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1 Introduction

But scientists, who ought to know

Assure us that it must be so.

Oh, let us never, never doubt

What nobody is sure about.

— Hilaire Belloc

1.1 A Sample Cell

Cells are the building blocks of organisms. Anything the organism is capable

of is a result of functionality provided by cells. In multicellular organisms

cells form tissues, a multitude of cells that carry out similar functions, which

in turn build organs, a multitude of tissues, each tissue specialised for a

different function. Even though cells provide different functionality to the

organism and may appear completely different from one another, all have

the same cellular identity on the organismic level. Close to every cell has the

same information, the same genes encoded by its DNA (desoxyribonucleic

acid) in its nucleus and thus the same cellular identity.

The DNA in the nucleus is called the genome, and contains all genes ex-

pressed anywhere in the organism. To express a gene, it first has to be

transcribed. This process is initiated by a transcription complex forming

near or at a promotor on the genome. Then a copy of the information is

made, the RNA (ribonucleic acid). From that copy the sequence for the pro-

tein is read and the protein synthesised.

Of course this is a simplified example. In any biological cell additional mech-
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anisms of control exist, which influence what proteins are made and how

much of them are synthesised. Also some RNAs are not meant to be the

template for a protein and have entirely different functions and sometimes

RNA is the template for DNA. The simplified cellular processes and elements

needed are depicted in figure 1.

Figure 1: Primary processes of cells. The genome (DNA) is transcribed (RNA) and then

translated (proteins).
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1.2 Evolution

In 1859 Charles Darwin published his best known book On the Origin of

Species by Means of Natural Selection, or The Preservation of Favoured Races

in the Struggle for Life. This work proposed a mechanism for adaption known

as natural selection. Thus gradual change of species, phenotypic variants and

to some extent the origin of new species could be explained. However the the-

ory was at odds with the observable rather fast and sometimes quite abrupt

creation of a new species, in contrast to a gradual and “unbroken” chain of

changes as ought to be expected.

In 1865 Gregor Mendel first made his work available to the public. Through

extensive analysis of hereditary properties of certain traits in peas he arrived

at three laws that form the basis of genetics. To devise his laws, Mendel

identified distinct units of hereditary information now called genes, and re-

alised that they are passed on to offspring in principle without change and

without influence of the phenotype of the parents.

So genotype and phenotype become distinct properties of an organism. The

genotype refers to what information the genome carries, basically an idea

what the organism should be like. On the other hand the phenotype denotes

the actual reality of the organism, from shape and size of proteins to wrinkly

or smooth peas. To some extent the genotype defines the phenotype but the

environment and epigenetics constitute important factors for the unfolding

of the phenotype as well. Every mechanism of evolution has to change the

genotype, but alterations become meaningful for selection only if the pheno-

type is different as well.

The synthetic theory of evolution is a synthesis of Mendel’s theory on ge-

netics and Darwin’s mechanism of natural selection, sometimes also called

neo-Darwinism, a version of which has been proposed by Ernst Mayr, Theo-

dosius Dobyhansky and others [11, 34]. When populations of organisms be-

come separated into subpopulations by time or space, any newly developed

trait is limited to the subpopulation, in which it originated, and it will not

spread to other subpopulations due to lack of interbreeding. As traits and



1 Introduction 6

differences accumulate interbreeding becomes impossible even withouth spa-

tial or temporal barriers, because no fertile living offspring can be concieved

any more [33]. But neo-Darwinism is not limited to Mendelian genetics and

Darwinian selection, mutation and recombination in populations have been

recognised to play an important role and were incorporated into the syn-

thetic theory. The idea of mutation was concieved around 1910 by Thomas

Hunt Morgan and his students when they discovered a white eyed mutant of

drosophila melanogaser. They found that mutations are permanent changes

in genes and cause a different phenotype. Furthermore white eyes where only

ever present in male flies of drosophila melanogaster and thus gave reason to

assume genetic linkage, like sex and eye colour. Rigorous studies of coinher-

itance frequencies of traits lead to the development of the first genetic map

and proved that chromosomes are the carriers of genes.

In 1952, a series of experiments done by Alfred Hershey and Martha Chase

provided evidence for DNA (desoxyribonucleic acid) to be the molecular sub-

strate of genes and chromosomes, instead of proteins, therefore contradicting

common beliefs at that time [5].

In 1953, the structure of DNA was finally unravelled by James Watson and

Francis Crick: Two antiparallel chains coiled around the same axis form a

double-helix, the interaction between the two chains limited to two different

pase pairings [49]. Around that time the term “central dogma” coined by

Francis Crick became popular, describing the concept of information stored

on the DNA encoding RNA (ribonucleic acid) which in turn encodes pro-

teins, but no information flow occurs in the opposite direction. The central

dogma was partially disproven in 1971 by Howard Martin Temin and David

Baltimore who independently of each other discovered reverse transcriptase,

an enzyme that synthesises DNA from an RNA template [3, 21, 38, 47]. Fur-

ther the central dogma is based on the assumption that proteins, the last

element of the information flow chain, are the catalytically and regulatorily

active components of the cell. However recent studies give evidence to cat-

alytical and regulatory activity of RNA [1, 2, 32] and lend credibility to the
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RNA world hypothesis [20, 44], a model for the origin of life based on the

assumption that RNA fulfilled all needed functions in the early cell or proto-

cell whereas proteins and DNA arose later as specialised elements.

However the “classic” Neo-Darwinian view became recently substituted by

modern evolutionary synthesis. The difference lies in the inclusion of several

mechanisms for evolution other than natural selection [36]. An abstract of

the tenet is given by Futuyma [17]: Genetic variation arises by mutation and

recombination. Any population is made up of genetically variant individuals

and thus evolution of populations is achieved by change in the frequencies

of alleles in the gene pool. Mechanisms of frequency alteration are either

random like genetic drift and catastrophic events, or adaptively directed like

gene flow and natural selection. The result are gradual phenotypic changes

and diversification by speciation, the latter coming into effect by accumula-

tion of alterations.

In contrast to the above interpretation of speciation the theory of “Punc-

tuated Equilibrium” assumes that speciation is a rapid process interspaced

with long intervals of stasis. As both models are able to explain key aspects

of evolution, a hybrid hypothesis is possible and the relative contribution of

each theory to the whole of the process is subject to discussion.

1.3 Neutrality in Evolution

To apply adaptively directed selection mechanisms, phenotypes have to be

ordered in some way. The natural ordering is usually refered to as fitness. A

fit phenotype will have a high likelihood of survival, an unfit one will more

likely become extinct. Now there are alterations in the genotype and often

also at basic levels of the phenotype that do not change the fitness. These

mutations are considered neutral [27]. At first glance neutral mutations ap-

pear to be meaningless but studies have proven the vast impact they have on

biological systems. Fit phenotypes are often separated by multiple mutations

on the genotypical level. To cross from one such phenotype to another unfit

intermediate phenotypes are expected. However, neutral mutations allow for
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approach to another fit phenotype, thus enhancing the number of phenotypes

that can be switched to by a single mutational event [24]. On the other hand

neutrality enables higher mutation rates and therefore faster adaption while

minimising the risk of unviable phenotypes.

Already in 1968 Motoo Kimura formulated the neutral theory of molecular

evolution [27]. Tenets thereof are neutrality of the majority of single nu-

cleotide exchanges in the genome and genetic drift. As neutral mutations do

not alter fitness natural selection does not apply. However the mechanism of

genetic drift leads to accumulation or decrease and loss of certain equally fit

variants in a population by pure chance. This mechanism has been shown to

vastly improve the search capacity in sequence space [14, 15, 25, 43]

Little later, in the 1970s and 1980s, a theory for optimization and mainte-

nance of nucleotide sequences under error prone replication was introduced by

Manfred Eigen, Peter Schuster and John McCaskill and described as molecu-

lar quasi-species [8–10]. According to the underlying theory the requirements

of evolution are only an open system with replication far off the thermody-

namic equilibrium and limited resources. For every organism the molecular

quasi-species is the sum of all mutants, that can arise from replication and

mutation of the original organism. If a sequence specific fitness distribution

and fixed mutation rate is assumed, the quasi-species is unambiguously de-

termined by the sequence. Under such circumstances mutation and selection

suffice to guarantee maintained diversity of sequences [9].

1.4 RNA as a Model

Beginning around 1970, RNA (ribonucleic acid) became a prime model for

molecular evolution. The sequence of RNA is made up of a four letter alpha-

bet. Well defined interactions between distinct monomers lead to formation

of structure. Function is largely determined by structure, the three dimen-

sional shape called tertiary structure. Secondary structure has a big impact

on possible tertiary structures and can be easily computed by several folding

algorithms [23,31,50]. As the phenotype is made up of the structure and the
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sequence equals the genotype, a substrate for neutrality has been identified:

Any structure can be formed by multiple sequences. The importance of neu-

tral mutants for evolutionary optimisation was demonstrated by work done

by Peter Schuster and his group [12–15].

By further research from the 1990s it was shown unambiguously that an in-

crease in neutrality results in an increased phenotypic error threshold [16,40,

42], which is a measure for maintainance of phenotypes. Extensive neutral

networks were found to exist for RNA. The sum of all genotypes that form

the same phenotype constitute the neutral network. Within that network all

sequences that differ only at one position are connected and form a graph.

For binary alphabets the neutral networks for RNA sequence to secondary

structure maps has been exhaustively analysed [18, 19]. Using the natural

alphabet statistical evaluation was performed [45, 46].

The above described graph of all sequences with connections between one

error neighbours spans the RNA sequence space. Extensive structural neu-

tral networks can be found upon which sequences may differ without losing

the optimal structure. For a population this is a sturdy design and increases

flexibility as neutral networks intercalate and the more sequences present the

more likely an intercalation point is found.

For evolution however the phenotype and its fitness are the predominant

criteria. For adequate description thereof the accessibility of genotypes by

mutation has to be mapped to phenotype accessibility relations. Hamming

distances provide a metric for RNA sequences, but for the structure only

statistical neighbourhood relations are available. [15].

Theoretical observation of neutral networks could be proven by experimen-

tal evidence gathered by Schultes and Bartel [41]. For two known, phylo-

genetically unrelated ribozymes with different catalytic activities, an RNA

sequence was found that can fold into both secondary structures and exhibits

both catalytic activities.
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1.5 Genetically Controlled Reaction Networks

RNA as a model for evolution is very well understood and has given countless

insights in mechanisms that shape living organisms. Even if the RNA world

hypothesis proves true, today’s creatures feature RNA as only one of many

different levels in transforming genotype into phenotype. To take previous

studies further, genetically controlled reaction networks are subject of this

work.

Section 2.1 explains the details of the model underlying the approach of this

work and also discusses similarities and divergencies to processes in organic

cells. Some constraints arise independent of the model and are discussed in

section 2.2. The phenotype of RNA is defined as the structure. For geneti-

cally controlled reaction networks the definition and measure of a descriptive

phenotype is not as straight forward. Section 2.3 details the process of ar-

riving at a phenotype from a given genotype. Additionally every mutation

can be typed and section 2.4 deals with all possible types of mutation.

In section 3 the sample sets are described along with all phenotypes and mu-

tations found. Also a little correlation analysis of phenotype and mutation

type will be done.

Finally section 4 states possible conclusions based on the data processed for

this work and indicates possible further studies.
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2 Model and Approach

Reality is that which, when you stop believing in it, doesn’t go away.

— Philip K. Dick

Gene — In this chapter the term gene will be used often. However behind

this single entity two different concepts are hidden. On the one hand there is

the gene in the wider sense that contains everything from the URE (upstream

regulatory element) and the promotor down to the last basepair transcribed.

On the other hand gene may be used in the stricter sense refering to the

sequence being transcribed (URE and promotor are not transcribed). See

figure 2.

Although potentially confusing the intended concept behind the term gene

should be clear from the context and where not will be pointed out explicitely.

Figure 2: Anatomy of a model gene.
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2.1 Model

Please be aware that this model is built on numerous approximations. First

the size of genes and genome has been reduced drastically. Also genes may

overlap, which means that a single position / basepair on the genome may be

part of more than one gene, as is commonly found in viruses only. Further

epigenetic mechanisms present in all biological cells are not part of the model.

And lastly the complexity of gene regulation and gene product interaction is

only a fraction of even the simplest known cell.

2.1.1 A Simulated Cell

This work is based on MiniCellSim-Genome (see appendix B), a set of perl

libraries to simulate typical cellular processes. Basic principles of cells found

in organisms have been used to design this model, however many things are

simplified. The reason for this is that more complex models can hardly be

handled by today’s hardware and have to sacrifice either precision or vari-

ability.

Like in organic cells, cellular identity is maintained by the genome encom-

passing information on all cellular processes and their mode of execution.

The genome is also passed on to offspring causing parental and filial cells to

have similar cellular identities, or identical if no mutation is present. Genes

located on the genome are templates for RNA, the process of synthesis is

called transcription. In turn the RNA gives rise to a protein, by a process

known as translation. As not every gene is useful to the cell in the given cir-

cumstances of the environment, numerous levels of regulation exist enabling

the cell to control gene expression. As described in section 2.3 the regulatory

network is part of the evaluated phenotype.

Figure 3 shows the basic cellular processes implemented in MiniCellSim-

Genome and the following sections discuss them in more detail. Every cell’s

identity is determined by the genome (A). On that genes are identified (B).

No part of a genes may situated outside of the genome boundaries but genes
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Figure 3: Cellular processes of MiniCellSim-Genome. In (A) the genome can be seen

on which (B) genes are located. Genes may overlap. (C) Every gene is transcribed to

mRNA, to which a majority rule is applied to translate it into a protein (D). By sequence

evaluation half of the proteins are assigned to be structural proteins (SP) and the other

half to be transcription factors (TF). The latter is capable of interacting with the UREs

of genes on the genome and where two types of interaction are possible: either activating

(CX) or repressing (CI). The interaction strength is calculated by cofolding URE and TF.

Interaction strength and type then influence the expression rate (transcription rate) of the

gene with the corresponding URE.
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may overlap each other. Every gene is template for a transcript (C) which

represents the RNA of organic cells. As equivalent to translation the tran-

scripts are folded using a majority rule to derive shorter sequences, the gene

products (D). The corresponding entity for gene products in living organisms

are usually proteins. Two classes of gene products are distinguished: struc-

tural proteins (SP) and transcription factors (TF). The latter is capable to

influence transcription of certain genes either as activator (CX) or repressor

(CI) as shown in (E).

2.1.2 Genome

Every living organism known today has a genome made of DNA or RNA

(ribonucleic acid – the latter has as of yet only been found to constitute the

genome in viruses). Size and shape may vary considerably as the following

examples show:

Bacteriophage phi X174 [48] ss linear 5,375 bp 5 × 103 bp

Escherichia coli [48] ds circular 338,534 bp 3 × 105 bp

Homo sapiens [6] ds linear 3,019,560,019 bp 3 × 1010 bp

Table 1: Sample genomes. All genomes are DNA. ss means single strand; ds double strand.

The genome of Homo sapiens is organised in 23 chromosomes and the size displayed is

for a female haplotype (humans are of diploid chromosome type, alas every chromosome

exists twice with the exception of the sex chromosome where females have XX and males

have XY).

DNA and RNA are chemically pretty similar biopolymers made up of mono-

mers called nucleotides. Each nucleotide consists of a base, a sugar and phos-

phate. The “backbone” is made up of the pentose sugar (ribose for RNA and

desoxyribose for DNA) and the phosphate, which can link nucleotide to nu-

cleotide in an infinite chain. The sequence of the biopolymer is determined

by the bases, which allow for the interaction of two strands of nucleic acids

(either DNA/DNA, RNA/RNA or DNA/RNA). In DNA the purine bases

adenosine (A), guanine (G) and the pyrimidine compounds cytosine (C) and
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Figure 4: The structure of DNA. On top is the shorthand notation of both strands. The

lower part shows the helix those two strand form, which is a more accurate representation

of what the DNA actually looks like.

As an example for upstream and downstream look at the A in position 5 of the upper

strand (grey background). Any and all of the bases CTGT in position 1 to 4 are considered

upstream of A in position 5. The following bases GTC etc. beginning in position 6 are

termed downstream. So in the upper strand upstream means left of and downstream

right of. Because of anti-parallel alignment, 5’ and 3’ have switched positions in the lower

strand. Upstream and downstream still point towards 5’ and 3’ respectively, but upstream

is to the rigth and downstream to the left.

thymidine (T) are found. Pairing is restricted to the Watson-Crick pairs,

adenosine (A) with thymine (T) and guanine (G) with cytosine (C). For

RNA thymine (T) is replaced by the pyrimidine base uracil (U), which then

pairs with adenosine (A).

All sequence specific amplification processes, like transcription, depend on

the the principle of complementarity [49]. For two strands to be complemen-

tary each base on one strand has to pair with the corresponding base on the

other strand. As only Watson-Crick pairs are allowed the sequence of the

complementary strand to any strand is unique and reproducible. Because of

the deterministic behaviour cells can reproduce their genome by resynthesis-

ing one strand using the other as a template and vice versa.
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Both DNA and RNA are directed, their ends are dissimilar. Derived from

the atoms of the sugar one end is denoted 5’ and the other 3’, the direction

of the strand being 5’ → 3’ by convention (see figure 4). All positions nearer

to the 5’ end of the genome than position X are said to be upstream of X,

but if closer to the 3’ end are called downstream of X. In biological systems

DNA and RNA always pair antiparallel, which means that if position X on

one strand pairs with position Y on the other strand, nucleotides upstream

of X only pair with nucleotides downstream of Y and vice versa (see figure

4).

Replication, the doubling of the genome needed for passing on one to the filial

cell, also is sequence specific. Whereas double stranded (ds) organisms like

Escherichia coli and Homo sapiens simply copy the genome by unwinding the

helix and using both strands as templates, single stranded (ss) genomes like

in Bacteriophage phi X174 have to first generate the complementary strand

and use it as template to replicate their actual genome. Nevertheless a dou-

ble stranded form exists in all organisms, therefore both strands are available

for serving as a template to RNA and thus both strands may carry genes.

Genomes can be linear or circular. Although linear genomes need more com-

plicated machinery to be replicated without loss and cannot have genes in

the outlying regions, the linear form appears to be of advantage for long

genomes. Circular genomes are mostly found in bacteria, where small size

and ease of replication constitute a considerable selective advantage.

To describe the DNA genome in the model a string containing only the four

bases A, C, G, T is sufficient. These four bases may also be termed letters

and together they form the alphabet of DNA A = {A, C, G, T}.

Genome sizes assumed in this work range from 50 to 150 bp, which is a lot

smaller than even the smallest known genome of an organism. To compensate

gene size has been reduced greatly as well (see below, section 2.1.3). Because

of the short length of the genome, the linearity of the genome in the model

has considerable impact (as discussed in section 2.2.1). The genome is single
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stranded and in the model replication occurs by direct copying of the strand.

So the complementary strand that would be present in biological cells is

missing. Such a strand could carry additional genes but they are irrelevant

for the model. In regard to reproduction kinetics the simplification has little

impact.

2.1.3 Genes

Based on observed genome lengths one might assume that organisms with

genomes longer by several orders of magnitude would have proportionally

more genes. Of course organisms with longer genomes have more genes, but

far less than might be expected. To organisms with short generation time,

like bacteria who can doulbe their number in hours or days, a small genome

is profitable as it can be replicated faster and the process needs less energy.

So a genome that contains all genes in a way that they need little space is

advantageous. Organisms with long generation time, like Homo sapiens, gain

little by optimising the genome for being short. Therefore genes tend to be

longer as coding sequences are interspaced with non-coding regions and the

amount of non-coding regions in general is higher. To stick with the example

of man, presumably 90% of the sequence are non-coding and the remaining

300,000,000 bp code for approximately 30,000 genes, giving a mean length

of 1,000 bp or 1 kbp per gene. This calculation is not entirely true as the

genome is double stranded and non-coding regions may be located within

gene boundaries.

The layout of genes shows a great range. Bacteria have polycistronic genes,

where a single promotor induces the transcription of multiple genes that lie

adjacent to each other. Regulatory elements usually are in the vicinity of the

promotor and genes do not contain non-coding regions. In eukaryotes (plants,

animals and others) each gene has its own promotor and contains numerous

coding and non-coding regions which need to be correctly arranged after

transcription and may yield many different products because of different ar-

rangement. Regulatory elements appear to be located potentially anywhere,
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even inside the gene or several thousands of basepairs away.

As genome length is very limited in the model, so is the gene length. All

genes have a fixed length of 32 bp and a predefined layout (see figure 2).

Also the promotor sequence is the same for all genes which is not the case in

organic cells.

Simulating cellular processes starts with finding the genes on the genome.

Because of linear genome, fixed gene layout and predetermined gene length,

several criteria have to be met for a gene to exist on the genome. First a

promotor sequence has to be identified. Second at least the URE has to

fit in front of the promotor. In other words a number of basepairs equal

to the length of the URE need to be upstream of the promotor. Third the

transcribed sequence, the gene in the stricter sense, is required to exist in

full length after the promotor. This is only the case when at least a number

of basepairs equal to the length of a gene in the stricter sense lie downstream

of the promotor sequence. An equivalent way to express the criteria is to

require a subsequence of the length of a gene (wider sense) with an exact

match to the promotor sequence at the correct nucleotides.

2.1.4 Transcription

In organic cells the mere existence of a gene does not lead to its transcription

and expression. Any one gene in a transcriptionally active area will most

likely be transcribed whereas the same gene in a transcriptionally inactive

area will be not. Correlation of genomic structure and transcription has been

identified but the influence of position and genomic structure on gene tran-

scription still is not fully understood [4, 28, 39].

The product of transcription is RNA. Mostly mRNA (messenger RNA) is

synthesised which functions as template for translation and thus as tem-

plate for proteins. Produced in smaller amounts are rRNA (ribosomal RNA

is RNA contained in the ribosome, which is the machinery for translating

mRNA to proteins), tRNA (transfer RNA which is necessary to transport
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the single amino acids to the ribosome where they are then assembled into a

protein) and small regulatory RNAs (snRNA - small nuclear RNA; snoRNA -

small nucleolar RNA; siRNA - short interfering RNA; miRNA - microRNA).

At the level of transcription so-called transcriptional regulation may occur,

leading to no, less or more expression of a gene. This is achieved by tran-

scription factors which may block the assembly of the necessary machinery

for transcription at the promotor, or make that assembly more likely. After

transcription, regulation termed post-transcriptional takes place. Examples

are RNA stability, splicing, editing and others. These mechanisms allow

for prevention of an mRNA from ever getting translated, reduction of the

amount of translated protein or even alteration of the RNA sequence thus

creating a new template [4, 35].

MiniCellSim-Genome transcribes all genes found on the genome, or to be

more exact the gene in the stricter sense. The transcribed sequence is not

complementary to the gene, as it would be in biological systems, but an exact

copy of it. Further all genes produce mRNA and therefore proteins.

Transcriptional regulation is realised by transcription factors (see section

2.1.7). All other forms of regulation are not implemented in the model.

2.1.5 Translation

If mRNA exists long enough and is presented properly to the ribosome, it

will serve as a template for a protein. A particular sequence is required near

the beginning of the mRNA as a place for the ribosome to assemble at and to

initialise translation at the start codon. The information on the mRNA is or-

ganised in codons, sequences of three nucleotides, that code for a distinctive

amino acid. Although there are 64 different codons only 20 amino acids can

be encoded by codons, so some amino acids are encoded by multiple codons.

Actually a codon is the complementary sequence to the anti-codon on the

tRNA, and by a trick, the wobble of the last base, the anti-codon may match

more than one codon, thus less distinct tRNAs are needed. Translation is
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mRNA

A T G T T

A C A G T

C G G A T

C A C G T

C T C T T

occurrences (A,C,G,T) 2,3,0,0 1,1,1,2 1,2,2,0 1,0,2,2 0,0,0,5

Protein

C T G A T

Table 2: Sample majority rule for translating an mRNA into a model protein with mRNA

length 25 and protein length 5.

terminated by one of three stop codons, marking the end of the protein [26].

The sequence and shape of a protein determine its function. Currently it is

very difficult to predict the shape of a protein from the sequence and even

harder to successfully guess its function.

The amount of protein synthesized from a template is influenced by transla-

tional regulation. Post-translational regulation for example alters the degra-

dation rate of proteins or their localisation within the cell.

There is no such thing as a ribosome or even amino acids and tRNAs in

MiniCellSim-Genome. Instead a majority rule is applied to the mRNA yield-

ing a shorter sequence (still of the genomic alphabet, thus A, C, G, T) which

represents the model protein. Also no particular sequence is required near

the beginning of the mRNA, nor start or stop codon.

The majority rule works like this: If for example the mRNA has the follow-

ing sequence ATGTT ACAGT CGGAT CACGT CTCTT (length 25) and

the protein length is 5, subsequences of the mRNA of length 5 are written

underneath each other. The number of occurrences of each letter per posi-

tion is counted. So the letter occurring most often in the first position of all
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subsequences (C) is the first letter of the protein. If at any position (3) two

or more letters occur the same number of times (C and G), the letter being

first if sorted alphabetically takes precedence over the others (C). See table

2 for the complete example.

The protein sequence is then evaluated in a deterministic but arbitrary way

so that approximatley half are classified as structural proteins and the other

half as transcription factors.

Translational and post-translational regulation are not implemented, the

degradation rate is constanct and equal for all proteins.

2.1.6 Structural Proteins

Number and diversity of purpose of structural proteins in a living cell seem

inexhaustible. Anything from actin, a protein that can form polymers to al-

low the cell to actively modify its shape and to move, to citrate synthase, an

enzyme catalysing a step in an important biochemical pathway, to rhodopsin,

which allows to register photons and thus is the molecular basis of vision,

may be considered a structural protein.

However in this work the simulated cells can express only one type of struc-

tural protein which does not even have a defined function. It may appear

desirable to allow for different structural proteins that for example regenerate

the nucleotides used for transcription, translation and replication. However

the complexity of such a system is beyond the scope of this diploma thesis.

In biological systems monomers have to be activated by an energy consum-

ing process to make them available for polymerisation. Monomers set free

by breakdown also need to be reactivated or degraded. In analogy the model

dinstinguishes nucleotides (activated form) and used nucleotides (unpoly-

merisable form). Nucleotides in their activated form need not be replenished

by the simulated cell, as a mechanism is present independent of the genome

that converts used nucleotides into the active form at a constant rate.
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2.1.7 Transcription Factors

After expression most transcription factors exist in an inactive state, usu-

ally located in the cytoplasm as opposed to the genome which resides in

the nucleus of the cell. To regulate transcription of one or multiple genes

a transcription factor needs to be activated and relocated to the nucleus.

Activation and relocation are often induced by distinct events as a result

of the triggering of the signal transduction cascade. The latter describes

a system where a preexisting set of proteins recognise and produce signals.

The first protein, a receptor – usually a transmembrane protein on the cell

surface, recognises a distinct event or signal outside the cell and produces a

signal inside the cell. This signal in turn activates a protein within the cell,

which produces its own signal. Many such internal signals are generated and

registered, before the latter elements of the cascade produce a less transient

change e.g. activate transcription factors. Much like the snowball effect this

system gives signal amplification, because the outside signal may activate

several receptors, each receptor activates several other proteins where each

in turn activates some more proteins, and so on [7, 29, 37].

For a transcription factor to influence a gene it is required to bind to one or

more regulatory elements of the gene and/or change the genomic structure

in the vicinity of the gene.

The main reason for transcription factors and signal transduction cascades

appears to be the comparative ease with which a cell may switch on those

parts of its genetic programme needed for survival in given circumstances

and to switch off what is not required [7].

As mentioned above, the model features transcription factors, but no equiv-

alent to a signal transduction cascade. MiniCellSim-Genome assumes all

transcription factors to be active at all times and in a position to modify

transcription of all target genes. Any gene can only be modified thus, if the

transcription factor is able to interact with the URE of the same gene. To

determine if an interaction is activating (= positive, increasing the rate of
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transcription) or repressing (= negative, decreasing the rate of transcription)

a majority rule is done for the URE and the protein (without the need of

subsequences as both are of the same length). The resulting sequence is then

evaluated in an arbitrarily chosen way to decide for activation or repression.

The strength of interaction and thus the strength of activation or repression

is calculated by cofolding the URE and the protein with RNAcofold (see

appendix B).

2.2 Model-Independent Properties

2.2.1 The Ideal Genome

As already described, the model thrives on a great number of approxmiations.

Ideally however the model should more or less have the same constraints as

appear for real cells (eukaryotic cells to be more precise). If such a very

lifelike model were used it would have a genome which would be very large

in comparison to gene length.

For purposes of measuring similarity of the genome used in the model and

what the genome sould look like for a biological cell, the ideal genome is used.

This ideal genome is so large that the regions near the rim of the genome

which cannot contain genes have no impact whatsoever on the overall gene

number.

In our model the existence (or absence) of a promotor determines if and

where genes are located on the genome. Therefore µid
ng, the mean number of

genes per kbp for the ideal genome, can be calculated from the probability

of occurrence of a promotor PProm. This is true for all genomes that may fit

at least one gene onto their genome and where genes may overlap.

Let us start with a simple case that allows to identify an ideal genome. If

gl > L, the genome length, the above mentioned situation occurs. Not even

a single gene will fit onto the genome so µng has to be 0.

However this is not true for circular genomes. Even if the genome consists

of only a single basepair this is equivalent to an infinitely long linear genome
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of the given nucleotide. Further if any subsequence serves as a promotor a

gene can be found. Although a circular genome may be seen as an infinitely

long linear one the maximum number of distinct genes is L. If gl ≤ L and

the genome is circular, it is also ideal. So every circular genome is ideal.

Even though overlapping of genes is very frequently found on circular and

linear genomes of viruses, it should be mentioned that this increase in coding

density is bought by decreasing coding flexibility. Any change in a position

that is part of more than one gene will more likely cause a mutant with lesser

fitness. Therefore it is less likely that a variant with a mutation at this po-

sition will survive.

For linear genomes there exists a geneless region of length gl − 1. Even

if a promotor occurs within this region no gene is located there because it

would not fit onto the remaining basepairs. The shorter such a geneless re-

gion is compared to the genome length L, the smaller is its influence on µng

and the better the approximation of an ideal genome. Therefore the ideal

genome is only theoretically possible, when the geneless region is extremely

short and the genome is very large.

In mathematical terms this reads as follows:

gl → 0 and / or

L → ∞

2.2.2 Number of Genes

The number of genes ng in a given genome of random sequence can be cal-

culated from the genome length L, the gene length gl and the probability of

a promotor occuring at any one position PProm by the following formula:

ng = (L − gl + 1) × PProm

Obviously the increase in gene number correlates linearly with the increase

in genome length. To measure proximity of the given genome to the ideal



2 Model and Approach 25

0 500 1000 1500 2000
Genome length

0

50

100

150

N
um

be
r 

of
 G

en
es

Genes
Genes / kbp
Genes / kbp for Infinity

Number of Genes
Promotor length 2, Gene length 32, Gene overlapping allowed

Figure 5: Number of genes in dependency of the genome length.

genome the mean number of genes per kbp µng is used, which is easily cal-

culated:

µng =
ng

L
× 1000

With increasing genome length the values of µng asymptotically approach

the µid
ng for the ideal genome, which is:

µid
ng = PProm × 1000

Even though the ideal genome is a good approximation of genomes, it differs

considerably from linear genomes that have either a small genome length L

or a large gene length gl. The sequences used in this work range from 50 to

150 basepairs and therefore the genomes are far from ideal.
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2.2.3 Network Size

Every genome has a gene and gene product interaction network, called the

reaction network. In the simplest cases with no genes present on the genome

the network contains no vertices and no edges. If one or more genes are

present there are some vertices and edges representing transcription and

translation for every single gene, but on top of that there are vertices and

edges representing the formation of activating or repressing complexes that

may regulate the transcription. The maximum number of such activating

or repressing complexes is present if every single gene product is capable of

forming such a complex and every complex regulates all genes. This maxi-

mum number calculates as ng2.
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So whereas the number of genes increases linearly with the genome length,

the size of the corrsponding gene interaction network increases quadratically

with the number of genes, or with the genome length as follows from their

linear interrelation.

2.2.4 Shadow

First an arbitrary genome is used as starting point, referred to as parent.

Then the shadow of a parent is the sum of all genomes that differ in one

position from the parent. Every distinct parent has a unique shadow and

there is only one shadow per parent.

Another way to describe the shadow is to call it the sum of all 1-point mu-

tants or all error 1 neighbours. To compare arbitrary strings the Hamming

distance can supply a measure of similarity by summing up the number of

positions that differ in the given strings. Error 1 neighbours of a string are

all strings that differ in exactly one position from the reference string.

As in all known cells the model uses DNA with the Alphabet A = {A, C, G, T}.

In any one position there may be |A| − 1 alternative letters and multiplied

by the number of positions, the genome length L respectively, this yields the

size of the shadow:

|S| = (|A| − 1) × L

With the size of the Alphabet |A| = 4 for DNA the size of the shadow cal-

culates as |S| = 3 × L.

Ideally the question of stability and neutrality of a network derived from

a genome should be concluded from exhaustive study. So every possible

sequence for a given length (which would be |A|L sequences) should be anal-

ysed. However even for small genomes, such as used in this work with a

length from 50 to 150 basepairs, handling of all sequences contained in the

shadow is a problem.

An approximation can be given by using the shadow. Therefore the question
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of how likely the network changes due to even a single mutation is answered.

Using the shadow has other consequences too:

• As only one mutation occurs, the original sequence / the parent cannot

be the result of the mutation, in contrast to application of two or more

mutations where the latter alterations might reverse the effects of the

earlier ones.

• All derived sequences are unique, which is not the case with multiple

mutations, as many permutations of the mutation order will give the

same result.

• Even though only one mutation occurs, more than one gene may be

affected in case genes may overlap. As µid
ng was calculated above, we

can compute the mean number of genes any single mutation will affect

µ1p by multiplying with the gene length gl.

µid
1p = PProm × gl

Throughout this work gene length gl = 32 and promotor probability

PProm = 1

16
are used, thus giving µ1p = 2.

2.3 Phenotype Measure

The MiniCellSim-Genome model allows for easy evaluation of reaction net-

work and kinetic laws. As a consequence those are the characteristics used

to define the phenotype. Basically that means the phenotype has a “what”

component, the reaction network showing all genes and gene products and all

interactions, and a “how much” element, as the quantity of all gene products

can be computed by integrating the kinetic laws.

For practical purposes continuous functions like the kinetic laws are com-

pared by solving at various points. The results of the two functions for the

same point are then compared.

Two genomes should be considered equivalent, and mutations that transform
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one into the other as neutral, if and only if the reaction network and all ki-

netic laws are identical. Put another way neutral mutations change neither

what genes are present nor how much gene product is derived from them.

This gives rise to a set of features to define the phenotype, referred to as

TFD:

T network

F functional network

D dynamics

Each of the above features is evaluated and denoted 0 if the two compared

genomes share this part of the phenotype and 1 otherwise. In this work all

genomes of the shadow are compared to the parent yielding a three digit code

that gives a rough idea of the differences.

2.3.1 T — Network

T is a description of the reaction network plus identifiers for all genes. The

important fact here is that each vertex representing a gene or a gene product

can be traced back to its origin on the genome. The origins of the genes are

neither important for the reaction network nor for the phenotype. So T ac-

tually evaluates data irrelevant for the phenotype. Nevertheless the inclusion

of this feature may yield valuable information when analysing the effects of

mutation.

Obviously if after mutation the same set of genes is present and all vertices

in the reaction network can be traced back to the same origins as before, T

will be considered identical, thus denoted 0. Otherwise T will be 1, when

the set of genes changes, which is the case if genes / origins are lost or newly

created and / or vertices in the network are traced to different origins. This

holds true even if the reaction network and kinetic laws are identical and

therefore mutation was neutral. In this later case with T = 1 but mutation

being neutral, the reason for evaluating T becomes clear. Instead of always
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attributing lack of change of the phenotype to lack of change in expression of

the genome (as with T = 0), the much more unlikely occurrence of a compen-

satory mutation can be explicitely detected (T = 1). Such a compensatory

mutation is present if all genes lost or changed have been substituted for by

other genes created or altered.

2.3.2 F — Functional Network

This feature is the genuine measure of the phenotype. F evaluates the re-

action network without caring for the origins of the vertices / genes. The

actual comparison of two networks is done by reactions (see appendix C). As

the operation is asymmetrical (vertices and edges lost will be noticed as dif-

ferences, those newly created will not) the two genomes have to be compared

both ways to identify all dissimilarities.

2.3.3 D — Dynamics

As pointed out before the same reaction network can lead to very different

expression rates in the simulated cell depending on the kinetic laws. By

integrating all equations with SOSlib (see appendix D) the quantities of

every single entity are calculated for 10 points in time. In this work the

requirements for neutrality of the quantities are rather harsh as all quantities

of all entities at all calculated points in time have to be identical. Please note

that theoretically the functions could fit all points derived by SOSlib without

being identical. However this is very unlikely to occur.

2.4 Typing of Mutations

2.4.1 Localisation

The impact of any given mutation on a single gene is largely determined by

its position relative to the gene. A gene is defined as a unit on the genome

that can give rise to one or more biopolymers (RNA and proteins), which

serve a certain function in the organism. This usally includes a continuous
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string beginning at the promotor or a site capable of initiating transcription

and ending at a terminator. Elements exist that can modify the rate of

transcription and expression of a gene, but mostly are not counted as part of

a gene, even if these elements are located within the gene. In our simplified

approach we have a fixed layout for the gene (as shown in figure 2). First is

the upstream regulatory element (URE), adjacent to which lies the promotor

and then the gene in the stricter sense. The URE, the promotor and the

gene in the stricter sense all have a fixed length. Any mutation outside

of the boundaries of the gene (wider sense) can only influence this gene

if the mutation lies within the boundaries of a second gene, which acts as a

transcription factor on the first. The conclusion is that any mutation located

outside the boundaries of all genes cannot affect any gene. Please note that

if a new gene is created which may happen inside or outside of boundaries of

preexistent genes, the mutation is per definition inside of gene boundaries,

namely the boundaries of the gene it created.

This leads to the distinction of 4 cases of localisation:

1. Intergenic region

2. Non-intergenic region

2a. URE region

2b. Promotor region

2c. Gene region

Intergenic region — By definition if a mutation is not in the URE, promo-

tor or gene region of any gene, it has to be located in the intergenic region.

As this definition is derived by exclusion a mutation with location intergenic

region cannot be located anywhere else in regard to another gene.

To calculate the likelihood of a mutation to be intergenic three cases must

be distinguished:

1. gl > L

If the gene length gl is greater than the genome length L all mutations
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will be intergenic since there cannot exist even a single gene on the

genome.

P M
ig = 1

2. gl > Leff

The effective genome length Leff equals the number of positions where

if a promotor occurs a gene can be fitted onto the genome. In other

words it is the genome length L minus the geneless region in linear

genomes (as discussed in section 2.2.1).

Leff = L − gl + 1

With this equation the above condition gl > Leff can be redrafted to

2 × gl > L + 1.

The first position of the genome can only be within one gene, if a

gene starts right at the beginning of the genome. Similarly the last

position can only be part of one gene, if a gene reaches right to the

end of the genome. For both positions the likelihood of beeing within

a gene depends on only one gene, or in other words on one position

where a promotor has to occur in order for the first or last position

to be within the gene. This is inverse to the likelihood of a promotor

not being in that specific place, which is 1 − PProm. The second and

the second last position are part of a gene if in one or both of two

positions a promotor occurred. For both positions the likelihood to

be intergenic is (1 − PProm)2. By analogy the same is true for the

positions at maximum Leff − 1 from an end of the genome. To give an

approximate probability the mean of the values is calculated. So far

the formula reads

P M
ig ≈

∑Leff−1

i=1
(1 − PProm)i × 2

(Leff − 1) × 2

There still are L− [(Leff − 1)× 2] positions not evaluated in the above

approximation. The number of positions can be redrafted to 2×gl−L
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(please note that this formula is only true for gl > Leff , which is

2×gl > L+1). As the positions are in the middle of the genome they are

most likely to be within a gene. To be exact a maximum number of Leff

genes may occur which all would encompass these middle positions.

The probability for any such middle position not to be part of a gene

is (1 − PProm)Leff . The full formula is

P M
ig =

(2 × gl − L) × (1 − PProm)Leff +
∑Leff−1

i=1
(1 − PProm)i × 2

L

3. gl < Leff

The above calculations for positions near to one of the ends of the

genome also hold true for this case. However the maximum distance to

the rim is no longer determined by Leff but by gl, giving

P M
ig ≈

∑gl−1

i=1
(1 − PProm)i × 2

(gl − 1) × 2

Now L − 2 × (gl − 1) middle positions exist. This expression may be

stated as Leff − gl + 1 as well. In this environment the maximum

number of genes is gl yielding the probability for these positions not to

be within a gene as (1 − PProm)gl. Thus the formula reads

P M
ig =

Leff × (1 − PProm)gl +
∑gl−1

i=1
(1 − PProm)i × 2

L

Non-intergenic region — The likelihood of a mutation to be non-intergenic

is one minus the probability of a mutation to be intergenic. For this work all

non-intergenic mutations have been split up in the three subcategories.

P M
nig = 1 − P M

ig

URE region — Mutations in the URE are expected to either change the

influence of transcription factors on the corresponding gene or alter nothing

at all.

As the URE has a fixed length any mutation is positioned there with a

chance of the fraction URE length ul divided by gene length gl. Because
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of overlapping any non-intergenic mutation may have multiple positions and

hence increases the likelihood of every single possible localisation.

P M
URE = P M

nig ×
ul

gl
× PProm × gl

P M
URE = P M

nig × ul × PProm

Promotor region — If the promotor region is affected by mutation the re-

sult is either gene gain or gene loss. In systems with more than one promotor

sequences a change in transcriptional activity would be possible, but not in

this simplified model.

Pricipally the amount of promotor region mutations depends on the same

factors as that of URE region but an additional term has to be added to

include the gene gain mutations, which have to be located in the promotor.

P M
Prom = P M

nig × pl × PProm + P GN
gain

Gene region — A change in this region can lead to potentially any kind of

different behaviour. Classes may switch, and for transcription factors targets

may change and interaction strengths may vary.

What was true for the URE is true for the gene. The fraction of gene region

is gene length (strict) gnl divided by gene length (wide) gl.

P M
gene = P M

nig × gnl × PProm

2.4.2 Gene change

Gene creation — Wherever sequences similar to a promotor exist on the

genome a single point mutation might be sufficient to transform this sequence

into an actual promotor. Even though it is unlikely the possibility exists that

such a point mutation may create more than one promotor and thus more

than one gene. The maximum number of genes a single mutation can create

is given by the promotor length pl. Throughout this work pl = 2 has been

used.

With given promotor length pl, and thus PProm, the likelihood of a mutation
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creating at least one gene can easily be calculated by calculating the reverse,

the probability of a mutation not to create a gene.

P GN
gain = PProm × (1 − PProm) × pl

Gene loss — Not only may promotors be created by a mutation but destoyed

as well. The maximum number of genes affected this way is the same as with

promotor creation ergo pl. Again the probability of at least one gene loss by

point mutation is easily calculated.

P GN
loss = P GN

gain

Class switch — If the mutation is located wihtin the gene in the stricter

sense the gene product, the protein, may change class. As mentionend in

section 2.1 the model distinguishes between transcription factors and struc-

tural proteins. The more targets a transcription factor had before or gains

after the switch, the bigger the impact on the reaction network.

Current versions of MiniCellSim-Genome classify a gene by factors which are

wholly dependent on the sequence of this single gene. As the classification

process is scheduled to be changed in upcoming versions no probability has

been computed for this event.

Illegal gene creation — In the given environment and model all mutations

that give rise to new genes ought to be located in the promotor. To be more

precise the mutation should be situated within the promotor of the recently

created gene. If it is not, an illegal gene creation occurred. Even though this

should never occur, as a failsafe and quality control a check for illegal gene

creation is made.

No instances of illegal gene creation have been documented in the experi-

mental data evaluated for this work.

Illegal gene loss — The same principles hold true for illegal gene loss. If

a gene is lost and the mutation is not located within the promotor of the

recently lost gene the gene loss is illegal. Checks to identify such occurrences
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are made.

The experimental data used contains no instance of illegal gene loss.

2.4.3 Transcription Factors

There are some properties unique to transcription factors in contrast to struc-

tural proteins. Transcription factors usually have a bigger impact on the

reaction network as they may vary the expression of any gene of the genome.

This transcription level control is the reason for the quadratical increase in

network size.

Two components determine the effect of a transcription factor on the target

gene. The first is the interaction type, which can be either activating (CX)

or repressing (CI). Activating complexes always increase the rate of tran-

scription whereas repressing complexes decrease it. The second component

is the interaction strength also called activity, which defines the quantity of

increase or decrease. Since activity is derived by RNAcofold B predictions

of effects by single point mutations are very hard to calculate, which is why

probabilities have been omitted.

For every pair of transcription factor and target gene the following events

are mutually exclusive.

Target gene loss — Complexes with activators and repressors are only as-

sembled on UREs. In this model, per definition, UREs only occur where

there is a gene. The consequence is that gene loss results in loss of all reg-

ulatory activities on that gene. Think of the reaction network as a directed

graph with every gene as a vertex and every edge between vertices as a reg-

ulatory activity of one gene on another. If a gene is lost, a vertex is removed

and therefore all edges connected to that vertex (the regulatory activities)

are erased as well.

As any gene may be under regulatory control, the loss of a target gene is

approximately as likely as the loss of any gene, because even with genomes
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of a small size most genes are subject of regulatory control.

Target gene gain — Whenever a new gene is created another URE ap-

pears where regulatory complexes may become effective. Depending on the

number of transcription factors and the type of the newly created gene new

regulatory activies may be exhibited.

Again any newly created gene may be target of expression control by tran-

scription factors, so the likelihood of target gene gain is again approximately

equal to the probability of gene gain.

Decrease of activity on target gene — If a transcription factor or an

URE is affected by the mutation, the strength of interaction of the regulatory

complex and the URE may be altered. If located in an URE all activity on

that gene may be affected, if located in a transcription factor all activity by

the factor may be altered.

Please note that both an activating complex that cannot activate as strong

as before as well as an repressing complex which represses less will be con-

sidered a decrease of activity.

As the strength and type of activity of a given transcripiton factor on a gene

is calculated by cofolding, it is very hard to estimate the probabilities of

events resulting from these calculations.

Loss of activity on target gene — A special case of decrease of activity

is the complete loss of it. The target gene then is no longer under regulatory

control by the given transcription factor.

Increase of activity on target gene — Again if located in an URE or

transcription factor, a mutation may change regulatory activity. Just as the

control may be diminished, alternatively it may be amplified.

Gain of activity on target gene — A special case of increase of activity,
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gain of activity, occurs when before the mutation the transcription factor

had no influence on the target gene.

Switching of activating and repressing complexes — Some mutations

may reverse the effects of a transcription factor on a given gene, activating

what has been repressed and vice versa. Any such occurrence is termed a

switch regardless of the strength of the activating or repressing action as long

as both are greater than zero (otherwise it would be loss of activity or gain

of activity).
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3 Results on Neutrality in the Shadow

...man will occasionally stumble over the truth, but usually manages to

pick himself up, walk over or around it, and carry on.

— Winston Churchill

3.1 Data Sets

For calculations three data sets have been used, denoted set A, B and C.

Set A — Consisting of genomes from the length L of 50 to 150 of 100 samples

each. This totals to 1100 genomes.

L 50 60 70 80 90 100 110 120 130 140 150

Samples 100 100 100 100 100 100 100 100 100 100 100

Table 3: Samples in set A.

Set B — Consisting of 1000 genomes of the length 100.

Set C — Consisting of 1000 genomes of the length 100. Other than contain-

ing different sequences sets B and C are identical.

Genome Length L 100

Sample Size 1000

Table 4: Samples in set B and C.
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3.2 Number of Genes

In section 2.2.2 the statistically expected mean number of genes ng for cer-

tain genome lengths has been computed. Table 5 compares expected and

actual mean ng for sets A, B and C. The data indicates the correctness of

the formula for ng.

Sample calculated exp. cal. exp.

Set L Size ng σng σng% ng ∆ng µng µng

A 50 15100 1.23 ± 1.04 84.80% 1.19 −0.04 24.6 23.8

A 60 18100 1.59 ± 1.12 70.44% 1.81 +0.22 26.5 30.2

A 70 21100 2.31 ± 1.28 55.61% 2.44 +0.13 33.0 34.8

A 80 24100 2.67 ± 1.46 54.56% 3.06 +0.39 33.4 38.3

A 90 27100 3.55 ± 1.77 49.75% 3.69 +0.14 39.4 41.0

A 100 30100 4.57 ± 1.99 43.46% 4.31 −0.26 45.7 43.1

B 100 301000 4.29 ± 2.07 48.19% 4.31 +0.02 42.9 43.1

C 100 301000 4.30 ± 1.94 45.10% 4.31 +0.01 43.0 43.1

A 110 33100 5.32 ± 2.15 40.42% 4.94 −0.38 48.4 44.9

A 120 36100 5.58 ± 2.09 37.54% 5.56 −0.02 46.5 46.3

A 130 39100 6.02 ± 2.17 36.04% 6.19 +0.17 46.3 47.6

A 140 42100 6.61 ± 2.53 38.34% 6.81 +0.20 47.2 48.6

A 150 45100 7.28 ± 2.45 33.71% 7.44 +0.16 48.5 49.6

Table 5: Number of genes for sets A, B and C. Set describes which set the samples are from.

L is the genome length. Sample size is the number of genomes used from which values have

been calculated. The next three columns calculated ng, σng and σng% are calculated from

the samples, ng being the mean number of genes, σng the standard deviation and σng%

the standard deviation in percent of the mean value ng. Exp. ng lists the expected mean

number of genes for the given length. ∆ng shows differences in expected and calculated

ng. Cal. µng is the calculated mean number of genes per kbp, whereas exp. µng describes

the expected mean number of genes per kbp.
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The sample size from which the mean number of genes is calculated corre-

sponds to the sample size of the sets. As the number of genes is computed

for each genome (i.e. the whole shadow and the parent) each set or subset

has 3 × L + 1 genomes per parent, where L is the genome length.

3.3 Neutrality

Next comes the analysis of neutrality of the mutants in the shadow in re-

spect to the phenotype. In the model the phenotype is measured in TFD,

alas network, functional network and dynamics, each assigned either 0 or

1. Through all sets only three of five possible cases of phenotypic difference

between mutant and parent have been identified. They occur with the same

frequency in all sets. It has to emphasised that only differences in phenotype

of mutant and parent are checked. Mutants of a single shadow might be

neutral to each other but were not analysed for that possibility.

3.3.1 Cases found

Case 000 — All three features being 0, literally nothing has changed. Al-

though mutant and parent differ in one point mutation the phenotype is

exactly the same.

Case 001 — Here only the dynamics have been affected by the mutation.

All genes are still present and of the same type, but a change in at least one

interaction between a transcription factor and its target gene has changed

the quantity of one or more gene products.

Case 111 — One or more genes have been lost, gained or switched type. In

addition the reaction network, formed by the genes and gene products, has

changed. Because of that the dynamics necessarily were altered as well.
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3.3.2 Cases not found

Case 011 — This case would only be seen, if a mutation caused the loss

or the gain of an interaction between a preexistent transcription factor and

a preexistent target gene. The conclusion is that a single mutation either

within the transcription factor or the URE does not suffice to gain or loose

interaction.

Occurrences

TFD total % mean σ σln

Set A

000 188672 57.17% 171.52 ± 54.04 × 1.38

001 5129 1.55% 4.66 ± 5.34 × 2.85

111 136199 41.27% 123.82 ± 68.68 × 2.21

Sum 330000 100.00%

Set B

000 171923 57.31% 171.92 ± 43.68 × 1.31

001 4885 1.63% 4.88 ± 5.11 × 2.76

111 123192 41.06% 123.19 ± 41.01 × 1.49

Sum 300000 100.00%

Set C

000 171938 57.31% 171.94 ± 41.95 × 1.29

001 4857 1.62% 4.86 ± 5.16 × 2.78

111 123205 41.07% 123.20 ± 39.28 × 1.46

Sum 300000 100.00%

Table 6: Phenotypes of sets A, B and C. Please note that a both a normal distribution

was calculated using σ and the in some cases more useful lognormal distribution, where

the mean is multiplied or divided by σln.
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Case 101 — In this situation at least two genes are affected by mutation, but

in respect to the reaction network all changes are compensated for by each

other. Because of altered gene names the dynamics are considered different.

3.3.3 Cases impossible

Cases 010 and 110 are actually impossible. The reason for that is based on

the fact that an altered reaction network necessarily results in changed dy-

namics. 010 and 110 however would indicate altered network and unchanged

dynamics.

The case 100 cannot occur because the comparison of dynamics is bound to

the names of the genes and their products. A change in network necessarily

results in a change of name for at least one gene therefore yielding different

dynamics.

3.4 Mutation Types

Section 2.4 dealt with the different types of possible mutations. With the

three sets of data the occurence of each distinct mutation was quantified.

As with neutrality in the above section the frequency for mutation types are

very similiar to each other between the sets.

The interpretation of the data from table 7 is somewhat involved. First the

seemingly odd sums are evident. Please note that the sums do not have to

sum up to any specific value as genes may overlap. Any position that is part

of two or more genes will show up two or more times in this statistic.

Gene (strict) and URE are strictly linked in their behaviour, because any

gene (wider) contains both. As lengths are fixed the relative amount of gene

(strict) to URE is the same for a genome with one gene as a genome with

any number of genes. Even though the promotor is part of the gene (wider)

as well its behaviour is not linked. This results from an additional impact

by the mutations that generate new genes.



3 Results on Neutrality in the Shadow 44

Localisation

Occurrences

Location total % mean σ σ%

Set A

Intergenic 94232 16.49% 85.67 ± 50.76 59.26%

Gene (strict) 350475 61.34% 318.61 ± 205.85 64.61%

Promotor 56563 9.90% 51.42 ± 26.19 50.93%

URE 70095 12.27% 63.72 ± 41.17 64.61%

Sum 571365 100.00%

Set B

Intergenic 86011 16.40% 86.01 ± 54.20 63.01%

Gene (strict) 322050 61.42% 322.05 ± 155.19 48.19%

Promotor 51850 9.89% 51.85 ± 12.07 23.28%

URE 64410 12.28% 64.41 ± 31.04 48.19%

Sum 524321 100.00%

Set C

Intergenic 85804 16.35% 85.80 ± 51.84 60.42%

Gene (strict) 322650 61.49% 322.65 ± 145.52 45.10%

Promotor 51716 9.86% 51.72 ± 11.56 22.35%

URE 64530 12.30% 64.53 ± 29.10 45.10%

Sum 524700 100.00%

Table 7: Comparison of mutation localisation between the sets A, B and C. Location

gives the localisation of the mutation. Total states the number of occurrences in the given

location; % the relative amount of mutations with specific location for the set; mean gives

the mean number of occurrences of the particular location; σ the standard deviation of

the mean; σ% the standard deviation in percent of the mean.
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Standard deviation σ appears broader for all non-intergenic locations in set A

than in sets B and C. Whereas the latter only contain genomes of length 100,

set A also has smaller genomes. As the length diminishes the distribution

of number of genes ng is more roughed and causes greater standard deviation.

Again in table 8 standard deviation σ is broader in set A than in the other

sets and this is so for the same reason. Of greater interest is the difference

between gene gain and gene loss. The two events should be equally frequent

Gene change

Occurrences

Mutation total % mean σ σ%

Set A

Gene loss 28038 18.46% 25.49 ± 16.47 64.61%

Gene gain 28525 18.78% 25.93 ± 12.47 48.08%

Class switch 95315 62.76% 86.65 ± 57.61 66.48%

Sum 151878 100.00%

Set B

Gene loss 25764 18.47% 25.76 ± 12.42 48.19%

Gene gain 26086 18.70% 26.09 ± 3.98 15.25%

Class switch 87643 62.83% 87.64 ± 45.82 52.28%

Sum 139493 100.00%

Set C

Gene loss 25812 18.44% 25.81 ± 11.64 45.10%

Gene gain 25904 18.51% 25.90 ± 4.03 15.57%

Class switch 88252 63.05% 88.25 ± 43.67 49.49%

Sum 139968 100.00%

Table 8: Comparison of mutations causing gene change in sets A, B and C. See table 7

for explanantions of column headers
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and that they are, however σ is very different for them. Gene gain is basically

independent of what the parent looks like, whereas gene loss depends on the

number of genes existing in the parent. The variances in ng level out the

frequency but singular cases are much more likely to be off the mean for gene

loss than the independent gene gain.

For table 9 (next page) differences in standard deviation σ betweens Sets

A and B, C as well as those between target gene gain and target gene loss

remain present, their cause already explained above. On top of that the very

high σ for all mutations is a very obvious result. As gene loss depends on

the number of genes ng, thus being more variant, all mutations of the tran-

scripiton factor type depend on the reaction network which in turn depends

on ng, causing vast differences in singular cases.

Because the σ is greater than the mean in most cases, the probably more

useful distribution is the lognormal one with σln. Instead of adding or sub-

tracting σ from the mean, it is multiplied or divided by σln.

3.5 Correspondence of Mutation Types and Pheno-

types

Analysis of mutation types is only a preliminary step to the search of cor-

relation between mutation type and phenotype. As some correlations are to

be expected because of the model underlying the simulation the results may

also serve as quality control.

3.5.1 Localisation

According to the TFD model phenotype 000 is characterised by total absence

of change. Therefore it is a small surprise, that most mutations simply are

outside all gene boundaries and thus intergenic. More important is the result

of the reversed point of view: All mutations outside of all gene boundaries
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Transcripition factors

Occurrences

Mutation total % mean σ σln

Set A

Target gene loss 64673 30.07% 58.79 ± 82.74 × 6.77

Target gene gain 66369 30.86% 60.34 ± 65.63 × 5.73

Activity switch 25791 11.99% 23.45 ± 39.89 × 5.61

Activity loss 17548 8.16% 15.95 ± 23.56 × 4.71

Activity decrease 11424 5.31% 10.39 ± 17.45 × 4.12

Activity gain 17355 8.07% 15.78 ± 21.92 × 4.33

Activity increase 11910 5.54% 10.83 ± 17.81 × 4.06

Sum 215070 100.00%

Set B

Target gene loss 50396 29.44% 50.40 ± 62.74 × 4.76

Target gene gain 50670 29.60% 50.67 ± 35.57 × 3.70

Activity switch 22081 12.90% 22.08 ± 35.10 × 5.17

Activity loss 14190 8.29% 14.19 ± 19.46 × 4.20

Activity decrease 10318 6.03% 10.32 ± 16.43 × 3.96

Activity gain 13630 7.96% 13.63 ± 16.33 × 3.60

Activity increase 9901 5.78% 9.90 ± 14.67 × 3.75

Sum 171186 100.00%

Set C

Target gene loss 47720 29.34% 47.72 ± 50.86 × 4.86

Target gene gain 49284 30.31% 49.28 ± 34.46 × 3.91

Activity switch 20345 12.51% 20.34 ± 28.95 × 4.96

Activity loss 13818 8.50% 13.82 ± 17.01 × 4.11

Activity decrease 9221 5.67% 9.22 ± 13.30 × 3.82

Activity gain 12900 7.93% 12.90 ± 14.74 × 3.60

Activity increase 9333 5.74% 9.33 ± 12.80 × 3.67

Sum 162621 100.00%

Table 9: Comparison of mutations affecting transcription factors in sets A, B and C. σ is

the standard deviation for a normal distribution, σln for the lognormal distribution. See

table 7 for explanantions of other column headers.
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Phenotype 000 — Localisation

Occurrences

Location total % mean σ σ% T→M M→T

Set A

Intergenic 94232 38.62% 85.67± 50.76 59.26% 100.00% 49.94%

Gene 130277 53.40% 118.43± 62.10 52.43% 37.17% 44.75%

URE 19476 7.98% 17.71± 11.86 67.00% 27.79% 9.63%

Sum 243985 100.00%

Set B

Intergenic 86011 38.36% 86.01± 54.20 63.01% 100.00% 50.03%

Gene 119598 53.34% 119.60± 47.56 39.76% 37.14% 44.71%

URE 18609 8.30% 18.61± 11.64 62.54% 28.89% 10.01%

Sum 224218 100.00%

Set C

Intergenic 85804 38.13% 85.80± 51.84 60.42% 100.00% 49.90%

Gene 120489 53.54% 120.49± 45.38 37.66% 37.34% 44.81%

URE 18742 8.33% 18.74± 11.79 62.91% 29.04% 9.98%

Sum 225035 100.00%

Table 10: Correlations between phenotype 000 and localisation of the mutation for sets

A, B and C. Location gives the localisation. Total gives the number of occurrences of

the specific combination; % the relative amount of localisation for the phenotype; mean

states the mean number of occurrences of the combination; σ the standard deviation of

the mean; σ% the standard deviation in percent of the mean. T→M, M→T: e.g. first

line: 100.00% and 49.94% means that 100% of intergenic mutations are found correlated

to the phenotype 000, but only 49.94% of phenotype 000 have an intergenic mutation.
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lead to no change in the phenotype, as they have to because of the model

used.

A considerable number of mutations in genes and UREs also lack any effect

on the phenotype. These are truly neutral mutations.

Phenotype 001 means only the dynamics are altered. Obviously transcription

factors (genes) and UREs are the locations where mutations are expected that

cause this phenotype. Expectations prove true, but with a suprising twist:

All 001 phenotypes have a mutation in the URE which might indicate that

in all the samples not a single point mutation was capable of changing a

transcription factor in a way that altered its function.

Phenotype 001 — Localisation

Occurrences

Location total % mean σ σln T→M M→T

Set A

Gene 4374 43.39% 3.98 ± 6.29 × 2.92 1.25% 52.02%

URE 5707 56.61% 5.19 ± 5.97 × 2.97 8.14% 100.00%

Sum 10081 100.00%

Set B

Gene 4016 42.53% 4.02 ± 6.01 × 2.90 1.25% 50.42%

URE 5426 57.47% 5.43 ± 5.68 × 2.89 8.42% 100.00%

Sum 9442 100.00%

Set C

Gene 3901 42.15% 3.90 ± 5.83 × 2.84 1.21% 48.63%

URE 5353 57.85% 5.35 ± 5.69 × 2.89 8.30% 100.00%

Sum 9254 100.00%

Table 11: Correlations between phenotype and location of the mutation for set B. See

table 10 and 9 for explanation of column headers.
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If the phenotype is 111 network and dynamics have changed. The model

demands every mutation in a promotor to change the network and result in

phenotype 111, which table 12 shows to be the case. Also changes in genes

that switch the class are required to produce this phenotype, which presum-

ably is the case in some of the mutations localised in genes. The mutations

in the URE however cannot cause a 111 (but only a 011), so they only appear

because the position is also part of a gene or promotor.

Phenotype 111 — Localisation

Occurrences

Location total % mean σ σ% T→M M→T

Set A

Gene 215824 68.02% 196.20± 156.15 79.58% 61.58% 83.01%

Promotor 56563 17.83% 51.42± 26.19 50.93% 100.00% 39.10%

URE 44912 14.15% 40.83± 36.21 88.70% 64.07% 29.03%

Sum 317299 100.00%

Set B

Gene 198436 68.27% 198.44± 126.56 63.78% 61.62% 83.37%

Promotor 51850 17.84% 51.85± 12.07 23.28% 100.00% 39.45%

URE 40375 13.89% 40.38± 29.30 72.57% 62.68% 28.75%

Sum 290661 100.00%

Set C

Gene 198260 68.27% 198.26± 119.43 60.24% 61.45% 83.41%

Promotor 51716 17.81% 51.72± 11.56 22.35% 100.00% 39.36%

URE 40435 13.92% 40.44± 27.68 68.45% 62.66% 28.78%

Sum 290411 100.00%

Table 12: Correlations between phenotype and location of the mutation for set C. For

explanation of column headers see table 10.
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3.5.2 Gene change

As shown in table 13, all instances of gene loss, gene gain and class switch

produce phenotype 111. Considering the model this behaviour is expected.

Because the gene (strict) is much longer than the promotor, class switches

are more common than either gene loss or gain.

Phenotype 111 — Gene change

Occurrences

Mutation total % mean σ σ% T→M M→T

Set A

Gene loss 28038 18.46% 25.49± 16.47 64.61% 100.00% 20.01%

Gene gain 28525 18.78% 25.93± 12.47 48.08% 100.00% 20.35%

Class switch 95315 62.76% 86.65± 57.61 66.48% 100.00% 54.32%

Sum 151878 100.00%

Set B

Gene loss 25764 18.47% 25.76± 12.42 48.19% 100.00% 20.25%

Gene gain 26086 18.70% 26.09± 3.98 15.25% 100.00% 20.53%

Class switch 87643 62.83% 87.64± 45.82 52.28% 100.00% 54.65%

Sum 139493 100.00%

Set C

Gene loss 25812 18.44% 25.81± 11.64 45.10% 100.00% 20.32%

Gene gain 25904 18.51% 25.90± 4.03 15.57% 100.00% 20.33%

Class switch 88252 63.05% 88.25± 43.67 49.49% 100.00% 54.95%

Sum 139968 100.00%

Table 13: Correlations between phenotype and location of the mutation for sets A, B and

C. Mutation gives the exact type of the mutation. Other headers like in table 10.
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3.5.3 Transcription Factors

Table 14 on the next page shows activity decrease and increase are equally

likely as expected. Phenotype 001 could also have activity loss, gain and

switch. The lack of these mutation types combined with the findings in ta-

ble 11 seems to indicate that activity loss, gain and switch are very unlikely

events, at least if the URE mutates.

Most frequent events are target gene loss and target gene gain as can be

seen in table 14 on the page after the next. They occur whenever a gene is

lost or gained that was under the influence of a transcription factor. As the

number of genes ng increases, more genes that can be transcription factors

and more potential targets exist. With the genome lengths around 100 the

reaction network appears sufficiently complex to have a lot of genes subjected

to transcriptional control, therefore target gene loss and gain happen often.

Activity loss, gain and switch are more frequent than activity decrease and

increase. Together with results from tables 14 and 15 this lends support to

the hypothesis that activity loss, gain and switch can easily be caused by

mutations in the transcription factor but hardly in mutations located in the

URE.
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Phenotype 001 — Transcription factors

Occurrences

Mutation total % mean σ σln T→M M→T

Set A

Act decrease 3611 48.10% 3.28 ± 4.93 × 2.59 31.61% 54.88%

Act increase 3896 51.90% 3.54 ± 5.06 × 2.63 32.71% 57.63%

Sum 7507 100.00%

Set B

Act decrease 3655 51.73% 3.65 ± 5.24 × 2.67 35.42% 57.71%

Act increase 3410 48.27% 3.41 ± 4.60 × 2.56 34.44% 54.04%

Sum 7065 100.00%

Set C

Act decrease 3303 49.54% 3.30 ± 4.59 × 2.58 35.82% 55.24%

Act increase 3365 50.46% 3.37 ± 4.21 × 2.49 36.05% 55.92%

Sum 6668 100.00%

Table 14: Correlations between phenotype and mutations of transcription factor type

for sets A, B and C. Mutation states the exact type, where ’Act’ is short for activity.

Total gives the number of occurrences of the specific combination; % the relative amount

of localisation for the phenotype; mean shows the mean number of occurrences of the

combination; σ the standard deviation of the mean; σln the standard deviation for the

lognormal distribution. T→M, M→T: e.g. first line: 31.61% and 54.88% means that

31.61% of activity decreases correlate with the phenotype 001, but full 54.88% of phenotype

001 have suffered activity decrease.
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Phenotype 111 — Transcription factor

Occurrences

Mutation total % mean σ σln T→M M→T

Set A

Tgt gene loss 64673 31.16% 58.79± 82.74× 6.77 100.00% 17.04%

Tgt gene gain 66369 31.98% 60.34± 65.63× 5.73 100.00% 17.41%

Act switch 25791 12.43% 23.45± 39.89× 5.61 100.00% 8.65%

Act loss 17548 8.45% 15.95± 23.56× 4.71 100.00% 8.88%

Act decrease 7813 3.76% 7.10± 14.15× 3.67 68.39% 4.31%

Act gain 17355 8.36% 15.78± 21.92× 4.33 100.00% 8.85%

Act increase 8014 3.86% 7.29± 14.28× 3.64 67.29% 4.34%

Sum 207563 100.00%

Set B

Tgt gene loss 50396 30.71% 50.40± 62.74× 4.76 100.00% 17.33%

Tgt gene gain 50670 30.87% 50.67± 35.57× 3.70 100.00% 17.65%

Act switch 22081 13.45% 22.08± 35.10× 5.17 100.00% 8.70%

Act loss 14190 8.65% 14.19± 19.46× 4.20 100.00% 8.13%

Act decrease 6663 4.06% 6.66± 13.06× 3.49 64.58% 4.10%

Act gain 13630 8.30% 13.63± 16.33× 3.60 100.00% 7.96%

Act increase 6491 3.96% 6.49± 11.94× 3.42 65.56% 3.92%

Sum 164121 100.00%

Set C

Tgt gene loss 47720 30.60% 47.72± 50.86× 4.86 100.00% 17.14%

Tgt gene gain 49284 31.60% 49.28± 34.46× 3.91 100.00% 17.25%

Act switch 20345 13.05% 20.34± 28.95× 4.96 100.00% 8.41%

Act loss 13818 8.86% 13.82± 17.01× 4.11 100.00% 8.31%

Act decrease 5918 3.79% 5.92± 10.37× 3.37 64.18% 3.79%

Act gain 12900 8.27% 12.90± 14.74× 3.60 100.00% 7.73%

Act increase 5968 3.83% 5.97± 10.19× 3.30 63.95% 3.74%

Sum 155953 100.00%

Table 15: Correlations between phenotype 111 and mutation of transcription factor type in

sets A, B and C. ’Act’ is short for activity, ’Tgt’ for target. Column headers are explained

at table 14.
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4 Conclusion and Outlook

Research is what I’m doing when I don’t know what I’m doing.

— Wernher von Braun

The aim has been to determine the neutrality of systems simulated by Mini-

CellSim-Genome. On the whole after analysing 931100 genomes an average

of 57.3% are neutral and therefore have the same phenotype after mutation.

A closer look reveals that approximately half of the neutral mutations lie in

regions of the genome that do not take any influence at all on the phenotype.

The other half may be considered truly neutral mutations as the process of

deriving the phenotype from the information on the genome allows for some

changes without altering the resulting phenotype. This leaves 25% of all mu-

tations to be ignored or compensated for by cellular mechanisms. So many

sequences lead to the same phenotype which in turn makes the phenotype

rather stable.

Such stability is bought at a price. This price is loss of information. In the

model a majority rule is applied for translating mRNA into proteins and here

information is lost. The protein encoded by the mRNA is unambiguous, but

there are lots of different mRNAs that encode the same protein. Biological

systems are similar at translation and have an additional loss with structure.

For a rather large percentage of catalytically active proteins and RNAs the

structure is important but not the sequence and all structures can be made

up by more than one sequence.

The longer the genomes the less likely becomes the neutral phenotype 000,

whereas the others gain in probability. This is not surprising as the number



4 Conclusion and Outlook 56

of genes increases linearly with genome size. Also the fact that all three test

sets yield similar data shows that sets with only a single genome length be-

have like sets with many different genome lengths but the same mean genome

length.

Because of similar results derived from the different sets it is a well justified

assumption that enough cases have been sampled in order to give represen-

tative results.

Further experiments with more than one mutation could lead to the finding

of other phenotypes which are possible but did not show up for the anal-

ysed one point mutants. The used sets centered on a genome lenght of 100

nucleotides have roughly 50% neutral mutations, but as pointed out above

longer genomes have less. If compared to figure 5 genome sizes of 1000 or

2000 nucleotides would give a very good approximation of the number of neu-

tral mutations any genome with the promotor and gene length used in this

work. It appears reasonable to assume that this number will be around 25%

because that is the amount of neutral mutations in the analysed sets that

occur within genes, and very long genomes would have very little intergenic

sequences.
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Mathematics may be defined as the subject in which we never know

what we are talking about, nor whether what we are saying is true.

— Bertrand Russell

symbol meaning

A an alphabet e.g. A = {A,C,G, T} for DNA

|A| the size of a given alphabet = the number of letters in the alphabet

gl gene length (wider)

gnl gene length (strict)

L genome length

Leff effective genome length

µ1p mean number of genes affected by a single point mutation

µng mean number of genes

µid
ng mean number of genes of the ideal genome

ng number of genes

PGN
gain probability of a mutation to lead to gene gain

PGN
loss probability of a mutation to cause gene loss

PM
gene probability of a mutation to be within a gene (strict)

PM
ig probability of a mutation to be intergenic

PM
nig probability of a mutation to be non-intergenic

PM
Prom probability of a mutation to be within a promotor

PM
URE probability of a mutation to be within a URE

PProm probability of occurrence of a promotor at any one position

pl promotor length

S the shadow of a sequence

|S| the size of a shadow = the number of sequences in the shadow
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abbreviation meaning

A adenosine (a DNA and RNA nucleotide)

C cytosine (a DNA and RNA nucleotide)

CI inhibitory activity / transcription factor

CX activating activity / transcription factor

D dynamics (TFD model)

DNA desoxyribonucleic acid

F functional network (TFD model)

G guanine (a DNA and RNA nucleotide)

GN gene

mRNA messenger RNA

RNA ribonucleic acid

rRNA ribosomal RNA

SP structural protein

T network (TFD model)

T thymidine (a DNA nucleotide)

TF transcription factor

tRNA transfer RNA

U uracil (an RNA nucleotide)

URE upstream regulatory element
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B MiniCellSim-Genome

In the beginning the Universe was created. This has made a lot of peo-

ple very angry and has been widely regarded as a bad move.

— Douglas Adams

MiniCellSim-Genome is a set of Perl libraries and sample Perl scripts that allow

to simulate cellular processes for a single cell. This project is under heavy work

and will soon encompass more features.

The version used for this work is the checkout of the 16th of December 2005.

Cellular processes are depicted by figure 7.

Figure 7: Cellular processes in MiniCellSim-Genome.
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C Reactions

It has yet to be proven that intelligence has any survival value.

— Arthur C. Clarke

The Vienna-RNL is a library for chemical reaction networks. The code is written in

ANSI C and can be used for C programs or perl scripts. SBML and its own rct files

are valid input files and numerous output formats are supported. More informa-

tion and a download is available at http://www.tbi.univie.ac.at/software/Vienna-

RNL/

As pointed out reactions was used to generate a simpler rct file from the SBML

output of MiniCellSim-Genome. The rct files then served for direct line to line com-

parison via the unix program diff to determine T of the phenotype. Further parent

and mutant rct files were compared by netcomp which uses the function NetDiff

of the Vienna-RNL to compare two reaction networks. This function “computes

the difference of the two Networks N1 and N2. The reaction difference Network

contains all reactions occurring in N1 but not N2, and all substrates occurring in

the remaining reactions.” [22] As such an operation is asymmetrical parent and

mutant have to compared in both directions to yield the phenotypical feature F.
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D SOSlib – odeSolver

You climb to reach the summit, but once there, discover that all roads

lead down.

— Stanislaw Lem

“The SBML ODE Solver Library (SOSlib) is both a programming library and a

command-line application for construction, symbolic and numerical analysis of a

system of ordinary differential equations (ODEs) derived from a chemical reaction

network encoded in the Systems Biology Markup Language (SBML). It is writ-

ten in ISO C and distributed under the terms of the GNU Lesser General Public

License (LGPL). The package employs libSBML’s AST (Abstract Syntax Tree)

for formula representation to construct ODE systems, their Jacobian matrix and

other derivatives. SUNDIALS’ version of CVODE is incorporated for numerical

integration and sensitivity analysis of stiff and non-stiff ODE systems.” [30]

Download and more information at http://www.tbi.univie.ac.at/~raim/odeSolver/

The last phenotypical feature D is computed using SOSlib. All kinetic laws com-

puted by MiniCellSim-Genome are integrated to yield quantitative results for the

amount of the gene products in the cell. To save calculation time only 10 points

in time were used equally spaced until the integration end time, which was 10000.
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