definition 2.10 An attractor is an indecomposable closed invariant set A
with the property that, given € > 0, there is a set U of positive Lebesgue
measure in the e-neighborhood of A such that x € U implies that the w-limait

of X s contained in A and the forward orbit of x is contained in U.

There are different types of attractors for dynamical systems: An equilib-
rium is by far the most simple case. Fixed points will often be treated by
analytical methods in this work. Limit sets consisting of equilibria and orbits
connecting them are important in the models discussed here, although the
are not structurally stable. Limit cycles and continua of periodic orbits are
in generally very difficult to treat analytically, whereas strange attractors do

not allow for extensive analytical treatment.

2.3 Linearisation of Vector Fields

Suppose we know a fixed point z of the differential equation & = f(z) and
we wish to know the behavior of the dynamical system in a neighborhood of

this point. We answer this question by studying the linear system

where (0f(z))i; = [0fi/0x;] at the position of the fixed point z. 9f(z) is
called the Jacobian (matrix) of the vector field f.



2 METHODS 18

Proposition 2.10 (Hartman-Grobman) Ifdf(z) is hyperbolic then there
is a homeomorphism h defined on some neighborhood U of x in E locally
taking orbits of the nonlinear flow ¢, of & = f(x) to those of the linear flow
exptdf(z). The homeomorphism h preserves the sense of the orbits and can

also be chosen to preserve parametrization by time.

Definition 2.11 The set W (z) (WE.(z)) defined below is called the local
stable (unstable) manifold of .

Wi.(z) = {xeUlp(x) =z as t — oo,and ¢y(x) € U ¥Vt > 0}
We.(z) {r € Ulgy(z) = T as t — —oo,and ¢(x) € U ¥Vt <0}

Proposition 2.11 (Stable Manifold Theorem) Suppose that @ = f(x)
has a hyperbolic equilibrium x. Then there exist local stable and unstable
manifolds of the same dimensions ng and n, as the eigenspaces E° and E* of
the linearized system and tangent to them at x. The local stable and unstable

manifolds are as smooth as the vector field f.

Let Z be a hyperbolic equilibrium of 2 = f(z). If W%, =  then 7 is a sink.
If W2, = () the fixed point is a source, otherwise it is a saddle point. (For
nonhyperbolic flows we will define a saddle as homoeomorph to a hyperbolic
saddle.) There is method to determine whether a fixed point is stable which
does not depend on the hyperbolicity of the flow:

Proposition 2.12 (Ljapunov) Let & be a fized point for @ = f(x) and
v: W — IR be a differentiable function defined on some neighborhood W C U
of  such that:

e v(z)=0 and v(z) >0 if z+#z,

o v(z) <0 in W\ {z}.

Then x is stable. Moreover, if

o i(z) <0 in W\ {7}
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then x is asymptotically stable.

A stable fixed point is said to be globally stable if all trajectories tend towards

it fort — oo.

A second class of limit sets — besides fixed points — consists of certain unions
of equilibria and trajectories connecting them. If distinct fixed points are
connected we have a heteroclinic orbit, if a fixed point is connected to itself

we have a homoclinic orbit. Both are sets of nonwandering points.

2.4 Structural Stability

Definition 2.12 Let f € C™(E), m € IN and ¢ > 0. We say g € C™(E)
lies in an e-neighborhood of f with respect to a compact set K C E, if for all
x € K holds

min{]|f(x) - g(2)],10(f — 9)(@)][} < c.

Definition 2.13 Two vector fields f and g are topologically equivalent if
there exists a homeomorphism h which takes the orbits qb{(m) of f to orbits

() of g, preserving the senses but not necessarily parametrization by time.

Definition 2.14 A vectorfield f is called structurally stable if there in an
¢ > 0 such that all C* functions g in an e¢-neighborhood of f are topologically

equivalent to f.

For gradients systems there is an easy to verify sufficient condition for struc-

tural stability:

Proposition 2.13 Gradient systems for which all fized points are hyperbolic
and all intersections of stable and unstable manifolds are transversal, are

structurally stable.

It is an unsolved problem whether the union of all structurally stable flows is
generic in arbitrary dimensions. For planar flows on compact manifolds the

problem is solved by the following
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Proposition 2.14 (Peixoto) Let M be a compact two-dimensional mani-
fold. (If M has a boundary then assume the flux transverse.) A C” vector
field on M is stucturally stable iff

o the number of fizxed points and periodic orbits is finite and they are all
hyperbolic;

e there are no orbits connecting two saddle points;

o The set of nonwandering points consists of fired points and periodic

orbits;

Moreover, if m is orientable, the set of stucturally stable vector fields is

generic, i.e. open dense in C7(M).

It is a nice result that both hyperbolicity and semisimpicity are generic prop-
erties of linear operators, i.e. semisimple (hyperbolic) operators on F form
an open dense subset of L(F). This means that almost all operators have this
property and that the slightest perturbation of a nongeneric operator leads
to a generic one. That means if we do not know all entries of the matrix A
exactly, we may assume any generic property we want to have; it would not

make sense to insist on a single special form of A.

On the other hand there may be good reasons for not assuming a particular
generic property. If there are natural symmetries in the ODE or if the flow
must conserve some quantity, say the energy, then the assumption of a generic

property may be a mistake.

2.5 Fractal Sets and Strange Attractors

In an Euclidean Space R™ a real number determines a similarity transforma-
tion by

S:xz—>r-z.

This transformation thus sends a set M to S(M).

Definition 2.15 A bounded set M 1is called self-similar with respect to a

ratio v and an integer n, when M is the union of n nonoverlapping subsets,
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each of which is congruent to S(M). (Congruent means identical except for
displacement and rotation.) Analogously we call a set M self-similar with
respect to an array of ratios (ri,1 = 1,...,n), when M is the union of n
subsets each of which is congruent to S,;,(M). An unbounded set is selfsimilar

with respect to a ratio r if S(M) is congruent to M.

Self-similarity is a usual quality of a class of sets known as fractals. These are
characterized by rather strange metric properties which can be considered as

non-integer dimensions.

Fractal dimensions thus are not topological but metric notions. Let H be
a metric space. Given a bounded set M C H there are many methods of

covering it with balls
By(x) = {y € H[dist(z,y) < p}

of radius p. These coverings often involve the notion of a dimension in a
natural way. For simple examples the values of these dimensions are equal,

but for more complex sets their values may differ.

Let H be an n-dimensional Euclidean space. In this case the concept of

volume is well defined:

vol(d-dim. ball of radius p) = y(d)p”

where v(d) = Fl;f}-);) and d is the topological dimension of the balls. Cantor
suggested to center a ball B,(z) in each point x of M and to use these balls’
union as smoothed out version of M. We will denote this set by M(p). The

d-dimensional content (i.e. length, area, volume etc.) may be estimated from

vol(M(p))

R TCRr T

However the limit lim,_ V(p) need not exist. Therefore Minkowski defined
upper and lower d-content by the limes superior and the limes inferior re-
spectively. He also discovered that there is a unique number D such that the
upper content vanished for d > D and the lower content is infinite for d < D
at least for sufficiently smooth sets. Bouligand [5] recognized that D may be
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non-integer; he used the value D_ where the lower content becomes infinite

as metric dimension.

A different approach was done by Pontrjagin [47]. As before we cover a
bounded set M by balls of radius p. Let N(p) be the smallest number of such
balls to cover M. N(p) is finite since M is bounded. This leads immediately

to
Dpg = liigiglf%.
P

The quantity log N(p) was called the p-entropy of M by Kolmogorov and
Tihomirov [37]. They also studied a modified definition using C(p), the
largest number of points in M such that their mutual distances exceed 2p,
instead of N(p). They called log C(p) the capacity of M and thus the metric
dimension based on this quantity is referred to as capacity dimension Dc.
(As before one might also use lim sup in stead of lim inf; one gets the

corresponding "upper“ dimensions.)

Let h(p) = v(p) - p?. Hausdorff defined the following measure based on the
covering of the set M by balls of radius p; < p:

u(p) = inf > h(p:).

pi<p 2
The limit
lim inf >~ h(p:)

p—0 pi<p <
may be finite, zero or infinite depending on d. In fact there is a unique D,
such that this limit vanishes for larger values of d and diverges for smaller
ones. This constant D is called the Hausdorff dimension of the set M.

The following definition of a fractal is due to Mandelbrot [40] :

Definition 2.16 A set M is called a fractal, if the Hausdorff dimension is
strictly larger than the topological dimension of the set M.

2.6 Ljapunow Exponents

The most common measure for a chaotic attractor is the spectrum of
Ljapunov exponents [20]. Let A be an attractor of the differential equa-

tion @ = f(z); and let g € A. How does the difference dy between xy and
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a close neighbor yo develop with time? To investigate this we look for a
differential equation for d(t) = y(t) — z(t) :

d=y—i=[(y)—[(z)~ [(z) +J(2) - d = [(x)
where J(z) is the Jacobian matrix of f at the position x(¢). Thus the differ-
ence d is governed by
d=J(z(t))-d.

Formally one can integrate this differential equation using the operator
t

Lt) = T‘exp[/o J(x(r))dr]

where the time ordering operator T has been introduced because the Jacobian
matrices for different times do not commute in general. The solution reads
simply

d(t) = L(t) - d(0).
Let p;(t) be the eigenvalues of £(t). The Ljapunov exponents are then defined
as

Ai = tlggo - /;Z(t)
In most cases it is not possible to calculate Ljapunov exponents for the flows
of differential equations analytically. An appropriate numerical algorithm
has been given by [3], a well tested FORTRAN program is also available in the
literature [80].

We will not repeat their calculations here but rather give only a sketch of
these algorithms. We look at the time evolution of an n-cube with one corner
in the origin under the action of J(z(¢)). This cube shall be spanned by a set
of orthonormal vectors {e;}7. After some time the cube has been deformed
and we are left with a parallelepipede spanned by the vectors {ex(?)}}. We
denote the content of the subcube which is spanned by the first m of these
vectors by vol,,(t). After some time 7 the contents vol,,(7) are determined.
Then the vectors {e(t)}} are re-orthonormalized by the method of Cram
and Schmidt; from ¢t = 7 we start again with a unit cube and let the flow
distort it until £ = 27. The Ljapunov exponents can then be calculated from
a sufficiently long time series according to
m 14

Z)‘i: hm_.zw_

=1 J=ee ] =1 T
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For a determination of only the largest Ljapunov exponent one can start with
an arbitrary starting vector e and look at its distortion under the action of
J(x(t)). After a few initial steps it turns into the direction of the largest
eigenvalue of the Jacobian, and since it remains locked there, it points always
into the direction of the largest eigenvalue of £(¢). Everything one has to do
is to renormalize its length in certain timesteps 7 to keep it finite. If &; is
the norm of this vector before the j + 1°* renormalization step, the largest

Ljapunov exponent becomes

1 k
A = i log k;.
1= Jim o 2 loek
]_
We remark that the Ljapunov exponents in general depend on the initial
condition xg on the attractor A. For a rather large class of strange attractors

investigated so far however, they are constant values for all points = € A.

The spectrum of the Ljapunov exponents allows one to give a classification

of attractors rather easily:

If all exponents are negative A is a stable fixed point.

o If all exponents but one are negative A is a stable limit-cycle. The zero
exponent belongs to the eigen-vector pointing into the direction of the
orbit.

e If all exponents are non-positive but two or more are zero we have a
quasi-periodic attractor; the zero exponents belong to the tangential

directions of A.

e At least one exponent is positive: A is a chaotic attractor.

The Ljapunov exponent explains why chaotic attractors are so difficult to
treat: nearby trajectories diverge exponentially and, for the attractor A is
bounded, are folded back into a neighorhood of their initial values in a very
complicated way. Thus long-time predictions of the orbit of a given point are
impossible: any rounding error grows exponentially and after some time the

whole information on the initial value is lost; it might have been everywhere

on A.
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Assume that the Ljapunov exponents are ordered such that
)\12)\222)\k20>)\k+122)\n

Then the quantity
k
PN
DL:k—;tL—
.

is called the Ljapunov dimension.

2.7 Diffusion

There are two principal approaches to diffusion : the macroscopic and the

stochastic; both will - under certain assumptions - lead to the same “law”.

In the case of the macroscopic (i.e. thermodynamic) approach, diffusion is
the flux of a component that arises from a spatial concentration gradient of
this component. The gradient represents the driving force of this process.
Assume that the diffusion of component ¢ takes place in a medium which is

in excess; then
Jigiss(x) = —Lii <V%)
Tp

where J; 4iss 1s the flux of the component ¢ due to diffusion at z, p; is its
chemical potential and L;; is the phenomenological coefficient. For an ideal

solution this is equivalent to
Jigiss(z) = =DiVe;
with ¢; the concentration of species © and D; its diffusion coefficient; this is

called Fick’s first law of diffusion.

In a given volume element A V' with interior  and surface 9€2, the change

of mass over dt in that volume element is

8c2AV
= — J;do
ot 8Q< %)

with ¢ the unit normal on the surface. The negative sign is caused by the
fact that the flux is directed outward. With Green’s theorem, this yields

8c2AV
ot

:—/VLMi
Q
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Letting AV — 0,

8@
ot —Vii

If the diffusion coefficient is space independent, this yields Fick’s second law

of diffusion.

8@
ot

The other approach to diffusion is to view it as a stochastic process involv-

= DACZ

ing individual particles. The microscopic process underlying diffusion in an
isotropic medium is a random walk of the diffusing particles. The change of
direction and momentum is due to collision with other particles. Under the

assumption of several simplifications again the diffusion equation is obtained.

The space in which diffusion takes place is of central importance to the be-
havior of solutions of reaction diffusion systems. The natural domain for
such models is a bounded subspace of IR, R* or R?, with boundary condi-
tions that can arise in a physical context. For a closed vessel, these would

correspond to homogeneous Neumann or no-flur boundary conditions.
(Vu,0) =0 on 09,

where again ¢ denotes the unit outer normal. If the walls are permeable to
some substances, mixed boundary conditions are appropiate; in the limit of

infinite permeability, this yields Dirichlet boundary conditions.
u=c on 09,

where ¢ is a function of space, but usually is taken to be constant in subregions
of the boundary 9€Q). Mized boundary conditions are a linear combination

of these two,

(I —a){(Vu,0) + a(u —c¢) = 0.

For the sake of simplicity only rectangular domains with Neumann boundary

conditions are used for this work.

2.7.1 Diffusion as a ’stabilizing process’

Diffusion alone cannot produce any pattern-formation,since the pure diffusion

equation v = DAwu describes a process, which tends to drive to equilibrium



2 METHODS 27

all local perturbations. But in the case of coupling with nonlinear reactions
diffusion has a double role : 'on the one hand, it increases the stability of the
steady state, but on the other hand, it increases the manifold of perturbations
compatible with the macroscopic equations of change. ... if the second effect

is dominant, we may expect symmetry breaking instabilities. [48]

2.7.2 Reaction Diffusion Equations and Symmetry Breaking

In general, the reaction diffusion equation has the form:
u = DV*u+ f(u)

where f(u) is the reaction part and DV*u = DAu is the diffusion part.

If a uniform solution of a reaction diffusion system is unstable due to diffusion,
a perturbation of that homogeneous state can be amplified by diffusion and
ultimately lead to a new (steady or unsteady) state. But not all perturbation
show this property. Especially, a uniform perturbation of a uniform state

cannot induce the formation of a nonuniform state.

Those perturbations that can lead to a nonuniform state were termed ’sym-
metry breaking’ [29, 43], because a higher degree of symmetry can be ascribed

to the uniform state.

Only in very limited number of cases, exact solutions for reaction diffusion
equations are known. One example is the travelling wave solution for the

FitzHugh-Nagumo-equation [21].

2.7.3 Approximation of Solutions of Reaction-Diffusion equations

A partial differntial equation @ = F'(u, uz, tz;) an a domain 2, subject to cer-
tain boundary conditions, can be approximated by dividing the domain into
elements in which the solution is constant in space; the solutions in adjacent
elements are coupled by discrete approximations of the space derivatives. for
example the reaction diffusion equation @« = f(u) + Dug, in Q = [0,1] under

Neumann boundary conditions, after dividing € into m equal elements e; =
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[TZ’L;, %] leads to the system of ordinary differntial equations

;= fu)+m?D(u;iy + uiyy — 2u;) fori=2,...,m—1
‘l'Ll = f(LLl) + m2D('u2 — ul)
LLm = f(um) —|— mQD(um_l - LLm)

Here we use

I é(é)_ﬁ_?
I éx/)  Oz?

with A : Af(z) = f(z + % — flz - %) Setting Az = -, the limit m —
oo thus yields the continuous formulation. It is obvious that the formulation

for u; and 1,, corresponds to Neumann boundary conditions.

For Dirichlet boundary conditions, the appropiate formulation is

o = flur)+ mQD(u;) + o — 2uy)
U = f(um) +m*D(tp_y + 1 — 2uy,),

where ¢y and ¢; are the boundary values at * = 0 and = = 1 respectively.

For cyclic boundary conditions,

= flur) + mQD(UQ + U, — 2uq)
um = f(um) + m2D(um—l + Uy — 2um)

are appropiate.

This approach approximates the reaction diffusion equation as an m-
dimensional coupled system of sparsely coupled ordinary differential equa-
tions. If there are k components, the & dimensional system of partial differ-
ential equations is approximated as a & x m dimensional system of ordinary
differential equations. If the discretization is made infinitely fine the origi-
nal system is regained; for this reason, partial differential equations can be

viewed as infinite dimensional systems of ordinary differential equations.

2.7.4 Diffusion Stability

Just for the sake of completeness we will state the following slightly modified

theorem by Berman, Plemmons [4] and Streissler [73].
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Theorem 2.1 Let A be a real n x n-matriz with eigenvalues with negative
real part except for two zero eigenvalues, let D > 0 be a real diagonal n x n-
matriz with d; > 0 and at least one d; non-vanishing. Then all the principal

minors of —A are nonnegative iff —A + D is nonsingular for every D.

The proof is analogous to that stated in Streissler [73], so that it will not be

repeated here.
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3 The Model

3.1 Replicator Networks

If we consider just replication and neglect the translation-part then we get ki-

netic differential equations that are denoted by the term Replicator equations

59, 35]
:‘Ek:$k (fk(X)—i:$jfj(X)) for kzl,...,n

where x = (x1,...,2,). This equation describes the selection process.
Adding errors while replicating allows to describe evolutionary processes such
as mutation or recombination [53, 58, 60, 56], [68] — [72]

Many works have been performed on this subject and on special cases, such
as the development of the hyper-cycle [12], [15] — [17]

3.2 Reaction Networks

There are n replicating species in all dynamical systems treated in this work.
For each species k=1,...,n X} represent the genom and 7} denotes the gene-
products, necessary for replication (e.g. the DNA (RNA) polymerases). Be-
cause it is impossible to deal with all the single steps that are necessary for

self-replication, very severe simplifications had to be made.

Every kind of life and in that sense also every kind of replication is bound to
metabolism which causes all these systems to be dissipative. So there have to
be different kinds of out-flow to compensate for the inflow of raw materials,

such as energy or monomers.

We therefore assume the following general scheme for our dynamical system:

A+ X+ T 252X, +7)

B+X, = X, +T. (1)
X, = P

T, 2 Q
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3.3 Boundary Conditions

In order to have experimentally reproducible conditions of replication there
are three kinds of boundary conditions, which lead to somewhat different

sets of kinetic differential equations:

1. the Continuously Stirred Tank Reactor (CSTR).
2. the Evolution Reactor.

3. and a closed model with Regeneration of the monomers.

3.3.1 CSTR
S
o o
. ]
[Al=a, | [Al=a(t)
[BI=b [B]=b(t)

Figure 3: continuously stirred tank reactor

In fig. (3), a schematic view of a continuously stirred tank reactor is given.
The flow rate r can be controlled. As shown in [60, 63], the total concentra-

tion of the replicating species becomes aq for t — oo.

3.3.2 Evolution Reactor

The evolution reactor, as shown in fig.(4) is a kind of dialysis reactor with

walls impermeable to polynucleotides and polypeptides. A flow is provided,
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Nucleotides fresh-
solution

activated
amino-acides

V1

Diaphragm % :E

&
& i:””'
-]

L A >
i

Analyser automatic control

|

low molecular weight material l

low and high molecular weight material

O, ® ... replicating Polynucleotides
O,m ... replicating Polypeptides

Figure 4: Evolution-reactor with external controlling device.

which keeps a reaction mixture of replicating species ( e.g. DNA or RNA
molecules or polypeptides) away from equilibrium. Transport of energy rich
material from the stock solutions into the reactor is adjusted in such a way
that the concentrations of the nucleoside triphosphates (GTP, ATP, CTP
and TTP (or UTP)) are in great excess in in the reactor. The polynucleotide
concentrations and that of the activated amino-acid molecules together with
the polypeptides are controlled separately, so that the result are two con-
centration simplices. Although this kind of evolution reactor is extremely
difficult to realize and therefore very unrealistic, it gives much simplification

in the kinetic equations.
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3.3.3 Regeneration

00
o ®,
&>‘3 . °v<>
QO —_—
8 T
L |
" _pmOd

e ... nucleoside Triphosphates

B .. activates Aminoacides

O ... replicating Polynucleotides

D ... replicating Polypepdides

Figure 5: A model for a closed system with regenerating monomers

In this model there is no flux of material into or out of the system. In
order to keep the system away from equilibrium, a flow of energy is needed
to allow regeneration of the monomers that are produced by degradation of
the replicating species. The degradation is considered to be a single step
process. Even if this assumption is very non-realistic, this step accounts for
degradation and reactivation of the monomers in a sense of overall-kinetics

again. Fig. (5) presents a schematic overview of this kind of reaction vessel.

3.4 Kinetic Differential Equations
3.4.1 Constant Organization

Since the primary products are always in great excess, they do not account

for the kinetic equations and are written in braces. There is a dilution flux,
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such that the total concentration of all replicating species keeps constant.

(A)+ X +T0 25 2X, + T,
(B)+ X, & Xp+Ty

= 2
in}* ()

o~
Tk—>~k

The reaction constants ay form a n x n matrix A, that is also called the

selection matriz. This leads to the following differential equations:

:i?k = Tik((At)k—(I)x)

ik = :Eka—tk(I)N

(3)

and because all species live on their concentration simplices the dimension

of the mathematical problem reduces by two.
Zxkzl and Ztkzl (4)
k=1 k=1

The fluxes are readily calculated

O = EmiZaijtj and ¢~ = Exﬂ-i (5)
% 7 %

Theorem 3.1 Suppose the Matriz A is nonsingular, then there is a unique
fized point in int S, if and only if

B = A" with components by.

Proof:
2 bi
T; = - ]1 = >0 and
i) — 2 b
£ Tk
(6)
S,
{2 = n ! n >0
> by
kg
where B = A~1.
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3.4.2 CSTR

A+ X +T =55 2X30+ T,
B+X, 5 X.+T.

Tk L> *
A D %
B - x
The kinetic equations read:
a = —aZ:sj(At)k +r(ag — a)
7=1
b = —bZijﬁj + r(bo — ) (8)
7=1
j?k = Tk (G(At)]’ — T‘)
t.k = kaki — tk'l“

Again the reaction constants ay; form the selection matrix A.

Theorem 3.2 Suppose the Matriz A is nonsingular, then there at most two

equilibria.

Proof: Let

B =A"! with components by,

n n 1 n
aszkj and k= —Eaﬂ.
7=1 7=1 Tj =1
Then the inner equilibria are
2 a _
Tp = —— d tp=- 9
ST )
and some algebra yields
anr
a = _ 10
(b — ) (10)

. 2
- agbon + 2abgkr — an’r + n\/a0260 — 2aapgbgnr — 4a?bokr? + a?n?r?

2 (agn + akr).
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So there are a maximum number of two inner rest points, since there are at

most two positive real solutions of (10).
|

Since it was not possible to calculate the eigenvalues of the Jacobian of
this system for the general case only some special cases with much easier

mathematical structure could be solved.
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4 Competitive Model

37

4.1 Competitive Model under Constant Organization

In the competitive model, which is quite similar to the Schloegl model [49],

the selection matrix A reduces to a diagonal matrix, so that we get the

following reactions:

k;

(A +Xi+ T — 2X;+ T,
(B)+Xi — Xi+T;
Xi ﬁ) *

T, — %

Equation (3) and (4) becomes

tZ = I;7; — tizfcﬂ—i
J=1
From o _
_ O 47 o”
XT; = an = =
kiTi kz

>t P
pll j=1 ki
and finally
_ 1
r;, = T
kit Y
]':1 7'
_ 1
t, = -
ki X 5

(11)

(12)

(13)

(14)

(15)
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4.1.1 Stability Analysis

The Jacobian becomes:

J =
—k1$1t1 —kll'ltg Ce —k1$1tn k1$1(1 — Il) —k1$1$2 —klfClJ?n
—k2$2t1 —kQIQtQ e —k2$2tn —kQ.ITQCEl kQ:BQ(l — IQ) Ce —kQCEQ.I?n
—k,xotis —kpxats ... —kpxat,  —kpT.q —kpxpre k(1 —xy)
7'1(1 — tl) —Tltl Ce —Tltl —T1 0 Ce 0
—Tgtg 7'2(1 - t2) e —Tgtg 0 —T2 e 0
—Tpln —Tntn .. Ta(l —ty) 0 0 e —Tp

Considerably effort was taken to perform a barycentric transformation [35],

but since this was not possible, only the special case with equal reaction

constants was investigated.

At the fixed point

1
P=(.—..) (16)
n
the Jacobian reduces to
_k _k .. _k E(1_1 _k _k
n2 n2 n2 n n n2 n2
k kK .. _k _k Bl 1) ... _k
7’L2 ’I'L2 ’I'L2 7’L2 n n ’I'L2
_k _k _k _k _k k _1
J = n2 n2 n2 n2 n2 n n
sl _ 1 _z -7 0 0
n n n
B S il § _z 0 7 0
n n n
T T n—1
_T T ... o=l 0 0 T
n n n

Fortunately, it is possible to decompose this matrix into four blocks, whose

eigenvalues can be readily derived, because they are circulant. So we can

bring J into the nicer looking form of

A B
J:(CD). (1)
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The eigenvalues of any circulant matrix A can be calculated, for they are

simply )
A=Y aZj=0,....n—1, (18)

k=0
where the a; are the entries of the matrix A and z is

7z = e(zﬂ) (19)
with the following eigenvectors
& = (1,2j,22j,...,2(”_1)j) (20)

So it it possible to calculate the eigenvectors and hence the eigenvalues of
every matrix, which consists of four (are more) circulant parts of the form
(17). in [31] this method is shown more explicitly. The usual "master-

equation” becomes the form .

A& o= N
& o= (v, Bv))

where the v; have the form of (20). From (21) some calculations lead

(21)

straightly to

5 Ap — Aa £ \/((/\;/\; Ap)2 + 4ABAc) )

If we manage to get  then it is no more problem to calculate the eigenvalues
of the matrix A.

A; = Ai+Brs

Mt = (O — M)+ AsAe) (23)
- 2
In the case of the competitive model the eigenvalues of the four parts are
ki o
Ay = " ! ’ A = ,? ! !
0 : j#0 ; J#0
0 : 7=0
Ao = { ! Ap = -V
T 1 J#0

If equal reaction constants of all species are assumed then all, but the one-

dimensional eigenvalues of the competitive model are saddles.
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e ]=0: .
Ao, = —— and Ao, = —7 (24)

n
These eigenvalues,which belong to the eigenvector 1 are the external

eigenvectors, which do not contribute to the behavior of our dynamical

/ k
—7 4+ 2447

B 2

Because for j # 0 the discriminant of (25) is always greater than 7 there are

system.

o ] #0:

always @ positive eigenvalues of the Jacobian. Therefore the inner fixed
point is always a saddle. Because all sub-simplices are invariant, equation
(25) also is also valid for all ”inner” fixed points of these sub-simplices . Only
the transversal eigenvalues are negative. The only sinks in this system are

the one-dimensional equilibria.

So from a given start-point all species,but for the fittest, have to perish and

only one species will survive.

4.1.2 Competitive Model with two species

The two species model is the most simple case, where just two species are

competing for the provided monomers.

t = nx —t(ne + m2(l —z))
The first derivatives are simply

a = 98 = u(ky—t(ks +ky))
b= 98 = gk +k)(1—

= W = 1 2 $)

/ (27)

c = g—i = Hn—m)+n
d = % = x(np—T71)— T
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So we get a 2 x 2 Jacobian with the characteristic polynomial
)\2—)\(&+d)+ad—cb

with a +d = tr (A) and ad - ¢b is det (A)

- tr (A) £ \/tr? ;A) — 4det (A)

So at the inner fixed point (6) equation (27) becomes
_ T _k1]€2(k1 + k2)7'17'2

r,t) = 0 b(z.t) =
CL(T}, ) (‘Ia ) (lel —|—]€2T2)2
(28)
- ki + ket - (k1 + ko)i72
ozt = lki + ki : d(z.t) = - ki + kamo

So we finally can compute the eigenvalues for the reduced full system

2

)\+7_ _ l _ (kl + kg) T17T2 j: (kl —|— k2)2 7'127'222 4k1]€27’17’2 (29)
ki1 + koo (ki + ko72) kit + koo

For two species the inner fixed point of the competitve model is always is a

saddle, because the discriminant is always greater then the left term.

The other equilibria in the corners are sinks. At the fixed point ( 0, 0 ) the
eigenvalue becomes ( —ky , —73 ) and at the other fixed point ( 1,1 ) it is (
—kl , —T1 )

4.1.3 Competitive Model for 3 species

The characteristic polynomial then becomes

5 2
()\ Y+ Ay — ’73)
(kv ko172 + k1 ka1 73 + ko ks 7 73)2

=0 (30)

v = kikomimo+kiksT s+ koksToTs
v2 = (kika+kiks+koks ) mmams

¥z = kikyksTi T3
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So it is possible to calculate the eigenvalues of the Jacobian of the inner fixed

point, which simply are

—tVE 4N (31)

Mot = 2
1

Because the square-root of (31) is always greater then v,, there have to be
two positive eigenvalues and two negative ones, so that the inner fixed point

always has to be a saddle.

The sub-simplices of the three species model is “invariant” to cyclic permu-

tation of the indices so only one fixed point is considered.

e Fixed Point

_ k3Ts k3Ts _ ks ks
Xx=|—",0,1——F"—7—| t= ,0,1 —
ki + k3T ki + k3T ky + ks ky + ks

The characteristic polynomial of the Jacobian at this equilibrium be-

co1mes

(A (k1 + ks) + kiks) -
(A (ki1 + ks7s) + kyims + kami7s) - (32)
()\2 (k171 + ks73) + A (k17173 + ksmi7s) — kiksmi7s)

So the eigenvalues become

kyks

= — 33
! ky + ks (33)
kymi73 + k37173
Ay = — 34
: kit + kst (34)
Agq =

(k1 + ks) 73 = \/(k17'173 + k3717'3)2 + 4 (ki1 + ks73) (k1ksT173)
2 (ki1 + ks7s3)

(35)
Again there is one positive eigenvalue such that this fixed point is a

saddle.
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e Fixed Point
% =(1,0,0) ,t=(1,0,0)

Here we have just

A+E)-(A+m)=0

so that there are only negative eigenvalues
M2 =~k

)\3,4 ="

43

(36)

(37)

(38)

All fixed points of this system but for the one-dimensional corners of the

simplex, which are sinks, are saddles.

4.1.4 General Eigenvalues of the Competitive Model

Conjecture 4.1 The characteristic polynomial of the general competitive

model (3) is:

)\ZiﬁkiTi+)\(ﬁTj) zn:ﬁkz—nkm

j=1i=1
1]

n—1

=1 _
STkn Yo
j=1 i=1 j=1 kiT;
1 #]
IO LD 90 1 LB St
j=1  j=1i=1 j=1i=1 — k.
i#) _ i#g _ J=1"7
n n n n 1 n 1 *
k;T; k.T
]Z:;tl_[ E ! ];kﬂ'f ]Z:;kﬂ']

=0 (39
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So the characteristic polynomial becomes finally

n 1 n—1
1L
DLINED Wb S =0 (40)
Yoo Yo
j=1 ki j=1 ki

Theorem 4.1 For the interior rest point there are always positive roots of

(39).

Proof: 1t is very easy to calculate the eigenvalues of the whole system by

solving equation (40).

Ay = = | — + + . (41)
2 "1 "1 "1
; ki ]z:; ki ]Z:; kiT;
k=1...(n=1)

But even this quite complicated formula doesn’t show anything particularly
new. There are 7 positive eigenvalues that cause the interior fixed point (

and the interior fixed points of all sub-simplices ) to be saddles.

If we once more consider equal reaction constants, we can see that the eigen-
values (41) become equal to (25). Additionally, numerical results suggest

very strongly that (41) holds.
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Competitive Model (3 Species)

0 4

X1

Figure 6: Example for phase portrait of competitive model under constant

organization; x-part
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4.2 Competitive Model in the CSTR

A+ X+ T, =5 2X 4T,

B+X, — Xi+T,

Xi — x
Ti L) *
A 5 %
B - x
The kinetic equations read:

a = —aij:cjtj—l—r(ao—a)
7=1

b = —bZzjj—l—r(bo—b)
7=1

T}Z = :L‘Z'(kiati—T)

t‘i = Tib.Ii—tﬂ“

For t — oo the total concentrations become [63, 60]

CL—|—ZIZ'—>CL0 and b‘|‘Zti—>bO
=1 =1
such that . .
&zao—Zm and EZbo—Zti
=1 ;

There are two inner fixed points with

o= oL

ki&g
- — r
i kimiab
Let
A= & and k=3 .
a =1 kZ o " =1 kiTi

Then we get

1 L2 4rik
a1 = 5 ao dg ?) .

From (48) we can derive

46

(43)

(46)

(47)

(48)

(49)



4 COMPETITIVE MODEL 47

?):7 Kir27 :)\Ti&bo (50)
a(ag — a) a
After some algebra, this finally looks like:
- aogby + Ar £ \/(aobo — )\T‘)2 — 4byK1?
CLLQ = 2[) (51)
0
- 202
6172 - OKT (52)
agbo N + 2bgkr — AN2r F )\\/(aobo — )\T‘)Q — 4bykr?
which is equal to
B 2r (ag) + kr
12 = ( 0 ) 3 (53)
agbo + Ar F \/(aobo — Ar)" — 4bokr?
C aobo + 2borr — A2 A/ (aohe — Ar)? — dborr?
6172 - . (54)

2 (agh + k1)

So we get for the critical value of the flux-rate r a rather simple expression:

b
Terit+ = & (55)
A + 2 boKI
Only the solution, where A > 21/bgk gives positive values for r. Beyond this

bifurcation-point, only the trivial solution can exist.

If all k; are k and all 7; are 7 in (47) then A becomes T and x becomes -,

but expression (55) does not depend upon k and we get

_ 2&0[)0 (56)

fcm'
* n 4+ 23/2 "
tau

So for a given value of 7 |, ag , by and 7 we can derive a critical value for n.

2 <2r + agbot £ 2\/7“2 (r + aobotau))
Rerity o4 = (57)

rT

4.2.1 Stability Analysis

For the stability analysis of the Jacobian matrix of the fixed point for the
competitive model under the CSTR it is possible to use the restriction to the

simplex (45) in the long time behavior.
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So we may reduce the dimension of our problem bye two, since there are two
simplices. The remaining two eigenvalues are due to the outflow: Acpierpn+ =

—T.

The Jacobian at the inner equilibrium is then

—kzxt —kxt oo kx(l —nx) 0
—kaxt —kaxt 0 kx(1l — nx)
J = 58
N 7(1 — nt) 0 .. —xT—T —zT (58)
0 (1 —nt) ... —xT —xT — 7T
—nkxt : J =
Ay = nke J 0 \g = kx(1 — nx) 2
0 : 7#0
—xT — 7T j =
Ao = 1 —nt Ap =
© ( nt) b { —x7 : J#0
The eigenvalues are computed by using equations (21)
e ]=20:
\ —nx(kt+7)—r=+ \/(naj (1 —kt) + r)2 + 4kz(1 — nz)(1l — nt)
nog = p
2
(59)
e ]#0:
—r+/r2 +4kz(1 — nz)(1l — nt)

2
Again the competitive model in the CSTR. displays the same features as

under constant organization: The inner fixed points are saddles.

4.3 Competitive Model with Regeneration

The regeneration model is a closed model that admits no matter-flux, as
shown in figure (5), but is similar to the CSTR in it’s mathematical structure.

Only exchange of energy is possible in order to re-activate the monomers.
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The chemical schema looks like

B+X, 5 X, +T

A+ X+ T, — 2X;+T;
X, & A
7. X B

The kinetic equations are

a = sz — k;at;)

=1
b = Z — ba;7;)
=1
& = z; (kat; — ¢;)
ii = Tiin — %’ti

This model is again restricted to the simplices

n

azl—ij and bzl—th.
7=1

J=1

49

(61)

(62)

(63)

Because of condition (63) there have to be two zero eigenvalues according to

the lack of any flow of matter.

So the dimension of equations (62) can be reduced by two.

T, = (kz(l — i )t — gi)
ti = TZ(l — E?:l t]'),?fi — %’ti

The fixed points can be calculated by

T ’}/ztj Yigi
b k;m;ab
T gi
I =
k;a
Let . .

A= Z REEE and k= 9i
j=1 7ik; j=1Fj

Then we get

(64)

(65)

(66)
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So it is possible to calculate the equilibria of (64)

l+rkt4/(k—1)2=4A
2
2(A + k)

L+ 6 F /(5 —1)2 -4\

_ l—rkE4/(k—1)2 —4A
L+ rk+4/(k—1)2—4A
k—k:+2\+ & (k —1)2 —4)
2(A + k)

Here the condition for real roots of (69) is
£>14+27V) or k< 1—2V\. (71)

If we consider equal reaction constants k; = o, 7, =0, ¢9; =7 and v, = ¢

so we get the critical values for e.g. a:

Qerit = (1 4+ 260 £ 24/68(1 4 63)) (72)

Also a critical value for n can be derived. Since n € IN the value n.;; is a

14286 £24/586(1+ B6
Nerit = a( i l / ( —I_/ )) (73)

v

upper limit.

4.3.1 Stability Analysis

Because circulant blocks of the Jacobian are necessary, only equal reaction
constants are considered. Here again the bars for the equilibria are omitted
because it is much simpler to write. The eigenvalues of the Jacobian at the

interior equilibrium are

e j=20:

Ao, = —nkxt —~ £ \/((’y - nkajt; + 4kaxr(1 — na)(1 — nt)) (74)
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e ]#0:

== \/72 + 4kxr(1 — na)(—nt)

Ajzoy = 5

Once more all inner rest points are saddles.

ol
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5 Mutualistic Model

5.1 Mutualistic System under Constant Organization

The mutualistic system is coupled cyclic, such that the n-th species helps
(indirectly) to replicate the first one. This model is closely related to the

hyper-cycle model [61, 62]. All indices are meant to be taken modulo n.

(A)+ X+ Ty 52X+ Ty
(B)+Xi — Xi+T;
X )
T; 27 *

Again the kinetic equations may be formulated.
ii = Z; (kiti—l — Z kixiti_l) (77)
t.i = I;7T; — ti E :L’Z'ti

with the inner fixed point:

r, = nl 1
ki+1TiZ
;i Ri+1T;
(78)
o 1
tl - n 1

5.1.1 Stability Analysis

Again the case with equal reaction constants is considered.
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Since the Jacobian of this model is almost identical with that of the compet-

itive model only the part B of (17) is given in detail.

_k _k &(1 _1)
n? n? R O n
&
n2

The eigenvalues of the four circulant parts are then:

k . .
—= : 3=0 0 : 39=0

)‘A = " J )‘B = k 2mij/ J
0 : j#0 et g £ 0

Ao = { v = ’ Ap = -V
T 1 J#0
e ]=0: B
Ao, = —— and Ao, = —7 (79)
n

Again Ay, , are the external eigenvalues.

o ] #0:

k g
== \/72 + 4—e—2mii/ny

Bifurcations occur for vanishing real parts of the eigenvalues. Thus the fol-

lowing formula has proved to be useful.

ﬁﬁ(\/a—l—zb):\/% (a—l—\/a2—|—62) (81)

So we may apply equation (81) to equation (80), and get

1k 8k 16k*
%(A]-)=—T—|—\/_f\lr+—cos<p+\/72—|——Tcos<p+ 5 (82)
2 n n n
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After some algebra a critical value for the occurrence of Hopf-Bifurcations is

derived.

no (277(71— 1);’)

(k) - (2“"”‘ Dj) (83)

n
Only some values of j can fulfill (83).
Tej< in = > 2
15757 "

If we consider this condition for various values of n we can see that

en=3,j=1

en>>5 :
There are no more stable fixed points. All solutions will yield limit

cycles.

5.1.2 Mutualistic Model for two species

Again the two-species case is investigated at first:

The kinetic equations read

&t = x(k(1—1)—ka(l —1t) — k(1 — 2)t) (84)
{ = ma—t (e +72(1 — x))
The Jacobian at the inner fixed point becomes
0 _kle(kl + k2)’f1272
J = (k112 + ko) ] 85
kimyt+ ik _(kthk)nm (85)
ki + ko kimo + kyy

The eigenvalues of the inner fixed point then are

1( (ky + ko)mi7s iJ(kﬁka)?Tfo Ay ko172 ) (86)

Ay _ = — —
i kit + k2iauq (k172 + ko71)? ky7o + komy
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5.1.3 Mutualistic Model for three species

For the mutualistic model we get very large and not-at-all easy to handle
formulas for the characteristic polynomial. Since it was impossible to factor
this polynomial into nicer looking terms, the Routh-Hurwitz conditions had

to be applied in order to get information about the stability of the eigenvalues.
For the characteristic polynomial is of fourth order, we get
734 = CL4)\4 + CL3)\3 + CLQ)\2 + Cll)\ + ao

where the coeflicients are:

Cl4:1

—_

as = TQ (kiks + kiks + koks) 717273

a; = % (71727'3 (k1ks + kiks + k2k3)2
+ kikikiniTe + kiR kamiTs + ki kI kaToms (87)

a = %]ﬁkzk:a(klkz + kiks + koks)ri Ty

_ 142727222 2
Thikyk3TiTyTs

I' = (ksksmima + kikamims + k1]€37273)2
So we get the following conditions for eigenvalues with negative real part
3 (klkgkngTg —|— k%k%kngTg + k%k‘gk‘gTQTg) <
(83)
27'17'27'3 (k%k% + k%k% + k%k% + k%kgkg + klk%kg + klkgkg)
Since this condition is not very illustrative and but for numerical application,

is not very useful, it is convenient to consider two special cases, where either

k; or 7; are equal.

o Case 1: ki = ky = ks =k
The equation (88) reduces to the much simpler condition
67'17'27'3

k= (89)

T1T2 + T1T3 + T2T3
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e Case 2: iy =Ty =73 =7
Here equation (88) gives

_ 3kikoks
2 (kiky + kiks + k2k3).

(90)

T

Here the critical values are calculated, where primary Hopf-Bifurcations oc-

cur. For equal reaction constants, we get (104).
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Mutualistic Model (3 Species)

x1

Figure 7: Example for phase portrait of mutualistic model under constant

organization. A fixed point is shown; x-part
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Mutualistic Model (3 Species)

D <

X1

Figure 8: Example for phase portrait of mutualistic model under constant

organization. A limit cycle is shown; x-part
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5.2 Mutualistic Model in the CSTR

A+ X+ Ty 252X, +Ti

B+X, — Xi+T,

Xi — %
Ti SLEN *
A D %
B - x
The kinetic equations read:
a = —aijxjtj_1+r(ao—a)
7=1
b = —bZT]‘SL’j—I-T(bO—b)
7=1
.fi?i = :Ei(kiati_l —T‘)
t'i = Tib$i—tir

For t — oo the total concentrations become

a+z:[;1—>a0 and b—l—Zti—M)o
=1 =1
such that . .
Ezzao—z:ﬂi and Ezbo—Zti
=1 ;

There are two inner fixed points with

_ r
i = kiria
_ r?
o= ki_HTlEZ?)
Let
A= Zn: l and &= z”: L
= ki = ki

29

(91)

(92)

(93)

(94)

(97)

Since the chances from the competitive model are completely packed into A

and k, we are glad to leave equation (48) until equation (54) untouched and

use them also for the mutualistic type of replication.
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5.2.1 Stability Analysis

For the sake of simplicity in the following part only the symbols of the vari-
ables a , b, z , t instead of the equilibrium concentrations @ , b ,z and ¢ are
used. Since the simplices exist only at the equilibrium points, there can arise

no error from that.

—nkzxt : j=0 kx(l—mnz) : 5=0
Ay = . Ap = (=2zm2) )
0 : 7#0 kx(l —nx)el 7 #0
—zr—1r : 3=0
¢ (1 —ni) P { —x7 : J#0
e =0
—nkzt —r+ \/(nkxt)2 + 4%7“76
‘/\O,i - P (98)
2
e ]#0:
—r =+ \/r2 A7)
Ajs = L (99)

2

If we use condition (81) to calculate the real part of the eigenvalues we get

R(A) = = —p 4 \l % (7«2 + 4‘“:6 cos(¢) + r\@) (100)

Rzrrh b\’
O =74 I:T cos(p) + (%)

—2rj  2n(n—1)j

n n

o = (101)

As can be easily seen equation (100) can be simplified to
dzrrh ’ b 1622720
(r2 — $:T cos(np)) = r? (7"2 + 8$:T cos(p) + 1627r7b" ) , (102)

t2
which gives after some more simplifications

o .,

—rcos(p) = ~ sin (). (103)
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So finally the condition for vanishing real part of the eigenvalues (99) is

<T)
T/ crit

o2 (27— 1))
' o <(27r(nn1)j))'

n

o~

5.3 Mutualistic Model with Regeneration

The chemical schema looks like

B+X, 55 X, +T

A+ X+ Ty 25 2X, 4T,
X, 2 A
7. X B

The kinetic equations are

z; (kiati_1 — g;)

sz"L‘Z — %’ti

Z z; (g; — kiat;_q)
=1

E (%’ti — bxﬂ})
=1

This model is again restricted to the simplices (63). If we have

\— = Vit

then the inner equilibria of (106) are the same as (69) and (70) with

and k= Z %,

_ vits _ gt

Tib ki_}_lTZ’EL?)

(104)

(105)

(106)

(107)

(108)

(109)
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5.3.1 Stability Analysis

Once again, only the eigenvalues with equal reaction constants at the inner

fixed points are calculated.

e j=0:
g
—nkxt —~ £ <(’y — nkat)? + 477(1 - nt))
Ao, = 5 (110)
e ] #0:
—v &+ \/72 + %T(l — nt)em e
Ajto,, = 5 (111)

So we get for the real part of (111)

R(A) = + (—7 ¥ J ! (72 $ 02 o) 4 VE )) (112

2 2

2y rgr(1l — nt zg7(1l — nt 2
o=ty 95 )COS(@H(Q(t ))
2 —1)7
oo 2= 1)i (113)

n

Some transformations give finally the condition for vanishing real part:

gn2 (2Fe =D
<7) ﬁ((mnm)) (114)

n
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6 Mutation

Since the famous work of Darwin [10] we know that selection alone is not
sufficient for the development of new species, but there also has to be mu-
tation. So we have the “Quasi-species”[12], [13], where selection works on.
As we have seen, the Replicator-related models are quite complicated to deal

with, and mutation does not make it easier ...

The general model for a network with replication is:

(B)+ Xp = Xy 4 T+ T,
Qimd
(A)+Xe+ T ™" X+ X0+ T (115)
Xk & *

o~
Tk — *

Once more there are n replicating species with genes Xj and gene-products
Ty, where k = 1,... n. A and B denote the low-molecular substrates. This
time replication is erroneous and we introduce a mutation matrix Q whose
elements )y represent the fraction of replications with X; as a template and
X as copy. Since replication has to be necessarily either correct or erroneous,

Q is a column-stochastic matrix [72] :
S Qu=1 Vk=1,2,....,n. (116)
Again the kinetic equations can be derived:
T = z”: Qv zn:aﬁti — z, 0" (117)
=1 i=1
ty = Zn: Q;]-le']’ — 1, 0"
j=1

where the fluxes @ and ®~ are the same as (5).

Using condition (116) is is possible to part (117) into the replication-parts
R and 7 and mutation part M, such that

Ty, = R+ M”

. (118)
by = T+ M~
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which gives finally

B = w (AN~ 87) + 3 [QFwi(AL); — QGei(A)
J#k
t'k = TrpXp — tkq)N + Z [Q;]-Tj.rj — Q;ka.fEk]
J#k
The mutation matrices Q* and Q™ have the form

1 — né €' €'

so that (119) finally becomes

o= g (A — %)+ €+ ) [2;(At); — 2x(AL)]
j#k
ty = man — .0~ + ¢ - E [Tj2; — Thy]
j#k

64

(119)

(120)

(121)

Mutation can be controlled by two parameters ¢® and €¢~. In the case of

vanishing mutation ( € — 0 ) we simply get the replication terms R and 7.

So there are three possible cases:

1. Errors due to translation: These do not create new genes and thus will

never create new species. The only effect is a change of the components

of the selection matrix.

2. Errors due to replication: New species can be created and thus this

sort of mutation is the interesting one.

3. Errors due to both sorts of reaction.

Definition 6.1 x = (21,...,2,,t1,...,1,) denotes the concentrations of the

species Xy and Ty, where k = 1,...,n.

Definition 6.2 The set Sy = S, © S;, according to the conditions 3_7_, x;
=1 and Y5_, t; = 1, is partitioned into interior (int Sy) and boundary (bd

Sn) of sub-simplices on which one or more species x; are non-existing.
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Boundary sets are invariant since:
1p=0=2,=0=2,=0...
holds for equation (3). So the following notations are used:

Definition 6.3 Fy is the sub-simplex on with all species X;, k € K are
missing. The index K comprises all possible combinations of vanishing con-

centrations,

KeJ with J=PWN)\{0,N},

where P(N') is the power set of N = {1,2,...,n}. Thus Fx = S,,(N '\ K)
with m = #(N \ K) = n — #K. The interior of the (sub)simplex S,, is
denoted by F.

Theorem 6.1 (Rest point-Migration-Theorem (RPM) [72]) Let X=
(T1, 0oy Tpyte, .oy ln), € = (€°,€7) and Xg be a rest point of equation (117)
which lies on bd S, say Xo € Fi, and let M = (MT, M™) be a mutation
field, with corresponding mutation parameters € and €™, for which My(Xo, €)
> () holds for all k € K. Then the following statements are true for suffi-

ciently small values of the perturbation parameter ¢ > 0:

1. If the rest point Xg is reqular then

X(e) € int S, & the transversal eigenspace Ep(Xo) is stable.

2. If the transversal eigenspace Ep(Xo) has at least one positive eigenvalue,

At > 0, then all fized points X; derived from Xq lie outside the simplex
Sn.

Proof: equivalent to the proof of the rest point migration theorem, given in

Stadler and Schuster [72].

Models with general selection matrices are not particularly suitable for an-
alytical treatment, thus it is necessary to restrain the problem to circulant
selection matrices A. Therefore, once more the competitive- and mutualistic

model are investigated.
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Theorem 6.2 For equal reaction constants, (k; =k, and 7, = 7), the inner

rest point is: Py = (.., 2,...).

Y

Proof: This can be checked very easily.

6.1 Competitive model with Mutation

Here (121) has the much simpler form

jjk = T (kktk — Zwlkltl) + €’ (—(n — 1)kkatk + Z k]':l/’jtj)

I=1 £k

t.k = TTr — 1tk ZT[I[ + €~ (—(n — 1) + TrTg Z(Tjiﬂj) (122)

I=1 £k

All transversal eigenvalues are negative, so the rest points of all sub-simplices
will have to move into the interior, according to the RPM. Since there is no
chance to obtain analytical results for the full system, once more only the
case with equal reaction constants was investigated, so k; = k and 7, = 7.
The block structure of the Jacobian keeps circulant, because the mutation

matrix was assumed to be circulant.
So we get the following eigenvalues for the Jacobian at the inner rest point
,Pint:
e j=0:
k
A0+ = —— and Ao_ = —T (123)
n

These are again the external eigenvalues, which do not influence the

behavior of the dynamical system.

e ]#0:

—ke® — 17+ \/(T — ke®)? 4+ 4k—T(1 —ne)(1 — ne~)
n
2

(124)

L/\ji -

Note that in the limit of vanishing mutation we get the same eigenvalues as

in the unperturbed case.
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Thus it is possible to calculate the critical values for ¢ and ¢~, where the

inner fixed point becomes a sink.

ne~ — 1

Y 125

6cmt n(neN o 2) ( )
or I e” 1

oo e T (126)

crit n(TLGZ _ 1)
If we consider the case where either €¢* or ¢~ are zero, very simple conditions

for the critical values can be derived.

1 1
S = 127
€ or € - (127)

crit 2n crat
e Casel: ¢~ =0

The typical behavior in this case is that the originally one-dimensional

r
crit”

rest points remain sinks for values less than ¢ Then all rest points

collapse and only one sink remains.

o Case2: ¢ =0
Here the subcritical case is the same as above, but the rest points will

not vanish.
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Figure 9: Plot of €” against €~ for n = 5;
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O O
- e © o
a) b)

C) d)

e) f)

Figure 10: The development of the fixed points of the competitive model for
various values of €¢*, where ¢~ = 0 for n = 3: a) no mutation; b) subcritical

values for €*; ¢)-f) transcritical value for €”; e :Sink; o : Saddle
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6.2 Mutualistic model with Mutation

Equation (121) reads this time:

ik = T (kktk—l — Ewlkltl—l) + €’ (—(n — 1)kkxktk_1 + Z ijjtj_l)

I=1 ik
t.k = kack—thTlfCl—l-EN —(n—l)—l—Tk.?fk Z(T]’l’]‘ (128)
I=1 ik
The mutualistic model has the same external eigenvalues but for j # 0 we

get

k :
—ke* — 7+ \/(T — ke¥)? 4+ 4—T(1 —ne®)(1 — ne~)e=2mi/n

n

2

The critical values for the mutation coefficients have been calculated explic-

(129)

L/\ji -

itly, but they are of third order and the results are much too complicated to
be stated here.

So just a very special case is treated with n = 3. Then we have

. 1 T _
Cerit  — _§ - 6_k + (130)
s 4k — 168kt — 99 72
+ 18k + 18as k

where
o = (—8k* + 990k> + 108kr? +4597° + 23%/2(r(k + 37)2\/8))

and

B = —8k® + T11k*r + 486k72 + 13573

It’s interesting that the mutation parameter €” has no influence on the phase-
portraits, if the condition for the existence of a limit cycle (83) is not fulfilled.

So, if there is a stable equilibrium, it will remain.

When there is a limit cycle, small values of € will not change the phase
portraits until the critical mutation rate is reached. Above that value the

inner rest point is stable again.

In this example the Hopf-bifurcation occurs at & = 2 7, and we can see that

¢(2) = 0.
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Crit. Mutation Rate (Mutual.Model)

o
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k
Figure 11: The critical mutation-rate €* for 7 = 1. The critical value is

defined only for transcritical values of k. (The Critical value for the existence

of limit cycles was k = 27.)
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7 A Strange Attractor

The four species Replicator system shows chaotic dynamics for certain param-
eter values [56]. According to [33] Hofbauer this auto-catalytic network with
four species is — apart from a transformation of the time scale — equivalent
to a three-species Lotka-Volterra equation. Possible existence of very com-
plex dynamical behavior in Lotka-Volterra models was predicted by Smale
[64]. Two distinct chaotic attractors were found in Lotka-Volterra equations
for three species: Vance [79] discovered a “quasi-cyclic” trajectory in a one
predator two prey model, which was uncovered by Gilpin [28] to be a strange
attractor, and Arneodo, Coullet and Tresser [76] found a one parameter fam-

ily of strange attractors (ACT-attractor).
Both the ACT family and the Vance-Gilpin attractor (VG) correspond to

non-robust phase-portraits because of zero or almost zero (see e.g. Ay or

Ayz in Ay) off-diagonal elements in the reaction matrices A below.

The VG model has a replication matrix

0 0.063 0 0.437
0.537 0 —0.036 —0.001

Ave = , _
—-0.535  0.38 0 0.655

0.536  —0.032 —0.004 0

and the ACT attractors are found at

0 05 —01 0.1
1.1 0 06 0
A —
AcT 0.5 1 0 0

1.74p —1—p —02 0

Note that the parameter g which corresponds to g — 1.5 in the papers of
Arneodo et al. [1, 2].

The connective model, that was constructed by Schnabl at. al. [51] was used.

A(p,v) =
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0 05— 0437y  —0.140.1v 0.1+ 0.337v
1.1 — 0.563v 0 —0.6 +0.564y  —0.001v
—0.5— 0.035v 1—0.62v 0 0.655v
174 p—1.164v —1—p+0.968y —0.2+ 0.196v 0

All three matrices of replication constants fulfill 2?21 A;; =05
With the method of [80] the following Ljapunow exponents were calculated.

The dependences of the parameter p and 7 are shown. Because this problem
is 2 n dimensional in this case, the calculation of Ljapunow exponents was

very time-consuming. So it was impossible to perform very detailed studies

of the chaotic attractor.
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Chaotic Attractor

x1

Figure 12: Example for phase portrait of chaotic model under constant or-

ganization; x-part g = -0.1; v = 0; 7 = 2;
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Chaotic Attractor

x1

Figure 13: Example for phase portrait of chaotic model under constant or-

ganization; x-part ¢ =0; v = 1; 7 = 2;
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Figure 14: Largest Ljapunow Exponents for different values of p. The second
parameter v was set to zero. The symbols denote too : 7 =10; O : 7 = 5;

orr=1LA:7=05
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Figure 15: Second largest Ljapunow Exponents for different values of y. The
second parameter v was set to zero. The symbols denote to o : 7 = 10; O :
T=ho:7=1/A:7=0.5
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Figure 16: Dependence of the chaotic attractor for p = 0.01 and v = 0 of

the parameter 7.0nly the two largest exponents are shown.
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& Diffusion

The system of differential equations we are concerned with is the spatial
discretization of the partial differential equation system. The discretization
of the spatial domain in the context of reaction diffusion equations is central
to a seminar paper by Turing [77], The instability at the homogeneous state

due to diffusion hence is often called Turing-instability.

A Turing -instability which is also called pitchfork bifurcation occurs when
one real eigenvalue goes through zero, while all other eigenvalues have nega-
tive real part. There, the lowest coefficient of the characteristic polynomial
vanishes, hence A - D becomes singular. For a D slightly beyond the bifur-
cation value, the homogeneous solution becomes instable, and a stationary

inhomogeneous solution can become stable.

The reactions take place under the assumption of regeneration, because under
constant organization the species A and B are in great excess and diffusion
processes are impossible by default. Also the CSTR is not suitable for diffu-
sion, because of the constant stirring, that is not compatible with diffusion.
For a different model see [45].

For the diffusion part only the competitive and the mutualistic system were
choosen. The one dimensional space consists of 100 cells and no-flux bound-

aries were choosen.

8.1 Competitive Model with Diffusion

B+X, — Xi+T,

A+ X, +T, =5 2X,+T;
A + (131)
X, 2 oA
T. X B

The kinetic equations become partial differential equations.
i = a;(kiat; — ;) + D,V
ii = T7br; — Yiti + DtiVQti (132)

a = sz (gi — kiati) + DGVQCL
=1
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n

Z (%’ti — bfﬂ'z) —|— vazb

=1

Here we restrict ourselves to the simplest possible case, where diffusion is only

one-dimensional, and the diffusion coefficients of all species are the same :

D,. = D, and Dy, = D;. Then only the case with equal reaction constants

was considered: k; = k; 7, = 7; ¢; = ¢ and v; = . Finally £ is the spatial

coordinate. So the simplified equations (132) read:

T, =

i =

All numerical work was

Streissler [73].

821}2'
z; (kat; — g) + Dl’a—fz
2
t;
Thr; — ~t; + Dtg? (133)
" d%a
;u (g — kat;) + Daa—52
n 2
Z ("}/ti — b$27') —|— Dba—g
=1 af

done with the STAR-program package from Ch.

The competitive model shows two different behaviors: for sufficiently large

diffusion coefficients only a spatial homogeneous solution exists, while for

small coefficients each cell decides, which one-dimensional equilibrium is

reached.
Coefficient | figure (17) | figure (18)
k; 0.90 0.90
T 0.87 0.87
g 0.20 0.20
Vi 0.20 0.20
D, 1.0e-6 1.0e-6
D; 1.0e-6 1.0c-6
D, 1.0e-1 1.0e-6
D, 1.0e-1 1.0e-6
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Figure 17: Competitive model: a)
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Figure 18: Competitive model: b)
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8.2 Mutualistic Model with Diffusion

Here we have

. 82332-
2
t;
tz = Tb;lfz - ’}/tl —I_ Dtg? (134)
n 2
a = Y wi(g—katig)+ Daa—g
=1 af
: n “b
b = D (yt; —baiT) + Dba—g
=1 af

The eigenvalues for j # 0 do not depend on the diffusion coefficients, but for
7 = 0 a critical value for the occurrence of a pitchfork bifurcation could be

derived:

—g+akt kt(g—akt)x _
Dz,crit = p + D 2 I Lrnt + (135)
abkt?z? (— (Dykn) — kn?*t + ktx) N
k (Dgk + knt) (Dyyk + DiDyk? — y72 + ynre + Diknra)
abkrx (Dykn + kn?t — ktz) (Dyk + nrz)

K (Dgk + knt) (Dyyk + DiDyk? — y72 + ynre + Diknra)

_|_

_|_

The numerical results show that the diffusion coefficients alone can introduce
a very interesting behavior: We start with at limit cycle and very low dif-
fusion coefficients. A periodic, but spatially homogeneous pattern is formed
fig.(19). When increasing the diffusion-rate of the monomers a and b a bit,
very interesting spatially non-homogeneous pattern were formed; fig. (20).
By increasing D, and D, we finally can detect a non-periodic spatially inho-

mogeneous pattern as shown in fig. (23).
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O ... constant

Coefficient | figure (19) figure (20) figure (21) figure (22) figure (23)
k; 0.90
T 0.75
gi 0.10
Vi 0.12
D, 1.0e-5
D, 1.0e-5
D, 5.0e-6 5.0e-5 5.0e-4 5.0e-3 5.0e-2
Dy 5.0e-6 5.0e-5 5.0e-4 5.0e-3 5.0e-2
Behavior:
Space 0 o o o o
Time | | | | O
o ... homogeneous
e ... inhomogeneous
m ... periodic
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Figure 19: Mutualistic model: a)
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Figure 20: Mutualistic model: b)
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Figure 21: Mutualistic model:
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2: Mutualistic model: d)
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9 Conclusions and Outlook

In this work replicator-related catalytic networks have been studied under
the assumption of a separate translation step. Particularly some simpler
cases with circulant selection matrices have been investigated under various

boundary conditions, namely

e a competitive model and

e a mutualistic model.

The long time behavior of these models has been studied under the following

boundary conditions:

1. evolution reactor,
2. continuously stirred tank reactor, and

3. regeneration.

These models give rise to different mathematical expressions, because the
evolution reactor always provides the substrate in great excess, whereas the
other two models deal with limited substrate concentration. Thus monomer-
concentrations have to be considered explicitly in the kinetic differential equa-

tions.

Some effort has been spent to solve the general case of the competitive model
under constant organization. Although no inductive proof can be given,

numerical results seem to confirm the considered formula.

The competitive model displays the same type of behavior for all three models
of boundary conditions: only one species survives. So only the corners of the
simplex, where all but one species vanish, are stable equilibria. Depending on
the values of the rate constants, basins of attraction with different size decide
which species has the best chance to survive. Nevertheless, the dynamical

behavior of the system is completely determined by the initial values.

In the mutualistic model, the rate constants decide whether there is a stable
interior equilibrium, or a stable limit cycle. In all three cases, conditions for

the existence of Hopf-bifurcations were derived.
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Mutation for both replication and translation has been considered. The
erroneous translation only produces new proteins, but cannot create non-
existing genes and therefore influences only the rate constants of the selection

matrix and, in general, has no great influence on the replicating species.

Erroneous replication is capable of regenerating extinct species and creating
new ones, because new arising genes induce the production of their transla-

tion products and thus influence the overall behavior of the system.

Critical values for the mutation parameters at bifurcation points have been

derived in both cases.

A chaotic attractor of the system with translation exists in almost the same
region of parameter space as in the pure replicator-equation. For increasing
values of the translation constants, the detailed dynamical behavior of the

attractor becomes similar to the replication-case.

The influence of diffusion has been investigated as well. By means of nu-
merical integration a very interesting type of bifurcation was found for the
mutualistic system, which depends only on the diffusion coefficients of the
substrates. Starting with a limit cycle and very low diffusion coefficients
of the substrates, spatially homogeneous, but temporally periodic solutions
are obtained. By increasing the diffusion coefficients, the solutions become
unstable in space and forms patches. A further increase in the diffusion

coefficients finally creates a stationary, spatially inhomogeneous solution.
Perspectives:

Some more analytical results seem to be possible. More intensive numerical
and some analytical work should be done concerning the effects of diffusion.
The interaction of mutation and diffusion is an interesting topic to work
on and also the influence of diffusion upon the strange attractor might be
investigated. By means of singular perturbation theory, the connection to
the replicator-model might be derived. Some other models of translation

may be investigated.
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