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Abstract

The overwhelming amount of known protein sequences from large scale se-
quencing projects can sometimes obscure the relevant information. It is easy
to translate the DNA sequence to the corresponding protein chain, but today
still impossible to gain access to the structure from this sequence informa-
tion. But the amino acid sequence separate from its 3d context is often
meaningless. Nevertheless sequence homologies and alignment studies are
useful tools. A detailed mapping of the hyper-astronomic sequence space of
proteins would be a hopeless task if the number of distinct stable folds would
not be restricted. Such a map would be extremely useful for evolutionary
studies as well as de novo protein design.
Babajide and co-workers revealed that knowledge based potential are suitable
means to perform an analysis of protein space, targeting inverse folding. The
basic assumptions of knowledge based potentials are that proteins exist in
the energetic ground state and that the inverse Boltzmann law is valid.
Empirical potentials are extracted from databases of known structures. They
mainly vary in the definition of residue interaction. Usually, they use dis-
tance criterions to define contacts. Avoiding the arbitrariness of a binned
distance, Alexander Tropsha introduced a “statistical geometry” approach.
The polypeptide chain is unambiguously partitioned by means of Delaunay
tessellation. This yields a cluster of tightly packed, irregular tetrahedrons
having an amino acid at each corner. Tropsha thus defines a potential not
including any distance information. However, Manfred Sippl showed that
potentials using distance information yield very good results. He used the
pairwise distances of amino acids, split in euclidean as well as sequence dis-
tance classes, to define a knowledge based potential.
The idea of this work is to try and combine these two ways of defining a
potential, thus attempting to increase the performance of tessellation based
potentials in inverse folding experiments as well as in other applications.
Furthermore, the description of protein-solvent interactions was improved by
introducing an explicit shell of water.
This work describes the implementation of this combined potential and a few
applications to inverse folding computer experiments. A distinct improve-
ment compared to previous tessellation based potentials could be obtained
and possibilities to further improve the discrimination power are pointed out.



Zusammenfassung

Eine überwältigende Flut an Sequenzinformation aus groß angelegten Se-
quenzierexperimenten erschwert immer mehr den Blick auf relevante Infor-
mationen. Man kann zwar DNA Sequenzen leicht in die entsprechende Pro-
teinsequenz übersetzen, jedoch ist diese ohne die dazugehörige 3d Struktur oft
nutzlos. Ein detailliertes Mapping des astronomisch großen Proteinsequenz-
raumes wäre völlig aussichtslos, wäre nicht die Zahl der stabilen Strukturen
sehr begrenzt. Eine solche Kartierung wäre von großem Nutzen für evolu-
tionäre Studien und das de novo Design von Proteinen.
Babajide et al. konnten zeigen, dass empirische Potentiale zur Erforschung
des Proteinraums mittels inverser Faltung geeignet sind. Die diesen Poten-
tialen zugrunde liegenden Annahmen sind, dass das Protein im energetischen
Grundzustand vorliegt, und dass das inverse Boltzmann Gesetz gilt.

Empirische Potentiale werden aus Datenbanken struktureller Informationen
extrahiert. Sie unterscheiden sich normalerweise in der Definition der berück-
sichtigten Wechselwirkungen. Meistens werden Distanzkriterien dazu be-
nutzt, Kontakte zu definieren. Alexander Tropsha konnte die Willkür eines
gewählten Abstandes umgehen, indem er Methoden der statistischen Ge-
ometrie einführte. Die Proteinkette wird hierzu der Delaunay Tessellation
unterzogen. Dies führt zu einem Cluster von dicht gepackten Tetraedern mit
einer Aminosäure an jeder Ecke. Tropsha definiert so ein Potential, das kein-
erlei Distanzinformation verwendet. Manfred Sippl konnte aber zeigen, dass
ein Potential das solche Distanzinformationen verwendet sehr gute Resultate
liefert. Er definierte sein empirisches Potential aus den paarweisen Distanzen
der einzelnen Aminosäuren und teilte diese Distanzen dazu in Sequenz- und
Euklidische Abstandsklassen ein.
Die Idee dieser Arbeit ist die Verschmelzung dieser zwei Ansätze zu einem
einzigen empirischen Potential, um die Qualität von auf Delaunay Tessella-
tion basierenden Potentialen zu erhöhen. Darüberhinaus wird die Beschrei-
bung der Protein-Lösungsmittel Wechselwirkung dadurch verbessert, dass
explizit eine Wasserschale eingeführt wird.
Diese Arbeit beschreibt die erfolgreiche Verschmelzung der zwei Potentiale
und deren Anwendung in Simulationen von inversen Proteinfaltungen. Die
Computerexperimente zeigen eindrucksvoll eine deutliche Verbesserung gegen-
über Ergebnissen früherer Tessellationsbasierter Potentiale. Aufgrund der
vorliegenden Ergebnisse werden auch weitere Verbesserungsvorschläge ge-
macht, die in dieser Arbeit nicht oder nicht mehr durchgeführt werden konn-
ten.
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1 Introduction 1

1 Introduction

Proteins are the machinery of life. As enzymes, they catalyze almost any

biochemical reaction in the cell with very high accuracy and velocity, lead-

ing to myriads of different products as simple as methane or as complex as

alkaloids. They play the key role in light harvesting during photosynthesis,

converting electromagnetic energy to a potential gradient. They form the cy-

toskeleton and are the main components of hair or the silk of spiders, which

have properties that can not easily be reproduced by other materials.

This versatility is achieved by hetero-polymers composed of 20 different

monomers, the amino acids. All proteins share the same basic outlay, but the

exact sequence of amino acids determines the 3-dimensional structure of the

peptide chain. This 3-dimensional structure is responsible for the different

ways proteins interact with their environment and with each other.

The question of how exactly the sequence of amino acids (primary structure)

determines the 3-dimensional (tertiary) structure is one of the most impor-

tant in contemporary bioscience. It was estimated in 1991 that for every

tertiary structure measured by NMR or X-ray crystallography there were 50

primary structures obtained [12]. With the extensive ”genome projects” in

recent years, it is safe to say that this proportion is even more in favor of

the primary structures today. This leads to a big accumulation of data the

exact meaning of which has yet to be uncovered.

In contrast to nucleic acids, the other class of bio-polymers in cells, where

at least the secondary structure can be predicted reliably [36, 69], for pro-

teins even their secondary structures are hard to predict. This is mainly

attributed to the more or less unspecific hydrophobic interactions involved

in protein folding, which are hardly characterized or measured. Furthermore,

the secondary structure of proteins is defined locally and does not contain

long distance interactions. Therefore, it is not as meaningful as RNA sec-
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ondary structure. Thus, we have to deal with tertiary structure directly.

In principle, it is assumed that the native fold of proteins corresponds to the

minimum of its free energy function W (S). If this function is known, any

sequence S can be assigned to its fold ψ(S). Alas, the number of terms con-

tributing to this function is enormous, depending on the sequence of amino

acids as well as on the natural environment (pH, temperature, ionic strength,

solvent type etc.). Thus finding the minimum of the free energy function is a

hard optimization problem even assuming all the necessary terms are known.

Different ways to solve this problem are used today. The best ones try to find

a protein with known structure and similar sequence and then align the new

sequence to this structure. We know that although there is an astronomic

number of possible amino acid sequences (20n sequences of chain length n)

[52], the number of tertiary structures occurring in nature seems to be lim-

ited, with 90% of the native sequences sharing only 930 stable folds [29] and

a total number between 4000 and 8000 folds estimated [1, 29, 64]. We also

know that there are neutral networks in the sequence space [4, 37], which

can lead to proteins with a high structural but no perceivable sequential ho-

mology. This can of course make it impossible to recognize the correct fold

using the sequence alignment techniques only.

Thus, other ways of finding the tertiary structure of proteins are needed.

Another approach uses known tertiary structures of proteins to try and find

something like ”emergent rules”. By defining different types of interactions,

checking their frequency in a data base and assigning an energy to them,

these so called ”knowledge based” approaches design a potential using sta-

tistical mechanics. These knowledge based potentials, because they are using

coarse grained features of the structure, are potentials of free energy. Thus

they can be used to find the corresponding structure for a sequence. How-

ever, they can not easily be used for sequence-structure alignment, as their
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nature makes it almost impossible to use dynamic programming algorithms.

Another interesting question is the exact opposite one: which sequence will

fold into a given tertiary structure? The versatility of proteins is shown in

many different applications, e.g. catalysts in organic synthesis or cures for

diseases. To be able to tailor proteins for any use, to change e.g. the sub-

strate specificity of an enzyme or the paratope of an antibody, it is preferable

to know a priori whether a mutant protein will retain the desired structure or

not, since the 3-dimensional structure determines the function of the protein.

Knowledge based potentials should be able to fulfill this function, making it

possible to save time and resources when designing mutations or even de

novo proteins.

Other questions not answered to any extent as of now concern the theoretical

background of proteins. How are they able to fold so quickly? How do they

interact with each other and with the other molecules of their native envi-

ronment? While there is a lot of work invested in answering these questions

(see e.g. [53, 60, 63]), they are still far from solved. Thus, new computational

methods and models to help understanding proteins are needed.

In this work, we try to improve a knowledge based potential primarily to be

used for inverse folding of proteins. There is a multitude of different ways

to create knowledge based potentials, as many people have been working on

this field for well over ten years. We use elements of the works of Sippl and

Tropsha [47, 49] to develop a new potential of increased quality. To make

the results of this work available for other scientists, we develop a library of

functions as well as stand-alone programs called SaDSaT accessible over the

Internet.
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2 Theory

2.1 Molecular Force Fields or Knowledge Based Po-

tentials?

The energy of a macromolecular system is a function of its conformational

variables (e.g. Cartesian coordinates or Bond lengths and -angles) plus its

interaction energy with the surrounding solvent. The derivation of the energy

from the conformational variables leads to the force field of the molecule.

Generally we assume that a protein sequence S = (s1, ..., sn) of n amino

acids

si ∈ {A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y}

is related with its structure ψ, represented by the coordinates representing

this amino acids ψ = (x1, ..., xn) via the potential function

V (S, ψ):

ψ = argψ minV (S, ψ)

There are at least two different approaches to designing a molecular force

field:

On the one hand, semi-empirical approaches consider macromolecular sys-

tems as a summation of the forces observed for monomers. These force

fields use quantum mechanic calculations as well as data obtained by ther-

modynamic or spectroscopic measurements on small molecules to generate a

potential for macromolecules.

Knowledge based potentials, on the other hand, try to extract information

out of data bases of macromolecular structures, assuming that the force fields

of macromolecules are of too great complexity and hence the only reliable

source of information are the macromolecules themselves.
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2.2 Force Fields

The principles of force fields (also known as molecular mechanics) are based

upon Newtonian mechanics. The basic idea is that bond lengths, valence

and torsional angles have “natural” values depending on the involved atoms

and that molecules try to adjust their geometries to adopt these values as

closely as possible. Additionally, steric and electrostatic interactions, mainly

represented by van der Waals and Coulomb forces, are included in the so-

called potential. Basic ideas for these calculations go back to the work of

Andrews in 1930 [2], the first serious applications of force field methods date

back to 1946 [33, 24].

The basis of molecular mechanics derives from the accuracy of the Born-

Oppenheimer approximation [9], which describes the motion of the nuclei

of molecules on a so-called “potential surface”, caused by the electronic

structure. The Born-Oppenheimer approximation works because electrons

respond almost instantaneously to changes in nuclear positions.

A typical force field contains a set of several potential functions which them-

selves contain adjustable parameters. These parameters are optimized to

obtain the best fit to experimental values, such as geometries, conforma-

tional energies and spectroscopic properties. It is important to realize that

force fields are usually parameterized for a limited set of molecular properties

and a specific set of molecules. If certain parameters are not experimentally

available, quantum mechanical calculations of representative fragments are

used to obtain the desired values.

Many of the molecular modeling force fields in use today consist of relatively

simple four component picture of intra- and intermolecular forces within the

system (Figure 1.

Etotal = Ebond + Eangle + Etorsion + Enon−bonding

In the simplest approach the energy terms are in detail :
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Bond - Energy:

The energy between two bonded atoms. It increases when the bond

is compressed or stretched. The potential is described by an equation

based on Hooke’s law for springs.

Ebond =
∑

bonds

kb(r − r0)
2

whereby kb is the force constant, r is the actual bond length and r0

the equilibrium length. The equilibrium length as well as the bond

constant have to be acquired for each pair of atom types.

Angle Energy:

The energy of the binding angle of three atoms. It increases if bond

angles deviate from their reference positions. Again the approximation

is harmonic and uses Hooke’s law.

Eangle =
∑

angles

kθ(θ − θ0)
2

kθ controls the stiffness of the angle, θ is the current bond angle and θ0

Non-bonding Interaction

Angle
Bending

Torsion

Bond
Stretching

Figure 1: Four component picture of inter- and intra-molecular forces, adopted from [31]
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the equilibrium angle. Both, the force and equilibrium constant have

to be estimated for each triple of atom types.

Torsion Energy:

The energy of the torsional angle of four atoms. Intra-molecular rota-

tions (around torsions or dihedrals) require energy as well:

Etorsion =
∑

torsions

Vn
2

(1 + cos(nω − γ))

Vn controls the amplitude of this periodic function, n is the multiplic-

ity, and γ the so-called phase factor, shifts the entire curve along the

rotation angle axis ω. Again the parameters Vn, n and γ for all combi-

nations of four atoms have to be determined.

Non-bonding Energy:

The simplest potential for non-bonding interactions includes two terms,

a Van der Waals and a Coulomb term.

Enon−bonding =
∑

i

∑

j>i

(
Aij
r 6
ij

−
Bij

r 12
ij

)

︸ ︷︷ ︸

Van der Waals

+
∑

i

∑

j>i

qiqj
rij

︸ ︷︷ ︸

Coulomb

The Van der Waals term accounts for the attraction and the Coulomb

term for electrostatic interaction. The shown approximation for the

van der Waals energy is of the Lennard-Jones 6-12 potential type.

These simple terms mentioned above can be expanded to adjust the po-

tentials better to experimental results (e.g using Morse potential for bonds,

Taylor expansions with higher terms, cross-terms between the potentials),

but with the disadvantage of higher computational effort. That is the reason

why bio-molecular force fields, e.g. CHARMM [14] or AMBER [45] usually

can not afford to include these refinement terms for the bond, angle and

torsion potential.
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Sometimes force fields include additional potential terms for specific interac-

tions, such as hydrogen bonding, polarization or dipole-dipole interactions.

The most critical term, for biomolecules also, are the non-bonded, mainly

Van der Waals and Coulomb, interactions.

First the number of non-bonded interactions in a molecule grows as n(n−1)
2

,

where n is the number of atoms in the molecule. Choosing a complex term

for the non-bonding interactions results in a tremendous increase in compu-

tational effort. Second, this non-bonded interaction term must include the

solvation effects, because biomolecules usually exist in an aqueous environ-

ment. This solvation has a major influence on the electrostatic forces. It is

included either by explicitly including solvent molecules and counter ions, or

implicitly by representing the solvent as a dielectric continuum and adding

a corresponding term to the force field.

Molecular mechanics plays a crucial role in structure determination by NMR,

where it is used to refine model structures subject to certain constraints. It

is used to minimize the energies of NMR as well as X-ray derived empirical

structures. But there are certain problems if Molecular Mechanics force fields

are to be applied to protein structure prediction. Firstly, it is very hard to

find adequate potentials, for proteins as well as for RNA. Another problem

is the high level of detail of these forcefields, leading to exceptionally high

computational costs. These costs make it impossible to sample the very big

and rugged energy landscapes of proteins.

Furthermore, molecular mechanics force fields do not include the entropy

of the system, so they cannot be used to compute a free energy directly.

To be able to get entropic contributions, molecular dynamics is used. So

the computational problem is not only to find a minimum of the energy

function, but also to compute a trajectory sufficiently long for simulating

entropic effects. Dependent on the protein, this trajectory may have to be

ms or s long, which can, if ever, only be achieved at astronomic computational

costs. So, while it has been shown to be possible to use molecular mechanics
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force fields for discriminating native from mis-folded proteins [40], there are

much faster ways to achieve this.

There are a lot of parameters influencing the final result of the folding. The

question of the best parameter set for any given task is yet to be solved,

and it is even possible that there is none for protein folding, i. e. that

different protein folding problems will need different parameters. Basically,

to find the global minimum of said energy landscape it is necessary to start

at a reasonably close spot - like when minimizing X-ray derived structures.

It is not yet established whether molecular mechanics is accurate enough

to be of use for ab initio folding in principle [56]. Bryngelson [15] states

that to be able to accurately predict protein structures requires monomer-

monomer interaction energies accurate to within 5% to 15%. Ponder et al.

[46] state that while there are no force fields with sufficient accuracy as of yet,

there are many ideas of how to improve the force fields, including electronic

polarizability and simplifying solvent interactions with continuum ideas.

2.3 Knowledge Based Potentials

In contrast to the analytic approach of molecular mechanics force fields,

which can be deduced from first principles, knowledge based potentials are a

more coarse grained approach which uses free energy. They are contributed

to Tanaka [57] and developed by Eisenberg [12] and Miyazawa [41]. Knowl-

edge based Potentials are motivated by the observation that the frequency

of a certain observed structural descriptor is related to its free energy by

statistical mechanics. They assign an energy for a certain event using a like-

lihood. This likelihood of finding any particular event is extracted from a

data base of known structures, a procedure akin to data mining. The in-

crease of information is measured by the log-likelihood ratio of the Bayesian

events [5], the relation of prior expected events and observed occurrences.

The log-likelihood is a kind of measure for the “surprise” provided by the

data base. The physical interpretation of this probability function is founded

on statistical mechanics. Based on the assumption that the native protein
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is at the thermodynamic equilibrium, the low energy elements must occur

more frequently than high energy elements. This dependence of occurrence

on free energy follows a Boltzmann statistic:

focc ∼ exp

(

−
F

RT

)

with R the gas constant, F the free energy and T the conformational tem-

perature.

If the frequency of occurrence can be estimated, it is in principle possible to

gain access to the putative energy of a certain fold ψ(S). This interpretation

of knowledge based potentials, introduced by Manfred Sippl [50], is the basis

for most of contemporary potentials of mean force.

2.3.1 Statistical Thermodynamics of Proteins or the Inverse Boltz-

mann Law

The so called “folding postulate” states, that “In equilibrium the native state

of a protein-solvent system corresponds to the global minimum of free energy”.

This was demonstrated in the pioneer study performed by Anfinsen in 1973

[3]. He was able to show that by reducing and re-oxidating disulfide bonds in

ribonuclease no loss of function occurs, i.e. that folding is a reversible process.

Over the past years many different approaches to potentials of mean force

have been made. The various potential functions are distinct in the definition

as well as in the order of interaction. Therefore different “resolutions” are

used to define the energy functions. The spectrum reaches from an atomic

resolution mode (Sippl [48]) to simplified HP-patterns (Crippen [21], see

Chapter 2.3.4), and a lot in between.

Munson et al. [42] were able to show that increasing the order of interac-

tion improves the statistical significance of the terms. Starting with a highly

significant one body term that counts for the exposures of the residue and

continuing with a pair potential term that contributes to amino acid prefer-

ences (e.g. hydrophobic-hydrophobic interactions) independent of the burial
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status, one can clearly identify that multi-body interactions participate to a

major extent to the overall potential function.

2.3.2 Approximations used in Knowledge Based Potentials

While Boltzmann statistics applies to a thermodynamical ensemble of struc-

tures, knowledge based potentials replace these structures of the thermody-

namic equilibrium with structures represented in a data base. Simplified,

a knowledge based potential uses some kind of structural descriptor D and

assigns an energy eD to it. The free energy E of the molecule is simply the

sum of all the energies for all the descriptors occurring in the molecule:

ES,ψ =
∑

D

eD (1)

Thus it is assumed that these energies are independent of each other, be-

cause otherwise they would not be additive. While this is not true, as there

are relations between the energies, of course, it is necessary to use this ap-

proximation to be able to compute energies at a reasonable computational

cost.

2.3.3 Profiling Potentials

In the simplest application of knowledge based potentials, Eisenberg and

coworkers [12] decided to “translate” the 3d-structures to a 1d-string, using

three parameters:

1. The total side-chain area being covered by any other protein atoms

2. The fraction of side-chain area being covered by polar atoms or water

molecules

3. The local secondary structure

First, the “area buried” and “fraction polar” criteria are used to divide the

environment in 6 classes (see Figure 2). These 6 classes are further decided
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Figure 2: The six environmental classes created using the “area buried” and “fraction

polar” criteria. Adopted from [12]

according to the secondary structure the residues in the respective positions

adopt. The resulting environment classes discriminate buried and exposed

residues, and the subdivision according to secondary structure yields a total

of 18 distinct classes for the 20 amino acids. Since this leads to a 1d string

describing the structure, it is possible to use classical alignment algorithms to

find the most favorable alignment of a protein sequence to the environment

string. All Eisenberg needs to do this is find a scoring matrix. To build this,

a score s = ln
(P(i:j)

Pi

)
is defined for every amino acid on each environmental

class. P(i:j) is the probability to find amino acid i in environment j, and Pi

is the probability to find residue i in any environment. The scoring matrix

(as it can be seen in Table 1), is then extracted out of a data base.

The resulting threading procedure has been successfully employed to identify

sequence-structure pairs and is the basis for the threading procedure used to-

day in many different knowledge based potentials.
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2.3.4 Contact Potentials

Contact potentials can be understood as subgroup of knowledge based po-

tentials. This kind of mean energy function measures the overall energy of a

system as the sum of nearest neighbor contact energies. They differ mainly in

the definition of a contact, e.g. what atoms are chosen to represent the amino

acids, and what are the criteria necessary for a contact e.g. euclidean distance

only. For a discussion of the quality of different amino acid representations

see [7]. The most prominent examples of contact potentials are:

Crippen’s Simplified Potential

To obtain a simplified representation of hetero-polymers Ken A. Dill intro-

duced the concept of lattice polymers [18]. When used to model proteins,

each amino acids occupies one positions on the grid of the lattice. Con-

formations of lattice polymers are represented by self-avoiding walks, short

SAWs. Hence this method greatly reduces the conformational space of the

optimization problem. On a lattice bond lengths are, of course, always con-

stant, furthermore potentials for lattice proteins usually neglect bond angles

and dihedrals. Instead they focus on non-bonding interactions of topological

neighbors.

In Crippen’s potential the energy for the pair interaction is written as:

E(s,x) =
∑

i,j

Ψ[s(i), s(j); |i− j|; dL(xi,xj)]

The individual interaction terms Ψ depend on the type s(i) and s(j) of

residues, on their separation |i − j| along the chain and on the euclidean

distance dL(xi,xj) of the lattice points. Introducing g(dL(xi,xj)) as cut off

distance depending on xi and xj , the potential function

Ψ[s(i), s(j); |i− j|; dL(xi,xj)] = U [s(i), s(j); |i− j|]g(dL(xi,xj))

is then normalized such that the contribution of the nearest neighbor reduces

to U [s(i), s(j); |i− j|].
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Crippen [20] extracted a contact matrix of the form:

U [s(i), s(j); |i− j|] =






−0.008

0.004

0.021

if |i− j| = 3

if |i− j| = 4

if |i− j| = 5, 6, 7







−0.012 −0.074 −0.054 0.123

−0.074 0.123 −0.317 0.156

−0.054 −0.317 −0.263 −0.010

0.123 0.156 −0.010 −0.004








if |i− j| ≥ 8

from a structural data base where the matrix entries correspond to the four

amino acids classes:

1 = {G Y H S R N E}

2 = {A V}

3 = {L I C M F}

4 = {P W T K D Q}
A further simplification of the potential can be obtained by restricting the

amino acid alphabet to just two classes: H for hydrophobic amino acids and

P for polar residues. For a review of HP based potentials see [19, 23]

Crippen recently used the described potential in kinetic simulations and cal-

culations of denaturation curves [21]. These computer experiments showed

that folding kinetics largely depend on the coding scheme and that the results

obtained by using the Crippen alphabet differ strongly from calculations for

spin-glass encoded SAWs [27, 28].

Tropsha’s Four-Point Potential

Avoiding the arbitrariness of a binned distance, A. Tropsha introduced an

approach from computational geometry to knowledge based potentials [47,

66, 67]. He suggested to represent the protein structure as a set of points in
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3d. For simplification only Cα atoms were chosen as model for the backbone.

This set of points is tessellated using the Delaunay triangulation. The result

of this geometric procedure is a partitioning of the space included by the

set into irregular tetrahedrons with the points as vertices. The quadruple of

amino acids represented by these points are considered to be nearest neigh-

bors. The advantage of this method is that it is parameter free, the list of

tetrahedrons is non-ambiguous.

If one counts the occurrence of all possible neighborhood combinations of

the amino acids in a structural dataset, a log-likelihood function can be

constructed easily. This function can then be used to test if a given sequence

yields favorable contacts when threaded to a certain structure — in one word

inverse folding.

Since the implementation of a Tropsha-based potential is the core part of

this work, it will be discussed in section 2.5.4 in depth.

2.3.5 Lapedes’ Neural Network NN Potential

Alan Lapedes et al. [30] developed a potential with multi-body interactions,

parameterized in “local neighborhoods” for each residue. He generalized

other threading approaches, and ended up in a statistical interpretation. To

employ a neural net for finding a log-likelihood ratio containing higher order

terms of interaction, it is necessary to find a suitable representation of the

available structural information. To tackle this problem an internal coordi-

nate system is defined, setting the Cα-atom to the center, and constructing

two vectors pointing to the neighboring chain atoms: C and N . This plane

has been shown to have an almost constant angle, and a third dimension is

spanned by the cross product of
−−→
CαN×

−−→
CαC. Further a binned sphere is con-

structed around the center (Cα-atom) of the coordinate system, representing

a “neighborhood shell” of residues. To order this shell to spatial residues,

the sphere is split into a predefined number of finite, binned sub-shells.

The chain neighbors, carrying information necessary for secondary structure,

can be included as well. The M bins are filled with integers mimicking the



2 Theory 17

20 amino acids, describing the surrounding of a particular Cα atom. The

neural net is trained on the PDB Select database, and parameters as number

of sub-bins, bin size, or bin resolution were varied. Approaches for Cβ as a

core atom showed better results in threading experiments.

The usage of the internal coordinate system enables Lapedes to construct

a potential not only dependent on the distance of the contacts, but also on

their direction. This is achieved by dividing the spheres constructed into 8

quadrants and treating contacts differently according to what quadrants take

part in the contacts.

2.3.6 Atom-Atom Potentials

While other potentials use only one point, Cα, Cβ or the center of mass of an

amino acid to represent a residue, atom-atom potentials use all heavy atoms

of a protein, which are all atoms except Hydrogen atoms.

The reversible energy required to bring two particles close to each other at

constant volume is given by the potential of mean force or Helmholtz free

energy of the system. It is related to the radial distribution function g(r) by:

w(r) = −kT ln[g(r)]

and can give insights to protein folding and the role of specific interaction in

native structures (e.g. H-bonds). The distribution function for arbitrary sets

of atom-atom interactions occurring in proteins can either be obtained by

diffraction experiments, or they are extracted from a data base of structures.

The two differently obtained functions turn out to be equal, if the distance

distributions are similar. The knowledge based distribution function is ac-

cessed by the determination of

ρab(r) =
∑

ab

δ(r − rij)

as the sum over all distinct pairs ab within the radius r in a protein library.

The observed density is compared with a bulk of non interacting particles to
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finally obtain the distribution function:

gab(r) =
ρab(r)

ρ

The potentials using these distribution functions are perfectly suited for a

detailed analysis of spatial distributions of atom contacts along a protein

chain [48]. To make use of an atom-atom based potential, one has to know

the Cartesian coordinates for all residues in a poly peptide chain. Therefore

this approach is of no use to solve the inverse folding problem, as targeted

by our group.

2.3.7 Sippl’s PROSAII Potential

Sippl also implemented a pair potential in his software package PROSAII

[49, 17, 50, 51]. The program was designed to determine the correctness of

an experimentally derived structure under use of a quality factor score. The

potential function used is a superposition of a pair-potential and a surface

potential:

W (x, ψ) =
∑

i<j

Wγ

[
xi, xj, |i− j|;dγi,j

]
+

∑

i

Vγ [xi;χ(i)]

The first term Wγ stands for the pair contribution, Vγ is the surface part of

the potential and both terms depend upon the backbone atom type γ (Cα or

Cβ). The pair-potential is calculated between amino acids xi and xj , located

at position i and j of the sequence x. dγi,j is the Euclidean distance of the

contributing amino acids. Using a particular surface term is caused by the

observation that solvent-protein interactions can be used to model amino

acid energies more accurately [10, 12, 11]. The parameter χ represents a

quantitative measure for the extent of surface exposure of amino acid x. The

potential function as described by the parameters Wγ

[
xi, xj , |i− j|;dγi,j

]
and

Vγ [xi;χ(i)] are extracted from a representative PDB-subset, applying the

Boltzmann principle, and distributed with the PROSAII-package.
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Because PROSAII only uses the Cβ (or Cα) atoms of the backbone, and cal-

culates the probability of finding two residues within a spatial distance, it is

quite well suited for inverse folding studies.

2.3.8 Problems of Knowledge Based Potentials

Thomas and Dill used a lattice model with the simple HP differentiation

to test some of the principles underlying statistical potentials [58]. Creating

model proteins on a 2D lattice, they used different potentials, e.g. Sippl’s, to

extract the energies of contacts and compare them with the energies used to

create the model structures. Some weaknesses of knowledge based potentials

were discovered thus.� The extracted energies depend on the length of the model chains.� Most of the parameters of the knowledge based potentials seem to be

redundant.� The extracted energies depend on the amino acid composition.� The extracted energies depend on the surface-to-volume ratio of the

proteins.� The choice of a relevant temperature for the Boltzmann distribution

law is strongly dependent on the choice of proteins in the data base.� Extracted energies can therefor only qualitatively approximate true

energies.

Some of these problems have obvious reasons. The dependence of the chain

length is easily explicable when using distance dependent potentials - the

bigger a protein, the more long-range interactions are there. The dependence

on the surface-to-volume ratio is similar - the more surface there is, the more

likely it is for a H amino acid to be at the surface. The same is true for

the amino acid composition - the more H a protein contains, the more likely
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it will be at the surface, feigning a more favorable energy for such a surface

contact.

The seeming redundancy is due to the well known fact that H prefer the hy-

drophobic core of the protein. A model potential using only this information

does score almost as well as much more sophisticated potentials.

Some of these problems, while they may be grave, do not really affect the

main applications of knowledge based potentials. If the threading procedure

and the z-score (Chapter 2.4) is used, the Boltzmann temperature only scales

the energies and does not affect their relative order. Since the extracted

energies are only compared to other extracted energies, the lack of physical

accuracy can also be neglected.

For other problems, like the dependence on amino acid composition, chain

length and surface-to-volume ratio, it must be attempted to keep the errors

small by using a data base as diverse as possible.

2.4 Energy and Z-score

Statistical analysis of the Delaunay tessellation of a protein yields the q

factors for the occurring quadruples as the likelihood of finding this particular

contact within the structure. Based on equation 4, it is possible to define the

energy of a sequence S on a fold ψ as the sum over the log-likelihoods of all

contacts that occur in ψ:

W (S, ψ) =
∑

contacts

qcontact (2)

where qcontact is the statistic likelihood of a quadruple.

However since the determination of the ground state for each sequence would

require to solve the folding problem, it is not possible to normalize the energy

function. But defining a quantity called z-score as an energy separation

between the native fold and the average of an ensemble of mis-folds in the

units of standard deviation of the ensemble, can be used for constructing

an energy scale by which conformations between different sequences can be
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compared. Following Sippl [17, 49, 50, 51] we define

z(S, ψ) =
W (S, ψ) −W (S)

σW (S)
(3)

where W (S) is the average energy of sequence S in all conformations of a

data base and σW (S) denotes the standard deviation.

The data base has to be a source of alternative conformations for the se-

quence S with length N . If the data base size x of possible structures is set

to a fixed number, the number of possible decoys is a function of the sequence

length l. So for the limit l → N the data base becomes insignificant. This

problem has been circumvented by the construction of a “poly-protein” by

linking all structures that are initially constructed for the measurement of

the log-likelihood.

The sequence of the protein to be tested is slid along this aggregate of pro-

teins from the N- to the C-terminus of the structural library amino acid by

amino acid. For each aligned structure a z-score is calculated and counted

as “mis-fold” to the ensemble, therefore it does not make too much sense

to use a member of the dataset for testing the threading capabilities of the

potential via the z-score . If n ∼ 40.000 is the length of the poly-protein,

n − l miss-folds can be constructed. Since n ≫ l this number of sequence-

structure pairs is of the same order of magnitude as the poly-protein length.

This computational brute force attack is sufficient if it is not necessary to

have gaps within the sequence-structure alignment. Otherwise more sophis-

ticated techniques must be used.

An experimental test of the z-score using thermodynamic data could demon-

strate the definite significance of the scale [65]. A z-score range from 15-30

for small native proteins could be observed. The magnitude of these scores

shows the need to improve existing potentials. The scores derived from exist-

ing potentials are in the range of 5-20, so there is still room for improvement.
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2.5 Delaunay Tessellation

As mentioned above, A. Tropsha introduced a computational geometry ap-

proach, Delaunay Tessellation, to knowledge based potentials.

The common meaning of “tessellation” is to arrange squares in a mosaic

pattern. The term derives from the Greek word “tesseres” which means

four. Generally tessellating can be understood as arranging regular polygons

congruently (all angles and sides are equal) in a plane with edges attached

to each other. Only three regular polygons tessellate in the Euclidean plane:

triangles, squares and hexagons (Figure 3). By extension, higher dimensional

spaces can also be tessellated.

Figure 3: Tessellations in two dimensions. Figure adopted from [61]

The Delaunay triangulation tessellates a set of points in R3 in the sense of

filling space with tetrahedrons. The Delaunay triangulation is computed via

its dual, the Voronoi diagram.

2.5.1 The Voronoi Diagram

Given a set S of n distinct points in R
d, a Voronoi diagram is the partition

of R
d into n polyhedral regions vo(p), (p ∈ S). Each region vo(p), called the

Voronoi cell of p, is defined as the set of points in R
d which are closer to p

than to any other points in S, or more precisely,

vo(p) = {x ∈ R
d|dist(x, p) ≤ dist(x, q)∀q ∈ (S − p)}

where dist is the Euclidean distance function. The set of all Voronoi poly-

hedrons forms a cell complex. The vertices of this complex are called the
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Voronoi vertices, and the extreme rays (i.e. unbounded edges) are the

Voronoi rays.

For each point v ∈ R
d, the nearest neighbor set nb(S, v) of v in S is the set

of points p ∈ S − v which are closest to v in Euclidean distance. In order to

compute the Voronoi diagram, the following construction is very important.

For each point p in S, consider the hyperplane tangent to the paraboloid in

R
d+1: xd+1 = x2

1 + · · · + x2
d. This hyperplane is represented by h(p):

d∑

j=1

p2
j −

d∑

j=1

2pjxj + xd+1 = 0

By replacing the equality with inequality ≥ above for each point p, we obtain

the system of n inequalities, which we denote by b−Ax ≥ 0. The polyhedron

P in R
d+1 of all solutions x to the system of inequalities is a lifting of the

Voronoi diagram to one higher dimensional space. In other words, by pro-

jecting the polyhedron P onto the original R
d space, we obtain the Voronoi

diagram in the sense that the projection of each facet of P associated with

is exactly the Voronoi cell vo(p). The vertices and the extreme rays of P

project exactly to the Voronoi vertices and the rays, respectively.

2.5.2 Delaunay Triangulation

Let S be a set of n points in R
d. The convex hull conv(nb(S, v)) of the

nearest neighbor set of a Voronoi vertex v is called the Delaunay cell of v.

The Delaunay complex (or triangulation) of S is a partition of the convex

hull conv(S) into the Delaunay cells of Voronoi vertices.

The Delaunay complex is not in general a triangulation but becomes a trian-

gulation when the input points are non-degenerate, i.e. no d + 2 points are

co-spherical or equivalently there is no point whose nearest neighbor set has

more than d+1 elements. The Delaunay complex is dual to the Voronoi dia-

gram in the sense that there is a natural bijection between the two complexes

which reverses the face inclusions.

There is a direct way to represent the Delaunay complex, just like the Voronoi
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diagram. In fact, it uses the same paraboloid in R
d+1 : xd+1 = x2

1 + · · ·+ x2
d.

Let f(x) = x2
1 + · · · + x2

d, and let p̃ = (p; f(x)) ∈ R
d+1 for p ∈ S. Then

the so-called lower hull of the lifted points represents the Delaunay complex.

More precisely, let

P = conv(S̃) + noneg(ed+1)

where ed+1 is the unit vector in R
d+1 whose last component is 1. Thus P is

the unbounded convex polyhedron consisting of conv(S̃) and any nonnegative

shifts by the “upper” direction r. The nontrivial claim is that the boundary

complex of P projects to the Delaunay complex: any facet of P which is not

parallel to the vertical direction r is a Delaunay cell once its last coordinate

is ignored, and any Delaunay cell is represented this way.

Considering a set of point in R
3 the Delaunay triangulation describes an

algorithm to decompose the convex hull of these points into tetrahedrons.

2.5.3 The qhull Algorithm

As previously described, the first step in generating the tessellation built from

the irregular tetrahedron is finding the convex hull, which is the smallest

convex set of points containing the entire set. The hull is represented by a

set of facets and a set of adjacency lists giving the neighbors and vertices for

each facet. In R
3 facets are triangles and ridges are edges. The Delaunay

triangulation in R
d is calculated from a convex hull in R

d+1 by lifting the

points to a paraboloid by adding the sum of the squares of the coordinates

and computing their convex hull, the set of ridges of the lower convex hull is

the Delaunay triangulation of the original set.

The qhull algorithm [13] is a variation of the randomized incremental algo-

rithm, employing a constructed additional point at the hull to decide which

facet belongs to it. The point is outside the facet if it is above the set and in

the qhull variation of the original version, the point is not created randomly,

but at the furthest distance from the outside set. This method is used in

the program qhull which is publicly available via the Internet1. It has been

1http://www.geom.uiuc.edu/software/download/qhull.html
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Figure 4: Voronoi diagram of a set of points in 2d: The Delaunay triangulation can easily

be computed via its dual, the nearest neighbors of each Voronoi vertex are connected in

the Delaunay diagram. Voronoi cells are shown with dashed lines. Figure adopted from

[61]

shown empirically that this algorithm is especially efficient and well suited

for a 3d set of points[13].

This algorithm of triangulation can be applied to any set of points in space,

always objectively describing neighborhood. Representing amino acids of a

poly-peptide chain by an atom (e.g. Cα or Cβ) leads to a regular set of

points in 3d space. This set can be tessellated applying the rules described

above. The Voronoi polyhedron is now the region around an atom, each side

describes a contact to a neighbor. The underlying Delaunay simplices are

irregular tetrahedrons with an amino acid positioned at each corner. This

diagram can be employed to describe contacts of amino acids objectively in

3d space. Figure 5 shows the Delaunay tessellation of a protein.
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Figure 5: Delaunay tessellation of crambin (pdb-code 1ab1), the tessellation was com-

puted using a water shell, for clearance the tetrahedrons of the water shell have been

omitted. Green is the ribbon representation of the backbone, blue are the Cβ atoms, red

the Delaunay tetrahedrons.
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2.5.4 Empirical Protein Potentials from Delaunay Tessellation

2.5.5 Four Body Contact Potentials

Based on the fact that four neighboring points in space form an irregular

tetrahedron, applying the Delaunay tessellation to a set of points in 3d results

in a contact potential. The likelihood of finding a distinct set of labeled points

in this set can be expressed as:

qijkl = log
fijkl
pijkl

(4)

where i, j, k, l are four amino acids, fijkl is the observed normalized frequency

of occurrence of a given quadruple, and pijkl is the a priori expected frequency

of occurrence of a given quadruple. So qijkl is a measurement of likelihood

for finding four distinct amino acids in a simplex, namely a log-likelihood.

The observed frequency fijkl is calculated by dividing the total number of

occurrences of each quadruple by the number of all observed quadruples.

pijkl = βaiajakal (5)

where ai, aj , ak, and al denote the individually observed frequency of occur-

rence of each amino acid residue. That is the total number of occurrence

of a distinct amino acid type divided by the total number of residues in the

dataset. β is the combination factor, accounting for the fact that replicated

residue types are underestimated due to permutability. β is defined as (refer

to appendix (B) for explicit values of β):

β =
4!

∏k
i ti!

(6)

with k being the number of distinct residue types in a quadruple and ti is

the number of amino acids of type i.

Applying this procedure to a predefined set of experimentally derived protein

structures leads to a potential of mean force. The calibration dataset has to

be selected with care, since this selection determines the discriminative power
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of the force field. Parameters like the protein type (e.g. globular, membrane,

soluble etc), the type of backbone atom used for tessellation and any kind

of selection of tetrahedrons (i.e. filtering) have to be kept constant for the

parameter set.

Besides using a simple four point contact potential

Ei,j,k,l =
f expi,j,k,l

f obsi,j,k,l

,

where every amino acid is represented by its Cα atom Carter et al. [16]

have shown recently that this type of potential can be used for correlating

stability and hydrophobic core mutations. They used the center of mass of

the amino acids instead of the Cα and the tetrahedrons of the hydrophobic

core exclusively for modeling the energy differences caused by mutations in

the hydrophobic core. The correlation to experimental results they achieved

was better than that of distance-derived statistical potentials. That seems

to back the physical validity of this type of four point contact potentials.

Weberndorfer et al. improved the performance of a four point potential by

dividing it into a core and a surface potential and using the Cβ for amino acid

representation [62]. They also tried to improve the statistics of this approach

by using smaller amino acid alphabets.
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3 The SaDSaT Potential

Compared to Sippl’s PROSAII potential, the 4 point potentials introduced

by Tropsha and used by Weberndorfer and Carter neglect sequence separa-

tion and euclidean distances, which were shown to have a significant impact

on the quality of Sippl’s potential. Therefore, we try to introduce these

two descriptors as well as a different way to treat the surface interactions

into a tessellation potential, the SaDSaT (Sequence and Distance Separation

applied to Tessellation) potential.

For SaDSaT we use Cβ atoms only to represent the residues of the protein.

While keeping the number of points to be tessellated small, usage of Cβ in-

stead of Cα gives at least some information about the position of the side

chain represented by the Cβ. Of course for Glycine, lacking a Cβ atom, it

has to be designed.

3.1 Overview of Innovations

3.1.1 Distance Classes

In principle, introducing sequence and euclidean distance classes is straight-

forward, but simply adding these classes to the tetrahedrons obtained by

tessellation is not feasible. There are 8855 different combinations of 4 amino

acids and hence different possible tetrahedrons for the tessellation. But even

if we were to distinguish only 4 classes at the edges, the number of possible

tetrahedrons rises to 6455295. Obviously, there is not enough data available

to do reliable statistics on that. In our database, the total number of tetra-

hedrons is about 1.5 million. So we cannot use this more detailed approach

on the tetrahedrons.

On the other hand, there is sufficient data to distinguish an even bigger num-

ber of classes at pair level, so, to overcome those difficulties, we try to split

the potential of the tetrahedrons.

Joint probabilities can be expressed as conditional probabilities as follows:
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log p(A ∧ B ∧ C) = log p(A ∧ C) + log p(B|A ∧ C)

That can be the starting point for an approximation, if B is considered to

be independent of C. We then assume that:

log p(B|A ∧ C) ≈ log p(B|A)

and

log p(A ∧ B ∧ C) ≈ log p(A ∧ C) + log p(B|A)

While it may be infeasible to sample A, B and C together, we now have only

A and C as well as B|A to consider. To apply this to our tessellation, we first

decompose our 4 point potential into pair, triangle and tetrahedron terms:

∑

tetrahedron

qtetrahedrons =
∑

AAs

q∗AA +

∑

pairs

q∗pair +

∑

triangles

q∗triangle +

∑

tetrahedrons

q∗tetrahedron

where the q∗ are dependent probabilities, i.e. q∗tetrahedron is now dependent on

the observed frequencies (fobs) of the triangles, the same is true for triangles

and pairs and pairs and amino acids.

After the decomposition, we can now begin to deal with the individual terms.

In each term, we will define an energy contribution as

∆E = log(fobs/fexp)

getting a positive energy for events that happen more often than expected.

The sign is of course exactly wrong physically speaking, but more convenient

for computation.
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3.1.2 Surface Terms

The surface of a globular protein is very different to its core. Generally,

the amino acids in the core are the hydrophobic ones, whereas hydrophilic

amino acids tend to be at the surface. In contrast to Weberndorfer’s approach

[62], which basically distinguishes between surface and core tetrahedrons, we

decided to use explicit water molecules as shown in [68] to simulate surface

interactions. The water was incorporated as 21st “amino acid” into the

potential, although we will later see that it was not treated exactly like the

other 20.

While finding the parts of tetrahedrons which are on the surface is a yes/no

differentiation, using explicit water molecules can give us additional infor-

mation concerning the degree of surface exposure. However, it is important

to remember that because only Cβ atoms are used for generating the virtual

solvent molecules respectively the surface tetrahedrons, only a crude approx-

imation of the surface can be achieved. It is crucial for the performance of a

potential to carefully balance the contribution of the surface term, no mat-

ter how it is computed, and the hydrophobic interactions in the core of the

protein.

3.2 Pairs

The pair-term, with only 210 different pairs possible, is the term where dif-

ferent sequence or euclidean classes can be applied while retaining sufficiently

reliable statistics. Following Sippl, we divide the continuous euclidean dis-

tances of the Cβs into distinguished classes, as well as assigning different

classes for the sequential separation of the contacts. Note that the difference

to Sippl’s PROSAII potential is simply the definition of a contact, here being

amino acids participating in the same tetrahedron.

The expected frequency of an amino acid pair a, b, in the sequence distance
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class x and the euclidean distance class y is:

f expa,b,x,y = βa,bpapb

∑

a,bNa,b
∑

a,bNa,b,x,y

(7)

with Na,b the number of pairs a, b in the database, Na,b,x,y the number of pair

a, b in the sequence class x and the euclidean class y in the database, pa and

pb are the frequencies of the amino acids in the data base and the binomial

coefficient β (Appendix B) necessary because there is no way to distinguish

between a pair a, b and a pair b, a.

While Sippl’s potential uses 20 euclidean distance classes with a size of 2

Å [32], due to the nature of the tessellation, where the maximum distance

between Cβs is about 10 Å, the number of euclidean distance classes sensibly

used here will be a lot smaller, namely two to three distance classes of various

length (Chapter 4.1.3).

3.3 Triangles

In order to compute the expected frequencies of a triangle dependent on the

frequencies of the pairs, the natural choice are expected frequencies which

conform to the Principle of Maximum Entropy.

3.3.1 Principle of Maximum Entropy

The formulation of a pair-dependent expected frequency of triangles leads to

an optimization problem. We use the so called Maximum Entropy Principle

as a means to assign numerical values to probabilities we have certain infor-

mation about. It states that, given a set of n mutually exclusive events, the

probability values p(n) have to be chosen such that the (Shannon) entropy

of the distribution p = (p1, ..., pn), i.e. the expression

H(p) = −
∑

i

pi ln pi (8)
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attains its maximum value under the condition that p agrees with the in-

formation given. The boundary conditions are usually integrated using La-

grange multipliers λ. So for the boundary condition
∑

i pi = 1

H(p) = −
∑

i

pi ln pi + λi

(∑

i

(pi) − 1
)

(9)

is used.

3.3.2 Application

With the maximum entropy approach we use equation (9) to maximize the

entropy of the expected frequencies of the triangles, Pa,b,c, with the boundary

conditions that the triangle frequencies are dependent of the pair frequencies,

i.e. that

∑

c

Pa,b,c = Pa,b

∑

a

Pa,b,c = Pb,c

∑

b

Pa,b,c = Pa,c

where Pa,b, Pa,c and Pb,c are the frequencies of the respective pairs in the data

base. This leads to

H =
∑

a,b,c

Pa,b,c lnPa,b,c

+ λa,b

(∑

c

(Pa,b,c) − Pa,b

)

+ λb,c

( ∑

a

(Pa,b,c) − Pb,c

)

(10)

+ λa,c

(∑

b

(Pa,b,c) − Pa,c

)

→ max
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or, for easier differentiation:

H =
∑

a,b,c

Pa,b,c
(
lnPa,b,c − 1

)

+ λa,b

(∑

c

(Pa,b,c) − Pa,b

)

+ λb,c

( ∑

a

(Pa,b,c) − Pb,c

)

(11)

+ λa,c

(∑

b

(Pa,b,c) − Pa,c

)

→ max

so:
∂H

∂Pa,b,c
= lnPa,b,c + λa,b + λb,c + λa,c = 0 (12)

and

Pa,b,c = eλa,beλb,ceλa,c (13)

We did not succeed in solving this problem analytically, but because of

∂2H

∂P 2
a,b,c

=
1

Pa,b,c

we know this equation to have only one maximum.

So we used a maximizer, donlp22 [54, 55], which uses a sequential quadratic

programming method, to numerically maximize

H =
∑

a,b,c

Pa,b,c
(
lnPa,b,c − 1

)
(14)

using 210 boundary conditions of the type

Pa,b = eλa,b +
∑

c

(
eλa,ceλb,c

)
(15)

donlp2 switches between two different approaches for convergence to the so-

lution; A fast if not that reliable way if certain conditions hold, and a slow

but reliable way if they don’t. This leads to a fast, reliable convergence of

2ftp://ftp.mathematik.tu-darmstadt.de/pub/department/software/opti/
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the solutions.

Since it is not possible to analytically solve this type of problems, testing the

results is not possible directly. However, we tested the results of a “regular”

subtype of problems, i.e. problems where Pa,b = βPaPb and found donlp2 to

be able to solve these problems correctly. Another test we performed is using

different starting values for the computations. The results were almost equal,

differing only at the� level, only the time needed for computation changed.

While these tests indicate that the results we obtained are plausible, directly

testing them would be preferable.

To achieve this, another approach to solve this type of maximum entropy

problem, called iterative proportional fitting (e.g. [25]), could be used. This

procedure is a calibration technique for estimating cell frequencies of a matrix

(in our case the ptriangles) using known marginals (in our case the ppairs) un-

der the condition that the marginals are reproduced. It is implemented as a

three step iterative algorithm starting with equal distribution. Convergence

with respect to our kind of problem has been shown ([22, 38]). The iterative

proportional fitting procedure can be visualized as trying to find the inter-

secting line of two planes. Starting somewhere above that line, alternating

projections onto the two planes will yield a zig-zag curve converging to the

intersection. In this picture, the planes stand for sets of distributions having

one of the required marginals.

3.4 Tetrahedrons

In principle, the expected frequency of tetrahedrons can be computed similar

to that of the triangle part, but instead of 400 or, considering the symmetry

of the problem, 210 different exponents we would have to compute 8000,

which, alas, is not possible with donlp2.
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3.4.1 Computation using Triangles

To come up with a triangle dependent expected frequency of a tetrahedron,

we begin with solving the regular case, i.e. the case where the pair frequencies

Pa,b, the triangle frequencies Pa,b,c and the tetrahedron frequencies Pa,b,c,d are

all regularly computed out of the amino acid frequencies pa, using β, the

binomial coefficient first introduced in chapter 2.5.5:

Pa,b = βa,bpapb (16)

Pa,b,c = βa,b,cpapbpc (17)

Pa,b,c,d = βa,b,c,dpapbpcpd (18)

To get an expression for the tetrahedron frequencies dependent on the trian-

gle frequencies, we write

Pa,b,c,d = βa,b,c,dPa,b,cPa,c,dPa,b,dPb,c,d · Ta,b,c,d (19)

with Ta,b,c,d a factor we now try to compute using equation (17).

We obtain

Pa,b,c,d = βa,b,c,dβa,b,cpapbpcβa,b,dpapbpdβa,c,dpapcpdβb,c,dpbpcpdTa,b,c,d (20)

and

Pa,b,c,d = βa,b,c,dβa,b,cβa,b,dβa,c,dβb,c,dTa,b,c,dp
3
ap

3
bp

3
cp

3
d (21)

Since Pa,b,c,d = βa,b,c,dpapbpcpd, we can compute Ta,b,c,d:

Ta,b,c,d =
1

βa,b,cβa,b,dβa,c,dβb,c,dp2
ap

2
bp

2
cp

2
d

(22)

or

Ta,b,c,d =
1

3
√

βa,b,cβa,b,dβa,c,dβb,c,d(Pa,b,cPa,b,dPa,c,dPb,c,d)2
(23)

For the expected frequency of the tetrahedron in the regular case we then

get:

Pa,b,c,d =
βa,b,c,d

3
√
βa,b,cβa,b,dβa,c,dβb,c,d

3
√

Pa,b,cPa,b,dPa,c,dPb,c,d (24)
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with the binomial coefficients β listed in appendix(B).

However, very small problems of this type can be solved numerically, and

the results show that the regular case can not be applied here. Because Pa,b,c

is not linearly dependent on pa, pb and pc, we try to adapt the expected

frequencies by trying to find a correction similar of form to e.g. Van der

Waals gas laws in thermodynamics [59].

Trial and error lead to a correction of the form P ′

a,b,c,d = Pa,b,c,dfcorr:

fcorr =
βa,b,c

∑

b,c Pa,b,c
∑

a,c Pa,b,c
∑

a,b Pa,b,c

Pa,b,c

+
βa,b,d

∑

b,d Pa,b,d
∑

a,d Pa,b,d
∑

a,b Pa,b,d

Pa,b,d

+
βa,c,d

∑

c,d Pa,c,d
∑

a,c Pa,c,d
∑

a,d Pa,c,d

Pb,c,d
(25)

+
βb,c,d

∑

c,d Pb,c,d
∑

b,c Pb,c,d
∑

b,d Pb,c,d

Pb,c,d

Where fcorr is to be understood as a measure of how much the triangle

terms deviate from the regular case. We were not able to explain why this

correction factor is better than any other, or even why it should be applied

in this particular way in the first place.

Because this condition was extremely unsatisfying, we tried to work out a

way around this problem:

3.4.2 Tetrahedrons dependent on Pairs

Since the usage of triangles is not compulsory, we decided to omit the triangle

term and use the following approach:

∑

tetrahedron

qtetrahedrons =
∑

AAs

q∗AA

+
∑

pairs

q∗pair (26)

+
∑

tetrahedrons

q∗tetrahedron
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where the q∗tetrahedron are now dependent on the pair frequencies. As done with

the triangles above, we compute the expected frequencies using donlp2.

H =
∑

a,b,c,d

Pa,b,c,d(lnPa,b,c,d − 1)

+ λa,b

(∑

c,d

(Pa,b,c,d) − Pa,b

)

+ λa,c

(∑

b,d

(Pa,b,c,d) − Pa,c

)

+ λa,d

(∑

b,c

(Pa,b,c,d) − Pa,d

)

+ λb,c

(∑

b,d

(Pa,b,c,d) − Pb,c

)

+ λb,d

(∑

a,c

(Pa,b,c,d) − Pb,d

)

+ λc,d

(∑

a,b

(Pa,b,c,d) − Pc,d

)

→ max (27)

∂H

∂Pa,b,c,d
= lnPa,b,c,d + λa,b + λa,c + λa,d + λb,c + λb,d + λc,d = 0 (28)

and therefore:

Pa,b,c,d = eλa,beλa,ceλa,deλb,ceλb,deλc,d (29)

Again, the solution is unique since H is concave

∂2H

∂P 2
a,b,c,d

> 0

and
∂2H

∂Pa,b,c,d∂Pa′,b′,c′,d′
= 0

if

(a, b, c, d) 6= (a′, b′, c′, d′)

The numerical solution of the system of equations is feasible using donlp2

because while there is a great number of Pa,b,c,d, there are only 210 eλs. The
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results computed by donlp2 were tested again by using the regular case and

different starting values. Again, tests indicated that the results produced by

donlp2 are plausible.

3.5 Surface

3.5.1 Water Shell

Weberndorfer et al. [62] used a simple approach to determine whether an

amino acid is part of the surface of a protein or not.

The face of a tetrahedron is either shared with another tetrahedron, or it is

part of the surface. Thus, every amino acid being part of such a face of a

tetrahedron is considered to belong to the surface of the protein. Instead of

this yes/no type of decision, we tried to work out a way to not only consider

whether an amino acid is part of the surface, but also the degree of surface

exposure. So, following Zimmer [68], we introduced an artificial solvent to

our computations.

To simulate the surface interactions between the protein and its solvent, we

use a “shell” of virtual water molecules. This shell is generated after reading

the coordinates of the protein backbone. The generated water molecules are

then tessellated along with the amino acids.

When doing this, it is important to find a compromise between the resolution

of the water shell and the necessary computational effort. Too many water

molecules raise the time of computation and the memory capacities needed

significantly, while a too coarse grained water shell will give a poor resolution

of the surface. A big shortcoming of using only one atom to represent an

amino acid is also that there is no way to tell where the side chains of the

amino acids are, making it impossible or at least very improbable to correctly

assign all the surface amino acids and find cavities within the correctly shaped

protein. As an artificially introduced cavity would cause a big error in the

potential, the probability to miss some amino acids which are part of the
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surface has to be accepted.

In order to generate a water shell, we first generate a box filled with water

on a cubic grid. The box is made by taking the maximum extension of

the protein, expanding it by 2(dmin + 2ghoh), the minimum distance between

water molecules and Cβ and the distance and 2 times the grid distance. We

get a box of water with dimensions:

xboxmin = xproteinmin − (dmin + 2ghoh)

xboxmax = xproteinmax + (dmin + 2ghoh)

yboxmin = yproteinmin − (dmin + 2ghoh) (30)
...

The second step is removing all the water molecules which get closer than

the cutoff distance dmin to the Cβ atoms of the protein, generating a roughly

“protein shaped” hole in the water grid. Then all the water molecules too

��
��
��
��

����

Figure 6: Illustration of the water eliminating procedure. Red is the Protein backbone

with the Cβs, the surrounding water molecules have been expelled. Starting at the filled

blue sphere, all blue water molecules are expelled according to the rule stated above,

leaving only the green ones.

far away from the protein to participate in tetrahedrons with amino acids

are deleted. To achieve this, all water molecules where all neighboring grid

positions are still occupied by water are deleted. That will only be the case
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if these water molecules have not been removed due to the distance-to-the-

protein criterion (Figure 6).

Finally, because the tessellation of a cubic grid is not possible as you would

get cubes instead of tetrahedrons, (Figure 7), the coordinates of the water

molecules are slightly perturbed, randomly choosing the direction as well as

the length (up to 2Å) of the translation.

The result of this procedure is a shell of waters with a depth of approxi-

mately 2, as can be seen in Figure 8.

Figure 7: Attempt to Delaunay tessellate a square grid. As can be seen, the results are

not triangles but squares. By extension, this also applies in 3 Dimensions.

The number of water molecules added depends on the length and surface of

the protein to be tessellated. For globular proteins, the ratio of the surface

to the volume, and hence to the number of amino acids, is expected to be

∝ N
2
3
aa. As can be seen in figure 9, the proteins used in our data base follow

this expectation.



3 The SaDSaT Potential 42

Figure 8: The water-shell of crambin (PDB-code 1ab1). Red are the Cβs of the protein,

green the molecules of the water shell
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Figure 9: Number of water molecules added to proteins of our data base. Red: fitted

regression ∝ N0.7
aa (low number of amino acids is weighted higher) green: regression ∝ N

2

3

aa

When using the threading procedure and thus producing non-native, non-

globular shapes, the number of water molecules created can exceed five times

the number of amino acids.

3.5.2 Expected Frequencies of Surface Contacts

All the expected and observed frequencies used above are frequencies com-

puted or extracted from the data base without counting amino acid - water

contacts. The contribution of the surface to the energy is computed in a

different way.

Firstly, because water is not part of the sequence it does not make sense

to use sequence distance classes when computing the contributions of water

- amino acid pairs. Neither is a classification based on euclidean distance

applicable since the location of the water molecules is artificial and random.

Thus, we can not use the detailed approach on the surface part of the poten-
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tial. Secondly, the probability of getting e.g. a water-amino acid pair can not

be computed using a phoh, because the number of the water molecules is arti-

ficial. Expressions such as pa,hoh = paphoh thus do not make sense. Therefore,

we assume that the expected frequency of an amino acid appearing on the

surface is equal to the overall frequency of that amino acid. The expected

frequency of an amino acid-water pair is simply the observed frequency of

the amino acid in the data base:

f expa,hoh ∝ f obsa (31)

The expected frequency of a triangle between amino acids a and b and a

water molecule hoh is given by:

f expa,b,hoh ∝ f obsa,b (32)

This term was used even when the tetrahedral term was computed using the

pair frequencies.

The expected frequency of a triangle containing two waters is:

f expa,hoh,hoh ∝ f obsa (33)

However, this information seems to be incorporated in the above pair water

term already, so we decided not to use it. The expected frequency of a

tetrahedron containing water is computed analogously:

f expa,b,c,hoh ∝ f obsa,b,c (34)

f expa,b,hoh,hoh ∝ f obsa,b (35)

f expa,hoh,hoh,hoh ∝ f obsa (36)

Again, all Terms using more than one water seem to be redundant and have

been neglected.

Neglecting possibly redundant information is also backed by results we ob-

tained using our potential. The z-score increases when either pairs, triangles
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or tetrahedrons containing water were not used in computing the z-score , but

only if this redundant information was used. Ignoring it not only improves

the z-score but, as is to be expected, the performance does not decrease if

the full information is used.

3.6 Data Base

As data base a subset of the PDB data base [6], Select PDB [34], in the version

from April 2002 was used. It provides PDB-files with a sequence identity of

less than 25%. Some structures exhibited unusually large distances between

the Cβs of neighboring amino acids. These structures have been studied

manually to determine whether they should be used for computation of the

potential or not. Since all of them showed a chain break where the large

distances occurred, they had to be expelled from the data base.

The other proteins were tested with Sippl’s PROSAII, where some of them

showed very bad z-score considering their chain length, as can be seen in

figure 10. The five proteins we investigated were

1jb0, photo-system I of cyanobakteria

1qle, a complex between an antibody and a protein

1gk9, a substrate-enzyme complex

1f8e, a protein complex with its inhibitor

1pho, an outer membrane protein.

All of these proteins were expelled from the data base because they are either

complexed proteins or membrane proteins, which explains their bad z-score.

Furuichi et al. showed that the quality of the data base can bias the quality

of the potential, at least concerning statistical pair potentials [26]. Using

only all α proteins in the data base will lead to better z-score s for all α

proteins and worse z-score s for all other proteins. Because Furuichi suggests
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Figure 10: PROSAIIz-score of the proteins in the select-PDB data base. The red encircled

proteins have been deleted.

that mixed data bases will yield the best results on average, we tried to make

sure our data base is such a mixed one. Using the SCOP data base [43] we

classified the proteins of the PDB Select data base (Table 2). As can be seen,

PDB Select contains a mixture of classes of secondary structure.

3.7 Sparse Data

Suppose the data base provides us with N measurements (e.g. N contacts) of

which a show the feature we are interested in (e.g. aA-L contacts). For large

N (i.e. a large database) a good estimate for the probability p is obviously

p ≈ a/N , but this will work poorly for small N and rare features (e.g. our

potential will diverge if a = 0). If we have a prior expectation f exp for the

value of p (e.g. the frequency of A and L, already gives us some information

on the frequency of A-L contacts), then the measured frequency f obs = a/N

will be a good estimator for p if N ≫ 1
fexp . If this is not the case, some

sparse data correction is in order. Following Sippl [49] and using Bayesian
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SCOP class % of total

α and β 31%

all α 26.5%

all β 21.5%

others 20%

Table 2: SCOP classes of PDB Select proteins. Others include multi-domain, membrane,

small and coiled/coil proteins as well as peptides

reasoning, we tried to find a proper estimator for p [35].

Bayesian Inference

Given the true value of p, computing the probability of a certain outcome of

our measurement is usually straightforward. I.e. the probability P (D|p) of

our data D given p can be written down. Bayes’ theorem states that

P (D|p)P (p) = P (p|D)P (D)

and therefore

P (p|D) =
P (D|p)P (p)

P (D)
,

which is what we need for computation.

For our purpose the denominator P (D) can be viewed simply as a normal-

ization constant, as it is independent of p; The quantity P (p) is called prior.

Now there are two problems left to solve: Instead of a simple estimate for

p we have to deal with a probability distribution P (p|D). The Maximum

Likelihood Principle is used to solve this problem. This leaves the problem

of choosing a suitable prior P (p).

The Prior

As stated above, we have some expectation f exp about p, but we need the

whole probability distribution. Since we do not know the prior, the best we
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can do is to construct one that is both reasonable and convenient. For usage

of a maximum entropy estimate, we postulate the following properties:

1. The maximum of P (p) should be at f exp, so that we’ll estimate p = f exp

for N = 0 (i.e. no data).

2. p should never be 0 or 1, so that the potentials stay finite. Thus we

have P (0) = P (1) = 0.

This seems to sum up all desired properties of the prior, so we can choose a

convenient form for the prior and use the piecewise linear function

P (p) ∼

{
p

fexp , p ≤ f exp

1−p
1−fexp , p > f exp

Maximum Likelihood Estimate of the Parameters

If we assume independence of our N measurements, P (D|p) is a simple bi-

nomial distribution P (D|p) ∼ pa(1 − p)b, with b = N − a. The Maximum

Likelihood estimate for p is a value that maximizes P (p)pa(1 − p)b. To find

it, we have to distinguish three cases:

The maximum could be at some p ≤ f exp, in which case it has to fulfill

d

dp
p · pa(1 − p)b = 0

(a+ 1)pa(1 − p)b − bpa+1(1 − p)b = 0

p =
a+ 1

N + 1
.

If p ≥ f exp, we have

d

dp
(1 − p)pa(1 − p)b = 0,

which eventually yields

p =
a

N + 1
.
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Else the maximum might by at p = f exp.

Application of these three cases yields the “observed frequencies” we used at

all computations:

f obs =







a+1
N+1

, a+1
N+1

< f exp

a
N+1

, a
N+1

< f exp

f exp, else

(37)

Because we use ln fobs

fexp for our potential, the above estimate has the nice

property that the energy contributions equal 0 for all cases where not enough

data is available.

Depending on the level of detail used in the potential, this occurs in 1% to

20% of all cases.
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4 Computational Results

In our computations, we used two different poly-proteins, both derived from

poly-proteins used in Sippl’s PROSAII. One, which we will call “10k”, is 9999

amino acids long, the other, called “30k” has a length of 30681 amino acids.

If not stated otherwise, the 10k poly-protein has been used for computation.

4.1 Calibrating the Potential

Before testing the potential the variable parameters of the potential have to

be calibrated. Basically, there are three distinct questions to be answered:� What are the best distances in the water grid?� What is the desired ratio between the energy contribution of the surface

and the core?� How many and what distance classes are there to be?

4.1.1 Calibrating the Water Grid

There are two distances which can be adjusted concerning the water grid:� The minimal distance of water to the Cβ atoms of the amino acids� The distance between the virtual water molecules in the grid

It is easily understood that the minimal distance to the amino acids has to

be as small as possible while ensuring that there is no water misplaced inside

the protein. We compared the number of water molecules added when using

Cβ only with the number of waters added when using all atoms. If these

two numbers are equal, we can be sure that no water is placed into erroneous

cavities. We found that a minimum distance of 5.2Å fulfills this requirement.

This quite big minimum distance also renders it all but impossible to detect

cavities inside the protein, an undesirable effect that could only be avoided by

always using side chain coordinates also for the water shell creation. However,
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Figure 11: Number of water molecules added as a function of the distance in the water

grid. Different proteins with different length were used

this would lead to problems concerning the location of the side chains in the

poly-proteins used during the threading procedure.

Concerning the grid distances of water, it would be preferable to have as small

a distance as possible because this would give an excellent resolution of the

surface. But the number of points to be tessellated rises with g3, which makes

it necessary to find a compromise between the number of points added and

the resolution of the surface. It is important to point out that the number of

points added in a cubic grid corresponds to the probability that because of

the cubic nature of the grid and in spite of the random dislocation added the

tessellation will fail due to numerical problems of the qhull library. This will

result in even more time needed for the computation because the tessellation

has to be repeated. Basically, we decided to leave the distance of the water

grid to be changeable by a command line option, and set the default to 5.1 Å,

which seems to be a good compromise. As is shown in Figure 11, using a

bigger grid distance will not significantly decrease water molecules added

before tessellation.
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4.1.2 Calibrating the Scale of the Surface Term

After introducing the water grid, the energy contributions have to be put

into relation to the energy contributions of the amino acid pairs. There

are two different problems to be solved. One concerns the absolute weight

of the surface term, the other concerns the necessity to make the absolute

contribution as independent of the grid distance as possible.

The latter question was solved by fitting a simple function into the graph of

number of water pairs to grid distance, as shown in Figure 12.
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Figure 12: Number of Pairs between amino acids and water multiplied by a scaling function

f(g) for crambin (1ab1) and dmin = 4.2Å. As can be seen, the best fit (red) is g
4

3

The best connection is not a quadratic one but g
4
3 , which is due to the more

complicated interactions between the surface of the protein and the water

grid as a result of the tessellation.

By applying this correction we can achieve a z-score almost independent of

the distance of the water grid (Figure 13).
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Figure 13: z-score of 5 different proteins as a function of the distance of the water grid in

Å. Full line is total z-score, dotted line z-score of the surface term only

The absolute weight of the surface term was chosen so that the energy con-

tribution of the surface term is roughly the same order of magnitude as the

contribution of the core term. A factor of 0.05 seems to achieve this.

4.1.3 Calibrating the Sequence and Euclidean Distance Classes

Two different types of parameters can be adjusted concerning the distance

classes, being the number of classes and the boundaries thereof. In calibrat-

ing the distance classes, it is necessary to remember the necessity of sufficient

data for relevant statistics, so too many classes or classes too small are not

advisable. The distribution of the euclidean distances can be seen in Fig-

ure 14. The boundaries of the euclidean distance classes are chosen as shown

in Table (3).

Of course because of steric reasons there are only very few atom pairs with

an euclidean distance of 0-1 Å, and Cβ Cβ distances of under 3 Å are rare

indeed, with a total occurrence of less than 0.2 %. Also, the nature of the

tessellation assures that there are very few Cβ − Cβ pairs with a distance

bigger than 10Å.
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Number of classes class 1 class 2 class3

1 0-∞

2 0-7Å 7Å-∞

3 0-4Å 4-7Å 7Å- ∞

Table 3: Boundaries of euclidean distance classes
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Figure 14: Distribution of euclidean distances in classes of 1Å size. 287610 total pairs

used.

The boundaries of sequence distance classes are shown in Table (4).

An interesting observation is that obviously every possible contact with a

sequence separation of 1 exists (Figure 15). Since there seems to be no infor-

mation to be gained by using them, it should be possible to simply remove

these pairs out of the computation without a loss of performance. We did not

do this for two reasons. Firstly, the computational effort saved is about the

same as the effort for the removing, and secondly, while very small indeed,

the chance to get such a pair with a distance separation of more than 7 Å in
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Figure 15: Number of pairs against sequence separation for proteins of 129 amino acids

length. Note that every possible pair (128 per protein) with distance 1 exists.

# of classes class 1 class 2 class3 class4 class5 class6 class7

1 1-∞

2 1-5 6-∞

3 1-5 6-10 11-∞

4 1-10 11-50 51-90 91-∞

5 1-5 6-30 31-60 60-90 91-∞

6 1-5 6-10 11-40 41-70 71-100 101-∞

7 1-5 6-15 16-30 31-50 51-75 76-100 101-∞

Table 4: Boundaries of sequence distance classes

the poly-proteins is about 10 times bigger than in native proteins.

When comparing the performance of the potential using different numbers

of euclidean and sequence distance classes (Figure 16), we can see that the

performance increases when using two euclidean distance classes, but more

sequence classes do not linearly improve the performance. For deciding upon



4 Computational Results 56

1 
S 

1 
E

1 
S 

2 
E

2 
S 

1 
E

2 
S 

2 
E

3 
S 

1 
E

3 
S 

2 
E

4 
S 

1 
E

4 
S 

2 
E

5 
S 

1 
E

5 
S 

2 
E

6 
S 

1 
E

6 
S 

2 
E

number of Sequence (S) and euclidean (E) classes

7.4

7.5

7.6

7.7

7.8

7.9

8

m
ea

n 
z-

sc
or

e

30k PP
10k PP

Figure 16: Mean value of z-score of 5 different proteins: 2trx, 2bfh, 1il6, 1ab1, 1lyz. Two

different poly-proteins, 10k and 30k, as well as different numbers of sequence and euclidean

distance classes are used. 1S1E means that one sequence and one euclidean distance class

are used for the computation.
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PDB code length of Weberndorfer’s SaDSaT SaDSaT PROSAII

protein 30k 10k

1il6 166 aa 10.195 9.2998 9.2005 -8.21

2bfh 128 aa 6.960 7.1567 6.818 -6.53

1lyz 129 aa 9.430 8.7682 8.7769 -9.16

1ab1 46 aa 5.483 5.7547 5.6863 -5.54

2trx 108 aa 9.247 10.7027 10.583 -9.27

Table 5: Z-scores of different proteins using different potentials

which combination of distance classes to use for computation, we had to use

the performance on decoy sets, too (Table 8 in chapter 4.2.2).

The combination of the informations lead us to use 5 sequence and 2 eu-

clidean distance classes for our computations. So when not stated otherwise,

all results below are computed using this combination of sequence and eu-

clidean distance classes.

4.2 Performance of the Potential

4.2.1 Z-scores

Directly comparing z-scores is of course of only limited value for comparison

of knowledge based potentials. Thermodynamic studies have shown that for

a protein of 100 amino acids in size, the z-score should range about or higher

than 15 [65]. These z-scores can not be achieved with this potential, neither

with any of the others tested as of yet. However, the new potential should

not score too badly compared to others, so tests were calculated.

The results (Table 5) seem to indicate that all three potentials are about

equally successful, but using different, and better, indicators for the quality

of the potentials soon destroys this equality (Chapter (4.2.2).

It is interesting to see that usage of a bigger poly-protein does not increase
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the quality of the potential much. Another interesting fact is while the 30k

poly-protein is roughly 3 times bigger as the 10k, the tessellation takes about

8 times longer, even when there are no errors occurring during tessellation.

The size of the proteins to be tessellated is independent of the length of the

poly-protein, only the number of tessellations to do increases. The fact that

more than 3 times more time is needed for the bigger poly-protein seems

to be due to the time it takes qhull to perform this tessellation, which is

not always only dependent on the number of points tessellated. The authors

state that the best case performance is O(n logn). There seem to be many

more cases where it is more costly to compute the tessellation in the 30k

poly-protein.

Another test of a potential’s performance is its ability to discern between the

right sequence to a structure and wrong ones. As can be seen in Table (6) we

used 6 different proteins with a chain length of 129 amino acids to test the

potential. In all cases but two, the z-score of the native sequence on the native

structure is the best by far. The exceptions are the proteins 1uih and 135l,

lysozymes from hen and turkey, respectively. This two proteins a virtually

impossible to discern, as their 3d-structures are almost congruent, having a

Cα rmsd of 0.488Å. Furthermore, the sequence identity exceeds 90%. It is

therefor easily explicable that the sequence of 1uih yields a slightly better

z-score on the 135l structure than the native sequence does. For all the

other proteins, which are not related, SaDSaT can discern between the native

sequence and a natural sequence folding to another structure.

4.2.2 Decoy Sets

One method to test the performance of a potential for protein folding is

using “decoy” sets, where physically feasible non native structures are created

specifically for testing the ability of potentials to find the native structure

in a set of artificial structures designed to fool it. We used the decoy set

constructed by Park and Levitt [44], a set of 7 proteins with an average of 665

decoys per protein. As can be seen in Table 7, Sippl’s PROSAII performed best
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sequence 1uih 1knm 1dyz 1ahm 135l 2cyk

structure

1uih 9.128 -0.420 -0.096 2.306 8.886 0.403

1knm -0.318 5.086 -0.050 -1.075 0.242 -0.440

1dyz -0.864 -1.273 7.220 -1.116 -0.740 0.262

1ahm -0.212 -1.947 1.499 9.259 0.205 -1.187

135l 9.091 -0.324 -0.231 1.852 9.042 0.707

2cyk -0.132 0.721 -0.130 -1.030 -0.002 8.765

Table 6: Performance of the SaDSaT potential on different proteins with length 129, the

proteins are 1uih, hen lysozyme, 1knm, streptomyces hydrolase (complexed with lac-

tose), 1dyz, alcaligens electron transport, 1ahm allergen of dermatophagoides, 135l turkey

lysozyme and 2cyk human cytokine. 1uih and 135l are almost identical lysozymes.

PDB code PROSAII RMSD SaDSaT 1 RMSD SaDSaT 2 RMSD Weberndorfer’s RMSD

ranking ranking ranking ranking

1ctf 1 1.819 1 4.096 1 4.069 2 1.445

1r69 1 1.663 4 1.663 12 1.663 7 4.760

1sn3 1 5.395 1 7.292 1 2.221 40 6.868

2cro 1 1.093 10 2.045 26 2.700 4 2.032

3icb 1 1.872 2 1.408 7 1.408 14 2.516

4pti 1 1.485 3 4.998 3 4.693 10 2.590

4rxn 8 2.104 3 2.351 3 2.044 19 2.104

Table 7: Comparison of four potentials using the Park and Levitt decoy set. RMSD is the

root mean square deviation of the lowest ranking decoy in Å, SaDSaT 1 is using triangles,

SaDSaT 2 is not.
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by far in this decoy set. When using tessellation potentials, Weberndorfer’s

Potential did not rank any of the native structures on first place, while both

the SaDSaT using triangles and the other scored two hits. The performance

when using triangles is a little better than without. The correlation between

the root mean square deviation, as a measure of the difference between two

structures, shows interesting results (Figure 17). It is of course necessary to

compare the z-scores, therefore the PROSAII z-scores have been multiplied

by -1 to be comparable to the SaDSaT z-scores. Even in the 2cro decoy

set, where the SaDSaT force fields show their worst performance concerning

the rank of the native structure, the correlation between z-score and the root

mean square deviation is better than that of PROSAII. This indicates that this

potential is potentially useful for theoretical applications like works about the

folding space of proteins, where it is important to have fast computational

methods which will not necessarily be used for natively folded proteins.
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Figure 17: Correlation between the root mean square deviation (rmsd) of the decoy sets

and the z-score . SaDSaT 1 is not using triangles, SaDSaT 2 is. In both examples, SaDSaT

shows better correlation than PROSAII
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PDB rank rank rank rank rank rank

code 11 12 21 22 31 32

1ctf 5 1 3 2 3 2

1r69 4 4 5 8 7 5

1sn3 1 1 1 1 1 1

2cro 28 14 19 16 29 28

3icb 15 8 9 16 7 7

4pti 1 1 3 1 1 1

4rxn 7 10 10 5 8 4

mean 8.714 5.571 7.142 7 8 6.857

PDB rank rank rank rank rank rank

code 41 42 51 52 61 62

1ctf 5 2 2 1 2 2

1r69 4 6 6 6 6 5

1sn3 1 1 1 1 1 1

2cro 18 16 20 15 26 19

3icb 9 10 9 10 7 7

4pti 3 1 3 1 1 1

4rxn 12 9 10 6 10 7

mean 7.429 6.428 7.286 5.714 7.571 6

Table 8: Ranking of decoy sets with different number of euclidean and sequence distance

classes. Best performance bold
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4.2.3 Stability Changes

Another indicator for the quality of a potential is the quality of correlation

between experimentally derived energy changes due to mutations and the

differences in energy computed for these mutations with the potential.

Following Carter et al. [16], we used the same proteins with the same mu-

tations to compare the performance of their potential, a four point contact

potential using the center of mass to represent the amino acids, with ours.

The proteins used were 1ey0, 1b2x, 1ci2, 1l63 and 1igv (Figure 18).

Since all mutations were hydrophobic core mutations, it is not surprising that

the correlation was better most of the time when not using the surface term.

While our potential shows a comparable or even slightly better performance

at 1b2x and 2ci2, the other proteins and the overall performance are clearly

in favor of Carter’s potential. This could be due to the usage of the center

of mass for representing the amino acids, which is bound to give a better

representation of the amino acids, but can not be used easily for the threading

procedure.



4 Computational Results 64

-5 -4 -3 -2 -1
experimental energy difference

-5

-4

-3

-2

-1

0

1

2

co
m

pu
te

d 
en

er
gy

 d
if

fe
re

nc
e

Tessellation with water
Tessellation without water
Carter
Correlation 0.486
Correlation 0.557
Correlation 0.674

2igv

-8 -6 -4 -2 0
experimental energy difference

-8

-6

-4

-2

0

2

co
m

pu
te

d 
en

er
gy

 d
if

fe
re

nc
e

Tesselation with water
Tesselation without water
Tropsha
Correlation 0.656
Correlation 0.550
Correlation 0.879

1l63

-5 -4 -3 -2 -1 0
experimental energy difference

-5

-4

-3

-2

-1

0

co
m

pu
te

d 
en

er
gy

 d
if

fe
re

nc
e

Tessellation with water
Tessellation without water
Tropsha
Correlation 0.911
Correlation 0.8741
Correlation 0.8815

2ci2

-4 -2 0 2 4
experimental energy difference

-5

0

5

co
m

pu
te

d 
en

er
gy

 d
if

fe
re

nc
e

Tessellation with water
Tessellation without water
Tropsha
Correlation 0.752
Correlation 0.866
Correlation 0.933

1ey0

-5 -4 -3 -2 -1 0
experimental energy difference

-8

-6

-4

-2

0

2

co
m

pu
te

d 
en

er
gy

 d
if

fe
re

nc
e

Tessellation with water
Tessellation without water
Tropsha
Correlation 0.837
Correlation 0.849
Correlation 0.835

1igv

-8 -6 -4 -2 0 2 4
experimental energy difference

-5

0

5

co
m

pu
ta

tio
na

l e
ne

rg
y 

di
ff

er
en

ce

SaDSaT with water
SaDSaT without water
Carter
Correlation 0.668
Correlation 0.714
Correlation 0.857

Figure 18: Correlation between experimental ∆∆G and computed energy difference for

2igv, 1l63, 2ci2, 1ey0, 1igv and all together
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4.3 Inverse Folding

Inverse folding is trying to find a sequence which will fold into a given struc-

ture. One means to achieve this is using adaptive walks. Starting with the

target structure and a random sequence, one tries to find better sequences

by mutating single amino acids and keeping the mutation in question if and

only if it results in a better z-score of the sequence on the target structure.

There are different ways of mutating an amino acid which differ in the prob-

ability to get a certain amino acid. These are mainly:� a totally random approach, where the probability to get an amino acid

is depend end on the frequency of the amino acids only� a surface/core approach, where the probability to get an amino acid

depends on the location in question and� an approach dependent on the secondary structure and the environment

at the location of the mutation following Bowie et al. [12].

The adaptive walk is terminated if no further mutation can be found which

leads to a better z-score . In our case, this was defined as mutating the

sequence 100 times without improving it. In order to get information about

the quality of the adaptive walk, we computed the z-score of all the sequences

generated using PROSAII and compared them with the z-scores of our poten-

tial. The longer a linear correlation between the two z-scores is, the better

the potential in question. The end of the linear correlation indicates an im-

provement of the energy which is not due to physical reasons but due to

specialties of the potential, in other words the sequence is adapted to the

special properties of the potential.

As can be seen in Figure 19 below, the only effect of using bigger poly-

proteins for the threading procedure is a slightly steeper descend. However,

this has to be bought by higher computational costs. Therefore, it is highly

uneconomic to use a bigger poly-protein for adaptive walks.
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Figure 19: Comparison between adaptive walks using a 10k and adaptive walks using a

30k poly-protein, respectively.
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Figure 20: Adaptive walks using different number of sequence and euclidean classes and

a 10k amino acid poly-protein.Only the approach with one class and a big grid distance

is significantly worse than the others.
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Figure 21: Adaptive walks using different number of sequence and euclidean classes and

a 30k poly-protein.

Figures 20 and 21 show that using a more detailed approach does not really

improve the performance of SaDSaT at adaptive walks. The performance

when using only one class i.e. when not using any of Sippl’s sequence and

euclidean classes, is comparable to that of SaDSaT when using high details,

if g is sufficiently small.

This would indicate that using the mergence of Sippl’s and Tropsha’s ap-

proaches is in fact not useful.

But comparison with adaptive walks computed with Weberndorfer’s poten-

tial show a different result (Figure 22)

SaDSaT performs better than Weberndorfer’s potential does, but it remains

to be seen whether the increase in quality is not bought by a too high increase

in computational effort, and whether it is due to the usage of sequence classes

or the usage of a better surface term.

Another important feature of an adaptive walk is the number of steps it needs

to get to the end. Obviously, the faster that happens, the better. For using
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Figure 22: Comparison of different adaptive walks using SaDSaT with adaptive walks using

Weberndorfer’s potential. It can be seen that Weberndorfer’s potential is outperformed

by SaDSaT
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the 10k poly-protein and 2bfh, the mean number of steps SaDSaT needs to

finish an adaptive walk is 276.1, for the 30k poly-protein it is 286.3, while

Weberndorfer’s potential needs a mean of 394.5 steps to finish. This indicates

that the 10k poly-protein with SaDSaT is the potential of choice out of this

three, as it is computed faster than the 30k variant, needs fewer steps than

both and has better quality then Weberndorfer’s.

Comparing SaDSaT generated adaptive walks with adaptive walks generated

by PROSAII it can be seen that both potentials succeed in exceeding the

native z-score of the other potential (see Figure 23). However, to reach the

native z-score of the potential used to evaluate the adaptive walks, both

SaDSaT and PROSAII have to reach values well over their respective native

z-score . Ideally, one would hope to reach both z-scores approximately at

the same time. While PROSAII performs a little better in absolute z-score

values reached, it takes longer to terminate the adaptive walk. The average

length of the adaptive walks computed using PROSAII is 433, while SaDSaT

stays well under 300 (see above).
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Figure 23: Comparison of adaptive walks using PROSAII and SaDSaT 4 adaptive walks on

2bfh were computed with each potential.
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4.4 Computational Effort

Most of the computational effort of the program is caused by qhull in per-

forming the Delaunay tessellation. Because of the water shell added to

the problem, SaDSaT needs more computational time there than Webern-

dorfer’s potential does. The qhull algorithm has a best case performance

of O(n log n). As stated earlier, the usage of the smaller (10k) poly-protein

seems to be sufficient for acceptable results, while keeping the memory needs

relatively low and the processor time small.

On a Pentium III 1GHz system the following times are needed to compute

the z-score of a protein 129 amino acids long. SaDSaT without the triangle

term was used. For using the 30k poly-protein we need:

153 min and 706MB RAM if poly-protein tessellation is computed.

33 seconds and 1046MB RAM if poly-protein tessellation is read.

and for using the 10k poly-protein:

12 min and 241MB RAM if poly-protein tessellation is computed.

11 seconds and 338MB RAM if poly-protein tessellation is read from

disk.

6.9 seconds if tessellation is in memory and a new sequence is put in.

The ratio of the time needed to compute the tessellation and the time needed

for z-score computation exclusively is about 103:1. If the 30k poly-protein

is used, it is even bigger, exceeding 250:1. This big difference shows that

SaDSaT is better suited to applications like inverse folding than to repeatedly

computing z-scores for different structures. If the structure to be evalu-

ated stays the same, the step determining the computational effort is the

re-computation of the z-score, which takes about 7 seconds in the example

above. The same is true for decoy set experiments, where there is no need to

compute a z-score as the sequence stays the same and it is sufficient to rank
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the energies themselves.

As indicated above, the usage of the 30k poly-protein does not significantly

increase the performance but increases the computational effort at least by

a factor 3, even 12 if the tessellation has to be computed.
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PDB code IPF SadSaT RMSD IPFSaDSaT CC RMSD SaDSaT 2 RMSD Weberndorfer’s RMSD

ranking ranking ranking ranking

1ctf 2 1.819 1 1.819 1 4.069 2 1.445

1r69 3 1.663 3 1.663 12 1.663 7 4.760

1sn3 1 6.868 1 5.395 1 2.221 40 6.868

2cro 37 2.045 24 2.045 26 2.700 4 2.032

3icb 6 1.408 9 1.408 7 1.408 14 2.516

4pti 11 4.693 9 4.693 3 4.693 10 2.590

4rxn 6 5.682 6 2.104 3 2.044 19 2.104

Table 9: Comparison of four potentials using the Park and Levitt decoy set. RMSD is

the root mean square deviation of the lowest ranking decoy in Å, IPF are using Iterative

Proportional Fitting, CC is using Contact Capacity, SaDSaT 2 is the old one.

4.5 Iterative Proportional Fitting

Using Iterative Proportional fitting for calculating expected frequencies yields

higher Entropy and better agreement with the boundary conditions than

using donlp.

It is possible not only to calculate the expected frequencies of tetrahedrons

dependent on pairs, but also on triangles. Thus we have the possibility to

compute a SaDSaT potential using triangles.

4.5.1 Results using IPF

for comparison the same using the old SaDSaT and PROSA:
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Figure 24: IPF SaDSaT rmsd against z-score of Decoy set 1sn3
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Figure 25: Correlation between the root mean square deviation (rmsd) of the decoy sets

and the z-score . SaDSaT 1 is not using triangles, SaDSaT 2 is. In both examples, SaDSaT

shows better correlation than PROSAII
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Figure 26: IPF SaDSaT rmsd against z-score of Decoy set 2cro

And for 2cro: for comparison the same using the old SaDSaT and PROSA:
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Figure 27: Correlation between the root mean square deviation (rmsd) of the decoy sets

and the z-score . SaDSaT 1 is not using triangles, SaDSaT 2 is. In both examples, SaDSaT

shows better correlation than PROSAII
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Figure 28: Comparison of adaptive walks using SaDSaT with IPF, with CC and without

CC, and the old SaDSaT.

Performing Adaptive Walks yields the following result against PROSA :

Termination is achieved after 258.75 steps with the old SaDSaT, after 260,6

steps with the IPF SaDSaT without Contact Capacity, and after 278.6 steps

using Contact Capacity.
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5 Discussion

Tessellation based potentials include higher order information in a natural

way. However, until now they did not include distance and separation infor-

mation. Distance and separation of amino acids are important descriptors of

protein structure. To increase the performance of Tessellation based poten-

tials, we therefore developed a four point potential including this information.

To be able to do this, the four point potential has been split int second, third

and fourth order terms. This raised the problem of expressing higher order

information in terms of lower order, which could only be solved numerically.

In addition, a better approximation of protein-surface interaction was in-

troduced using an explicit shell of water. The developed potential, called

SaDSaT, will soon be publicly available as a library of ANSI-C functions and

as stand-alone programs at our home-page3.

To test the quality of this new knowledge based potential, several different

computer experiments have been conducted using SaDSaT. The experimental

results were compared with other implementations of knowledge based po-

tentials. These were Manfred Sippl’s PROSAII potential, which is distance

and separation dependent, and Günther Weberndorfer’s tessellation based

potential, which is essentially an improved version of Alexander Tropsha’s

original tessellation potential.

The experiments showed that the application of distance and separation to

higher order potentials improves their performance. Adaptive walks con-

ducted using SaDSaT have a better correlation to PROSAII than Weberndor-

fer’s potential. This indicates a better correlation to the physical properties

of protein structure. Nevertheless, adaptive walks conducted with PROSAII

and evaluated with SaDSaT show that both can still be improved.

Testing the performance of knowledge based potentials using decoy sets is

especially significant since these sets have been constructed for this purpose.

3http://www.tbi.univie.ac.at/
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SaDSaT shows better correlation between energy and root mean square devia-

tion from the native fold than PROSAII does. This makes SaDSaT a good tool

for theoretical applications concerning the sequence and structure space of

proteins. However PROSAII is better than SaDSaT in ranking the native struc-

ture as structure of minimum energy. SaDSaT outperforms Weberndorfer’s

potential at this task, but further improving the performance is desirable.

Many possibilities to increase the performance of the potential can be thought

of. The mathematical problem of expressing the expected frequencies of the

tetrahedrons in terms of frequencies of lower order contacts has not been

solved. This is unfortunate because we may lose information. Iterative pro-

portional fitting may be the answer to this problem, but it remains to be

seen whether it can deal with the high number of marginals needed for this

kind of computation.

Another point of interest is the usage of Cβ as descriptor for amino acids.

If problems with the threading procedure can be circumvented, usage of the

center of mass as descriptor could be able to improve the performance, as it

seems to be a better descriptor of protein 3d structure.

There also could be room for improvement in the exact boundaries of the

distance classes, as well as in using a relative definition of sequence distance

classes, i.e. defining “long range” contacts as contacts of the N-terminus with

the C-terminus of a protein. For now, short proteins can only have short dis-

tance contacts, so a higher resolution of distance classes may be needed.

Another possibility is to handle amino acids on the termini differently. This

is already used to increase the performance of modern protein secondary

structure prediction algorithms.

Another approach to improve the potential will be to distinguish tetrahe-

drons of different shape and size. This should be doable with the amount of

data available today. In a recent publication by Krishnamoorthy and Tropsha

[39] five different classes of tetrahedrons – depending on whether sequential

neighbors take part in the tetrahedron – are used with good results.
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All the points stated above will certainly increase the amount of data needed

to compute the potential. However, our sparse data correction shows that

there is still insufficient data for almost 10% of the possible tetrahedrons.

Thus SaDSaT as it is today will also improve if the number of experimentally

derived 3d-structures of new proteins is increased.

Finally, a different tessellation algorithm specifically tailored for the task of

handling the explicit solvent component of SaDSaT may be able to greatly

decrease computational costs.

As SaDSaT is now inferior to many distance based empirical potentials in

terms of fold recognition, it may be of value for protein folding applications

only after improving it using the ideas stated above. For theoretical ap-

plications, especially for exploring the protein space, searching for neutral

networks and structural neighbors, it is already well suited.
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Figure 29: The twenty amino acids regularly building proteins. R-groups in the red boxes

denote the side chains. Amino acids are arranged according to the functional groups of

the side chain. Name as well as three letter and one letter code are beneath the respective

amino acid.
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Figure 30: Hydrophobicity against water contact potential of amino acids. If P and C

are left out, correlation is -0.922
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Ala Cys Asp Glu Phe Gly His Ile Lys Leu Met Asn Pro Gln Arg Ser Thr Val Trp Tyr

Ala 0.254 -0.091 -0.156 -0.112 0.135 -0.056 -0.073 0.186 -0.156 0.198 0.126 -0.099 -0.191 -0.097 -0.066 -0.081 -0.034 0.173 0.038 0.021

Cys 1.763 -0.224 -0.324 0.239 0.0584 0.158 0.090 -0.189 0.045 -0.026 -0.041 0.118 -0.091 0.033 0.067 0.001 0.131 0.310 0.208

Asp -0.244 -0.282 -0.066 -0.187 0.034 -0.148 -0.003 -0.185 -0.134 -0.067 -0.257 -0.201 -0.021 -0.128 -0.137 -0.142 -0.038 -0.039

Glu -0.192 -0.133 -0.300 -0.124 -0.072 0.096 -0.059 -0.133 -0.232 -0.216 -0.188 0.059 -0.195 -0.169 -0.115 -0.030 -0.102

Phe 0.465 -0.007 0.190 0.391 -0.082 0.392 0.347 -0.008 0.011 0.006 0.029 0.013 0.062 0.374 0.286 0.378

Gly -0.040 -0.080 -0.074 -0.205 -0.126 -0.136 -0.071 -0.091 -0.194 -0.135 -0.110 -0.023 -0.092 0.009 -0.055

His 0.431 0.062 -0.260 0.119 0.165 -0.177 -0.075 -0.045 -0.023 -0.008 0.046 0.028 0.202 0.134

Ile 0.636 -0.078 0.468 0.334 -0.057 -0.100 -0.024 -0.019 -0.052 0.131 0.514 0.150 0.289

Lys -0.156 -0.041 -0.085 -0.160 -0.317 -0.168 -0.251 -0.254 -0.200 -0.094 -0.147 0.008

Leu 0.543 0.285 -0.139 -0.090 0.031 0.073 -0.079 0.074 0.399 0.186 0.230

Met 0.381 -0.165 -0.076 -0.052 0.062 -0.106 -0.064 0.283 0.275 0.191

Asn 0.052 -0.101 -0.124 -0.151 -0.097 -0.044 -0.139 0.086 -0.012

Pro -0.000 -0.166 -0.161 -0.111 -0.086 -0.045 0.095 0.026

Gln 0.103 -0.056 -0.123 -0.025 -0.089 0.159 0.007

Arg -0.022 -0.143 -0.097 -0.047 0.107 0.020

Ser 0.002 -0.066 -0.061 0.061 0.049

Thr 0.069 0.107 0.054 0.028

Val 0.442 0.249 0.226

Trp 0.564 0.345

Tyr 0.312
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Amino Acid Hydrophobicity ([8]) Loglikelihood of

water contact

Ala 0.616 -0.108

Cys 0.680 -0.505

Asp 0.028 0.243

Glu 0.043 0.262

Phe 1.00 -0.410

Gly 0.501 0.150

His 0.165 0.005

Ile 0.943 -0.465

Lys 0.283 0.266

Leu 0.943 -0.375

Met 0.738 -0.143

Asn 0.236 0.189

Pro 0.711 0.230

Gln 0.251 0.181

Arg 0.000 0.141

Ser 0.359 0.126

Thr 0.450 0.029

Val 0.825 -0.375

Trp 0.878 -0.277

Tyr 0.880 -0.260

Table 11: The Hydrophobicity [8] and the Log-likelihood of a water-amino acid contact
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B Binomial Coefficients

β is needed because for SaDSaT there is no difference between, say, a triangle

a, b, c and a triangle a, c, b, so all possible permutations of a, b and c are taken

to be the same triangle. The number of possible permutations is given by β.

List of binomial coefficients β used in this work:

βa,b =

{

1, a = b

2, a 6= b

βa,b,c =







1, a = b = c

3, a 6= b = c

6, a 6= b 6= c

βa,b,c,d =







1, a = b = c = d

4, a 6= b = c = d

6, a = b 6= c = d

12, a 6= b 6= c = d

24, a 6= b 6= c 6= d
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1 Introductions

SaDSaT calculates the z-score of an amino acid sequence on a 3dimensional structure, given by
the coordinates of its Cβ atoms (or virtual Cβs in case of Glycine). It tessellates the structure
as well as a the structures obtained by threading the sequence through a poly-protein together
with a shell of virtual water molecules to simulate the surface of the protein. All the amino
acid pairs existent in the tessellation are grouped in sequence and euclidean distance classes.
The quadruples and pairs are then used to compute an energy or z-score using log-likelihood
parameters SaDSaT acquires out of a data base. As well as this energy evaluation, tessellation,
a statistical part of the program and a optimization part for obtaining expected frequencies of
quadruples given the pair frequencies, inverse folding by means of adaptive walks is possible.

The program is built of 4 modules performing different tasks: SaDSaTstat is used to obtain
statistical information out of data bases in PDB file format, CompLogLike uses this statistical
information to compute log likelihood parameters, SaDSaT computes energies and z-scores and
SaDSaTinv is used to run adaptive walks For those who wish to develop their own programs we
provide a library which can be linked to your own code.
The stand-alone programs is described in a separate man page. This manual documents version
0.1.0.

==================================================

1.1 Structures used in the library

The library uses 4 different structures

Structure Parameters stores all the parameters and flags of the program, it is quite big, which
may look clumsy, but, on the other hand, you always know where to find flags. This structure
is global.

typedef struct{
float gd; /*distance of waters in grid*/
int x; /*number of sequence classes*/
int y; /*number of euclidean classes*/
char *atom_type; /*target atom type*/
char *ppname; /*name of polyprotein file*/
char wt_seq[MAXSEQLEN]; /*wild type sequence */
int * seq_nc; /*numerically encoded sequence*/
int verbose; /*output verbose or no??*/
int water; /*watershell?? no=0;*/
char *tpp_file; /*filename of tessellation to save */
double watscale; /*weight of water i.r.t. core */
char *target_name; /*name of targed pdb file*/
int seqcomp; /* prompt for new sequence after computation?*/
int vmd; /*vmd_output yes/no*/
char *potfn; /*namepart of potential to load*/
int SS; /*use eisenberg’s environment for mutation?*/
int surf; /*use surface/core for mutation*/
int seq; /*prompt for sequence adaptive walk is started from?*/
int z; /*compute z-score before adaptive walk?*/
int restr; /*prompt for mutation after computation*/
char *outfile; /*name of output file*/
int energy; /*compute energy only*/
int tri; /*use triangles?*/
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} Parameters;

Being global, elements of this structure can be and are used throughout all the functions
without being handed to them.

The tess structure stores all things important about a tessellation, be it a poly-protein or a
target protein. It is not global.

typedef struct {
unsigned short **plists; /*pointlist of tessellation tetrahedrons*/
unsigned short **tr; /*list of triangles (if applicable) */
unsigned short **pa; /*list of pairs*/
int nopp; /*number of tessellations(poly-protein)*/
int len; /*length of target protein*/
int max; /*maximal length of protein+water */
int x; /* number of sequence dist classes*/
int y; /*number of euclidean dist classes*/
float gd; /* distance of water grid*/
int water; /* water used?*/

} tess;

The Potential structure stores the potential used as well as important information about it.
it is not global

typedef struct {
double ****pair; /*pair potential*/
double ***trien; /*triangle potential (if applicable*/
double ****teten; /* tetrahedron potential*/
int x; /* number of sequence dist classes*/
int y; /*number of euclidean dist classes*/
float gd; /* distance of water grid*/
int water; /* water used?*/

} Potential;

The DECODE structure is used for the “translation” of amino acids from three letter to one
letter to numerical encoding

typedef struct {
char *ThreeLetter;
char OneLetter;
int Number;

}DECODE;

1.2 Functions for Structure management

Functiontess * initTess (int x, int y, float gd, int water)
The arguments of function initTess are the number of sequence distance classes (x), the
number of euclidean distance classes (y), the distance of the water grid (gd) and a water
flag. initTesswill initialize a tess structure, allocating everything which is not allocated
elsewhere.
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FunctionPotential * get potentials (int seqcl, int eukcl, float gd, int

water, char *fname)
The arguments of function get_potentials are the number of sequence distance classes
(seqcl), the number of euclidean distance classes (eukcl), the distance of the water grid
(gd), a water flag and the changeable part of the name of the potential files (fname), usually
Parameters.potfn. get_potentials will read the potentials from disk, scanning the cur-
rent working directory for the following files, depending on Parameters.tri: if tri=no (de-
fault): pair[fname][seqcl][eukcl] and scndtet[fname] if tri=yes: pair[fname][seqcl][eukcl],
tri[fname] and tet[fname] if one of these does not exist, the function will cause the pro-
gram to exit. If the parameters (seqcl, eukcl and gd) given do not match the parameters
in the file, a warning will be printed and the parameters will be changed to the ones in
the file. Note that this may cause seqfolds later.

Functionvoid freeTess (tess tess)
The argument is a tess structure, which this function frees.

Functionvoid freePot (Potential pot)
The argument is a Potential structure, which this function frees.

1.3 Input/Output Functions

Functionvoid make vmdoutput (unsigned short *pl, float *coords, int len)
The arguments of make_vmdoutput are the pointlist to print (one of the tess.plists, the
coordinates of the Cβs, read by read_pdb and the length of the target protein. make_

vmdoutput will create 2 files, [targetname].vmd containing the edges of the tessella-
tion, and [targetname].vmd2, containing the nodes. [targetname] is the basename of
par.target name. Both files will use different colors for surface and core.

Functionint save PP tessellation (char *fname, tess *tmp, int len, int ctrl)
The arguments of save_PP_tesselation are the name of the saved tessellation file to
create, which will be appended by .tpp and is stored in par.tpp file usually, the tessel-
lation to be saved, the length of the target protein and a control integer to tell save_
PP_tessellation whether it should try to save triangles. save_PP_tessellation will
write the tessellation in a binary file readable by read_PP_tessellation, it will not only
save pointlist and pairlists (and trianglelists), but also crucial information about how the
tessellation was computed, so that it cannot be used unknowingly for computations with
different parameters.

Functiontess * read PP tesselation (char *fname, tess *tmp, int len)
The arguments of read_PP_tessellation are the name of the file to be read, a pointer
to a tess function initialized using initTess and the length of the target protein. The
function will check whether the parameters save_PP_tessellation wrote in the file are
the same the user is using, and will terminate the program if this is not the case.

Functionfloat * read pdb (char *pdb_name, char *seq)
read_pdb is the PDB-parser. The arguments it needs are the name of the PDB-file to
read as well as a pointer to the sequence. If the sequence pointer is a NULL pointer, it will
not read the sequence. It returns the coordinates of the Cβ or Cα atoms of the protein in
the PDB-file, creating virtual Cβ for glycine. The array of coordinates has the sequence
length as its first entry cord[0], the next three cord[1], cord[2], cord[3] are the coordinates
of the first atom and so on. If a char *seq pointer is given, the sequence will be saved in



C Library x

Chapter 1: Introductions 4

one capital letter code. read_pdb tries to detect inconsistencies in PDB-files (and there
are at least some). It will check the distance between two neighboring Cα or Cβ atoms
to find gaps not obviously denoted by gaps in sequence numbers. It will always use the
“A” possibility if applicable, i.e. it will not read in the second of two possible coordinate
sets for an amino acid. If you want to use the “B” coordinates, edit the PDB-file. When
finding gaps, read_pdb will return an array with -1 as first entry, thus denoting that
reading the file failed. It will save selected reasons in an error message. Non standard
amino acids can not be read. It will parse only up to the first TER signal.

Functionvoid get new sequence (int len, char *sequence)
get_new_sequence prompts for a new sequence in CAPITAL one letter code, and trans-
lates it to numerical encoded sequence in the wt seq global array. The arguments are the
length of the target sequence and the sequence character pointer.

1.4 Tessellation related Functions

Functiontess * tessellate (float *coords, int len, tess *temp)
tessellate performs the tessellation of a target or poly-protein. The arguments are the
coordinates in the format created by read_pdb, the length of the target protein and a tess
structure. This function will perform the tessellation, creating the pointlists and writing
them in tess.plists. It calls different other functions we also provide.

Functionfloat * make watershell (float *coords, float gd)
make_watershell creates a shell of water surrounding the protein. The arguments are the
coordinates as created by read_pdb and the distance of the water in the grid in Angstrom.
It will return a new, longer set of coordinates, including the coordinates of the water shell.
This function is used in tessellate.

Functionunsigned short * call qhull (int numpoints, coordT array[][4])
call_qhull is the function which calls qhull, the algorithm performing the tessellation.
The arguments are the number of points to be tessellated and an two dimensional array
of these coordinates, i.e. atom[0][0] is the x coordinate of the first atom, atom[0][1] the y
and so forth. Note that coordT has to be set in the header to match the definition in the
qhull library. We use double as coordT. It will return a list of four point contacts, with the
first ([0]) element 4 times the number of tetrahedrons it encountered, and the four-tuples
(e.g. [1][2][3][4]) the nodes participating in a tetrahedron. Also used in tessellate.

Functionunsigned short * processpointlist (unsigned short *pl, int watst);
processpointlist will truncate the pointlist, leaving no “water only” tetrahedrons. The
arguments are the old pointlist and the length of the target protein (the point water
starts). This function is used in tessellate.

Functiontess * gettrli (tess *temp)
gettrli will make a list of unique triangles out of a pointlist of tetrahedrons. The
argument is a pointer to a tess structure with an existing tess.plists (out of e.g. tessellate).
The triangle list tess.tr is an array of arrays (for each tessellation one in case of a poly-
protein, else only one) with the length of the array as [x][0] entry and then tri-tuples
describing the triangles (i.e. [x][1],[x][2] and [x][3] are one triangle).
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Functiontess * getpali (tess *temp, float *coord)
getpali will make a list of unique pairs out of a pointlist of tetrahedrons. The arguments
are a pointer to a tess structure with an existing tess.plists (out of e.g. tessellate) and the
coordinates of the points of the pointlist(read_pdb created). Water coordinates are not
needed.

The pairlist tess.pa is an array of arrays (for each tessellation one in case of a poly-protein,
else only one) with the length of the array as [x][0] entry and then tri-tuples describing
the pairs (i.e. [x][1],[x][2] the nodes of the pair and [x][3] the euclidean class).

1.5 Energy related Functions

Functiondouble dtdznew (tess *PP, tess *targ, Potential *pot)
This function returns the z-score of the tess targ protein on the tess PP poly-protein with
the Potential pot. It needs the global structure wt seq. If the flag Parameters.verbose is
set, the function will put out splitted z-scores and energies also.

Functiondouble * initialize zscore (tess *PP, Potential *pot, int *seq)
initialize_zscore will return the mean energy and the mean energy squared of the
tessellation of a poly-protein tess PP. The arguments are said tess PP, the Potential
Potential pot and the numerical encoded sequence.

The mean energy is returned on [0], the mean energy squared on [1].

Functiondouble * compute energy (tess *temp, Potential *pot, int* seq)
compute_energy computes the energy of the sequence int seq on the tessellation tess temp
with the potential Potential pot. It will return an array of energies corresponding to the
number of different tessellations put in (i.e. for a poly-protein it will return on [0] the first,
on [1] the second energy and so forth). For a single tessellation (i.e. the target protein),
the energy is put in [0].

This function is used in initialize_zscore.

Functiondouble zscohr (double Targen, double *Mw)
zscohr computes a z-score out of an energy Targen and an array containing the mean
energy and the mean energy squared (as computed in initialize_zscore).

1.6 Functions for adaptive walks

Functionint mutateseq (char *seq, int *no)
mutateseq will mutate an amino acid of sequence seq. It will use the frequency of natural
occurrence to determine which amino acid will randomly be chosen to replace a randomly
chosen amino acid. The integer array no contains all amino acids which may be mutated.
If all amino acids may be mutated, it has its length on first position and then subsequent
numbers: e.g. [15][1][2][3][4][5][6][7][8][9][10][11][12][13][14][15] if e.g. amino acids 3 4 5
should not be mutated, it will look like this: [12][1][2][5][6][7][8][9][10][11][12][13][14][15].

Functionint mutateseqS (char *seq, int *no, char *Struc);
mutateseqS will mutate an amino acid of sequence seq. It will use the frequency of natural
occurrence dependent on the position regarding surface or core to determine which amino
acid will randomly be chosen to replace a randomly chosen amino acid. The integer array
no contains all amino acids which may be mutated. The character string Struc is a string
of S and C for surface and core, as long as the amino acid sequence.
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Functionint mutateseqE (char *seq, int *no, char *Struc);
mutateseqE will mutate an amino acid of sequence seq. It will use the frequency of
natural occurrence dependent on the environmental class to determine which amino acid
will randomly be chosen to replace a randomly chosen amino acid. The integer array no
contains all amino acids which may be mutated. The character string Struc is a string
where each amino acid of a sequence has 3 characters, describing the environmental class,
as long as the amino acid sequence.

1.7 Other useful functions

Functionint get top par (int a, int b, int parx);
This returns the sequence distant class of two amino acids. The arguments are the number
of the amino acids a and b as well as the number of sequence distance classes to use. The
boundaries of this classes can be edited if need be.

Functionint get distanceclass
(double x1, double y1, double z1, double x2, double y2, double z2, int pary) This returns
the euclidean distance class two amino acids belong to. The arguments are the coordinates
of the two amino acids and the number of euclidean distance classes. Boundaries can be
edited.

Functionvoid dostat (tess tess, char *outfile, int *seq)
This function is used to do statistics. It will read in files with the names
aa[outfile][par.x][par.y], pair[outfile][par.x][par.y], tri[outfile] and tet[outfile] and will add
the information contained in tess tess. The last argument is the numerically encoded
sequence. Default out-name is cnt. If these files do not exist, it will create them.

Functionint * addwatertoseq nc (int *seq_nc, int aamolnumber, int

seq_length)
addwatertoseq_nc will take a numerically encoded sequence seq nc and add water from
sequence position seq length+1 to sequence position aamolnumber.

1.7.1 Global Variables and structures

These global variables may be needed by any of the functions above. It is strongly recom-
mended to use them.

Variableint trop err code
An integer to save an error code.

Variablechar * program
the name of the program

VariableDECODE * Rosetta
For translation.

Variablechar qh version[] = "3.1 <02/05/01>";
The version information for qhull

Parameters par holds parameters
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Variablechar trop err msg[MAX ERR MSG LEN]
Will hold an definition of the error, on the off-chance that one occurs *g*

Variablechar * alphabet /* points to Amino acids or AA-classes */
the amino acid alphabet used (Usually 20 one letter code: ACDEFGHIKLMN-
PQRSTVWY), initialize right after start of program.

Variableint filter delauney
Will tessellation use filtering??

Variableint wt seq[MAXSEQLEN]
holds numerically encoded sequence.

Variableint * globseq
holds numerically encoded sequence.
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D Programs

D.1 SaDSaTstat

NAME
SaDSaTstat − reads a pdbfile, performs a tessellation and saves the number of amino acids, pairs, triangles

and tetrahedrons it encountered, either in a new file or after reading old files in and adding the numbers up.

SYNOPSIS
SaDSaTstat [options] pdb−file

DESCRIPTION
The SaDSaTstat program reads the coordinates and sequence of a protein in a PDB−file, then performs a

tessellation, counts all occurrences of amino acids, amino acid pairs, −triangles and−tetrahedrons. Then it

either reads in existing files and adds the new numbers to them, or creates a new file and saves this num-

bers. The files created can be used by CompLogLike to generate a log likelyhood potential. Additional

information such as the number of sequence− and euclidean distance classes as well as whether water was

used and wat the distance of the water grid was are saved also to prevent usage of wrong potentials. The

program always uses one pdb−file. It is recomended to use a shell script if whole data bases have to be pro-

cessed.

a small foreach loop can make usage of SaDSaTstat easy:

foreach i (’*.pdb’)

SaDSaTstat [options] $i

end

will do a statistics over all pdb−files in a directory

OPTIONS
−−TA [CA|CB]

Specify targed atom, either CA or CB are possible. Note that the parameters?? should be created

with the same targed atom.

−−pot [name]

The name of the files to load and/or write. Default is cnt. So the files aa[name][SDC][EDC],

pair[name][SDC][EDC], tri[name] and tet[name] will tried to be read, and if not existing, created.

−−verbose −v

Print more information.

−−SDC [Number]

Specify the number of sequence distance classes to be used in the computation. Note that the

parameters?? as well as a save poly−protein tessellation must be created with the same number of

sequence distance classes.

−−EDC [Number]

Specify the number of euclidean distance classes to be used in the computation. Note that the

parameters?? as well as a save poly−protein tessellation must be created with the same number of

euclidean distance classes.

−−GD [Number]

Specify the distance of the water molecules in the shell. Note that the parameters?? as well as a

save poly−protein tessellation must be created with the same distance.

−−water −w

Do not compute watershell and hence do not compute a surface part of the potential.
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FILES
Files created and/or read by SaDSaTstat

aa[name][SDC][EDC]

pair[name][SDC][EDC]

tri[name]

tet[name]

the files tri[inname] and tet[inname] will be of the following form:

[GD] # griddistance

0 # triangle 0− 0− 0

1 # triangle 0− 0− 1

0 # triangle 0− 0− 2

1 # triangle 0− 0− 3

and so on

[GD] #griddist

0 # tet 0− 0− 0− 0

0 # tet 0− 0− 0− 1

0 # tet 0− 0− 0− 2

and so on

With first the grid distance saved and then all found tetrahedrons/triangles

pair[inname][SDC][EDC] and aa[inname][SDC][EDC] start like this:

[SDC] #seqdistcl

[EDC] #eukdistcl

[GD] #griddistance

0 #  aa 0 seq 0 euk 0

3 #  aa 1 seq 0 euk 0

and so on

[SDC] #seqdistcl

[EDC] #eukdistcl

[GD] #griddistance

1 # pair 0/ 0 seq 0 euk 0

4 # pair 0/ 1 seq 0 euk 0

and so on

The program will try to open the files specified by −−pot to add the counted numbers to the numbers saved

there. If the [SDC] and [EDC] are not equal to the values used, it will crash. If the files do not exist, it will

make them.

REFERENCES
The tessellation is done using qhull algorithm (http://www.thesa.com/software/qhull/)

A. Tropsha had the idea to use tessellation for knowledge based potentials.

Much of this program has been influenced by M. Sippl’s work.

P. F. Stadler and I. L. Hofacker are the geniuses whos ideas I used mainly.

Guenther Weberndorfer did much basic work.

C. Bradford, D. P. Barber and H. T. Huhdanpaa "The Quickhull Algorithm for Convex Hulls" ACM Trans-

actions on Mathematical Software, 22, pp 469−483, 1996

R. K. Singh, A. Tropsha and I. I. Vaisman " Delauney Tessellation of Proteins: Four Body Nearest Neigh-

bor Propensity of Amino Acid Residues" Journal of Computational Biology, 3, pp 213−221, 1996

M. J. Sippl "Calculation of Conformational Ensembles from Potentials of Mean Force − An Approach to

the knowledge−based Prediction of Local Structures in Globular Proteins" Journal of Molecular Biology,
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213, 859−883, 1990

VERSION
This man page documents Version 0.1.0 of SaDSaTstat

AUTHORS
Stephan Bernhart, Ivo L. Hofacker, Peter F. Stadler

BUGS
If in doubt and overstrung, try to yell and scream and run. Else, you can contact berni@tbi.univie.ac.at

SEE ALSO
SaDSaT, SaDSaTinv, CompLogLike
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D.2 CompLogLike

NAME
CompLogLike − creates a potential file for SaDSaT with input created by SaDSaTstat

SYNOPSIS
CompLogLike [options]

DESCRIPTION
The Comploglike program reads the number of amino acids, amino acid pairs, amino acid triangles and

amino acid tetrahedrons in a data base out of files created by SaDSaTstat for use with SaDSaT(inv). It

uses an optimizer, donlp2 to compute expected frequencies for tetrahedrons, creating the energy contribu-

tions for pairs and tetrahedrons by comparing them with the observed frequencies after correcting for

sparse data. The logarithm of the quotient of them is used as energy contribution. Some data of how the

data was achieved is also saved to prevent mistakes in computations due to using wrong energy parameters

for computing z−scores. The files created have names of the form pair[name][SDC][EDC] and

scndtet[name].

OPTIONS
−−water −w

The files to be read were not created using watershell, an @code{Comploglike} will therefor not

try to computed energies for water contacts.

−−verbose −v

Print more information.

−−SDC [Number]

Specify the number of sequence distance classes to be used in the computation. Note that the

parameters?? as well as a save poly−protein tessellation must be created with the same number of

sequence distance classes.

−−EDC [Number]

Specify the number of euclidean distance classes to be used in the computation. Note that the

parameters?? as well as a save poly−protein tessellation must be created with the same number of

euclidean distance classes.

−−GD [Number]

Specify the distance of the water molecules in the shell. Note that the parameters?? as well as a

save poly−protein tessellation must be created with the same distance.

−−potin [name]

The midle part of the name of the files created by @command{SaDSaTstat}.

−−potout [name]

The midle part of the name of the files created by Comploglike to be used by SaDSaT and SaD-

SaTinv.

−−help −h

Print an informative help message describing the options and then exit successfully.

FILES
files that have to be created by SaDSaTstat for CompLogLike to work:

aa[name][SDC][EDC]

pair[name][SDC][EDC]

tri[name]

tet[name]
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the files tri[inname] and tet[inname] will be of the following form:

[GD] # griddistance

0 # triangle 0− 0− 0

1 # triangle 0− 0− 1

0 # triangle 0− 0− 2

1 # triangle 0− 0− 3

and so on

[GD] #griddist

0 # tet 0− 0− 0− 0

0 # tet 0− 0− 0− 1

0 # tet 0− 0− 0− 2

and so on

With first the grid distance saved and then all found tetrahedrons/triangles

pair[inname][SDC][EDC] and aa[inname][SDC][EDC] start like this:

[SDC] #seqdistcl

[EDC] #eukdistcl

[GD] #griddistance

0 #  aa 0 seq 0 euk 0

3 #  aa 1 seq 0 euk 0

and so on

[SDC] #seqdistcl

[EDC] #eukdistcl

[GD] #griddistance

1 # pair 0/ 0 seq 0 euk 0

4 # pair 0/ 1 seq 0 euk 0

and so on

files created by CompLogLike:

pair[outname][SDC][EDC]

scndtet[outname]

scndtet[outname] takes the same form as tet[inname]:

[GD] #

−0.283478 # 0 −  0 −  0 −  0

and so forth

while pair[outname][SDC][EDC] is analogous to pair[inname][SDC][EDC]:

[SDC] # SDC

[EDC] # EDC

[GD] # GD

0.589936 # 0,0,0,0

and so forth

REFERENCES
A. Tropsha had the idea to use tessellation for knowledge based potentials.

Much of this program has been influenced by M. Sippl’s work.

P. F. Stadler and I. L. Hofacker are the geniuses whos ideas I used mainly.

Guenther Weberndorfer did much basic work.

donlp2 is available at ftp://ftp.mathematik.tu−darmstadt.de/pub/department/software/opti/

R. K. Singh, A. Tropsha and I. I. Vaisman " Delauney Tessellation of Proteins: Four Body Nearest Neigh-

bor Propensity of Amino Acid Residues" Journal of Computational Biology, 3, pp 213−221, 1996
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M. J. Sippl "Calculation of Conformational Ensembles from Potentials of Mean Force − An Approach to

the knowledge−based Prediction of Local Structures in Globular Proteins" Journal of Molecular Biology,

213, 859−883, 1990

P. Spelucci "An sqp method for general nonlinear programs using only equality constrained subproblems"

Mathematical Programming, 82, pp 413−448, 1998

P. Spelucci "A new technique for inconsistent qp problems in the sqp method" Math. Method. Oper. Res.,

47, pp 355−400, 1998

AUTHORS
Stephan Bernhart, Ivo L. Hofacker, Peter F. Stadler

BUGS
If in doubt and overstrung, try to yell and scream and run. Else, you can contact berni@tbi.univie.ac.at

SEE ALSO
SaDSaT, SaDSaTinv, SaDSaTstat

Stephan Bernhart 0.1.0 3



D Programs xx

D.3 SaDSaT

NAME
SaDSaT − compute z−score or energy of an amino acid sequence on a 3−Dimensional structure.

SYNOPSIS
SaDSaT [options] pdb−file [poly−protein]

DESCRIPTION
SaDSaT program reads the coordinates and sequence of a protein in a PDB−file, then computes its energy

or z−score using poly−protein files also in PDB format using energy parameters produced by the .I Com-

pLogLike program. It prints the z−score or energy to standard out. Additional information such as the con-

tributions of surface and core of the protein to the z−score can be read via options. Additional output such

as a vmd−source file for visualization can be generated via options. In Addition, new sequences or muta-

tions can be computed after computation of the original z−score/energy. The tessellation of the poly−pro-

tein can be saved.

OPTIONS
−−TA [CA|CB]

Specify targed atom, either CA or CB are possible. Note that the parameters?? should be created

with the same targed atom.

−−savePP [Filename]

Save the tessellation of the poly−protein to disk. This greatly reduces the time neede for computa-

tion, but needs quite a lot of disk space (˜200M for the 10k poly protein). The file will get the

extension .tpp. If the poly−protein given in the command line has an .tpp extension, a previously

saved tessellation will be read. It is important not to try and use a saved tessellation which was

computed for a protein of a different length and/or different SDC, EDC or GDs (see below)

−−water −w

Do not compute watershell and hence do not compute a surface part of the potential.

−−verbose −v

Print more information.

−−SDC [Number]

Specify the number of sequence distance classes to be used in the computation. Note that the

parameters?? as well as a save poly−protein tessellation must be created with the same number of

sequence distance classes.

−−EDC [Number]

Specify the number of euclidean distance classes to be used in the computation. Note that the

parameters?? as well as a save poly−protein tessellation must be created with the same number of

euclidean distance classes.

−−GD [Number]

Specify the distance of the water molecules in the shell. Note that the parameters?? as well as a

save poly−protein tessellation must be created with the same distance.

−−outvmd −o

Creates vmd source files for visualization of the tessellation. A file name.vmd containing the edges

and a file name.vmd2 containing the nodes of the tetrahedrons are created, with the edges and

nodes in different colours if they belong to the water shell. Type source name.vmd(2) in the vmd

console to view it.
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−−help −h

Print an informative help message describing the options and then exit successfully.

−−potin [name]

Type in the middle part of the potential files (created by CompLogLike), they hav e the form

pair[name][SDC][EDC] and scndtet[name]. Default name is log. If they are computed without

watershell, a ’w’ is appended to this names.

−−watscale [factor]

Determine the scale of water compared to surface term. This factor will always be multiplied by

GDˆ4/3. The default is 0.05.

−−energy −e

Do not compute z−score, but an energy of the protein only. Because there is no threading proce-

dure, there is no need of a poly−protein file name. Because the verbose mode will cause the pro-

gramm to crash, it is automatically turned off if −e is chosen.

−−triangle −t

Use triangles in computation. If this is chosen, other potential files will be read in, namely

tri[name] and tet[name] instead of scndtet[name] are needed!

−−seq −s

This is used to compute the energy of another sequence at the structure. After finishing computa-

tion (either energy or z−score), the program will prompt for the input of another sequence for

which the computation is then repeated, and another sequence is prompted until @ as terminating

character is inserted. The sequence has to be inserted in one letter CAPITALS. Wrong characters

will cause the program to crash terminally.

−−res −r

This is used to introduce one point mutations into the sequence and rerun computation. As with −s

after finishing computation (either energy or z−score), the program will prompt for input. The

input has two parts: first, the number of the amino acid to be mutated is to be inserted, then, what

amino acid (in CAPITAL one letter code) is to replace the native one. The output is the energy dif-

ference together with what kond of mutation has been made (in numerical mode).

FILES
The files needed by SaDSaT: Potential files created by CompLogLike, named pair[name] and

scndtet[name] (else see −t), a target file in pdb−format and a poly−protein file either in pdb or in .tpp for-

mat (as created by the −−savePP option. The files have to hav e been created with the same [SDC], [EDC]

and GD as well as, in case of a .tpp file, with the same length of the target protein.

REFERENCES
The tessellation is done using qhull algorithm (http://www.thesa.com/software/qhull/)

A. Tropsha had the idea to use tessellation for knowledge based potentials.

Much of this program has been influenced by M. Sippl’s work.

P. F. Stadler and I. L. Hofacker are the geniuses whos ideas I used mainly.

Guenther Weberndorfer did much basic work.

C. Bradford, D. P. Barber and H. T. Huhdanpaa "The Quickhull Algorithm for Convex Hulls" ACM
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Transactions on Mathematical Software, 22, pp 469−483, 1996

R. K. Singh, A. Tropsha and I. I. Vaisman " Delauney Tessellation of Proteins: Four Body Nearest Neigh-

bor Propensity of Amino Acid Residues" Journal of Computational Biology, 3, pp 213−221, 1996

M. J. Sippl "Calculation of Conformational Ensembles from Potentials of Mean Force − An Approach to

the knowledge−based Prediction of Local Structures in Globular Proteins" Journal of Molecular Biology,

213, 859−883, 1990

VERSION
This man page documents Version 0.1.0 of SaDSaT

AUTHORS
Stephan Bernhart, Ivo L. Hofacker, Peter F. Stadler

BUGS
If in doubt and overstrung, try to yell and scream and run. Else, you can contact berni@tbi.univie.ac.at

SEE ALSO
SaDSaTinv, SaDSaTstat, CompLogLike
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D.4 SaDSaTinv

NAME
SaDSaTinv

− computes an adaptive walk to find a sequence which will fold into a given structure.

SYNOPSIS
SaDSaTinv [options] pdb−file poly−protein

DESCRIPTION
The SaDSaTinv program reads the coordinates and sequence of a protein from a PDB−file, then computes

as well as from a poly−protein files also in PDB format. Using energy parameters produced by the Com-

pLogLike program, it then begins with a random sequence to search for a sequence fitting this structure by

adaptive walk, i.e. randomly mutating single amino acids and keeping the mutation if the z−score of the

new sequence is better than that of the old one. It will stop if it cannot find a mutation increasing the

z−score in 100 tries. The output is a file containing the sequences and zscores of the adaptive walk.

OPTIONS
−−TA [CA|CB]

Specify targed atom, either CA or CB are possible. Note that the parameters?? should be created

with the same targed atom.

−−savePP [Filename]

Save the tessellation of the poly−protein to disk. This greatly reduces the time neede for computa-

tion, but needs quite a lot of disk space (˜200M for the 10k poly protein). The file will get the

extension .tpp.

−−water −w

Do not compute watershell and hence do not compute a surface part of the potential.

−−verbose −v

Print more information.

−−SDC [Number]

Specify the number of sequence distance classes to be used in the computation. Note that the

parameters?? as well as a save poly−protein tessellation must be created with the same number of

sequence distance classes. Default is 5

−−EDC [Number]

Specify the number of euclidean distance classes to be used in the computation. Note that the

parameters?? as well as a save poly−protein tessellation must be created with the same number of

euclidean distance classes. Default is 2

−−GD [Number]

Specify the distance of the water molecules in the shell. Note that the parameters?? as well as a

save poly−protein tessellation must be created with the same distance. Default is 5.1 (Angstrom)

−−Sequence

The program will prompt for a starting sequence to be started from. It has to be put in in one letter

code. Capital letters will be mutated, lower case characters will not. This can be useful if you want

to design a protein with certain features at a certain region.
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−−Surface

When mutating, use different probabilitys for surface anc core amino acids. The sequence of sur-

face and core amino acids has to be put in after prompted. −−Surface and −−Secstruc (see below)

are mutually exclusive.

−−Secstruc

When mutating, use different probabilitys for different environmental classes (see Eisenberg). The

sequence of environmental classes has to be put in after prompted. −−Surface (see above) and

−−Secstruc are mutually exclusive.

−−zscore −z

Compute z−score of the wild type sequence (or the sequence contained in the trarget pdb−file)

first.

−−help −h

Print an informative help message describing the options and then exit successfully.

−−potin [name]

Type in the middle part of the potential files (created by CompLogLike), they hav e the form

pair[name][SDC][EDC] and scndtet[name]. Default name is log. If they are computed without

watershell, a ’w’ is appended to this names.

−−outfile [name]

The name of the output file, will be appended with .out. Default is adaout.

−−watscale [factor]

Determine the scale of water compared to surface term. This factor will always be multiplied by

GDˆ4/3. The default is 0.05.

−−triangle −t

Use triangles in computation. If this is chosen, other potential files will be read in, namely

tri[name] and tet[name] instead of scndtet[name] are needed!

FILES
The files needed by SaDSaTinv: Potential files created by CompLogLike, named pair[name] and

scndtet[name] (else see −t), a target file in pdb−format and a poly−protein file either in pdb or in .tpp for-

mat (as created by the −−savePP option. The files have to hav e been created with the same [SDC], [EDC]

and GD as well as, in case of a .tpp file, with the same length of the target protein.

The output file will contain:

[Consecutive Number] [energy] sdc [SDC] edc [EDC] gd [GD] [−t]

[SEQUENCE] (in one letter code)

[z−score]

REFERENCES
The tessellation is done using qhull algorithm (http://www.thesa.com/software/qhull/)

A. Tropsha had the idea to use tessellation for knowledge based potentials.

Much of this program has been influenced by M. Sippl’s work.
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P. F. Stadler and I. L. Hofacker are the geniuses whos ideas I used mainly.

Guenther Weberndorfer did much basic work.

C. Bradford, D. P. Barber and H. T. Huhdanpaa "The Quickhull Algorithm for Convex Hulls" ACM Trans-

actions on Mathematical Software, 22, pp 469−483, 1996

R. K. Singh, A. Tropsha and I. I. Vaisman " Delauney Tessellation of Proteins: Four Body Nearest Neigh-

bor Propensity of Amino Acid Residues" Journal of Computational Biology, 3, pp 213−221, 1996

M. J. Sippl "Calculation of Conformational Ensembles from Potentials of Mean Force − An Approach to

the knowledge−based Prediction of Local Structures in Globular Proteins" Journal of Molecular Biology,

213, 859−883, 1990

VERSION
This man page documents Version 0.1.0 of SaDSaTinv

AUTHORS
Stephan Bernhart, Ivo L. Hofacker, Peter F. Stadler

BUGS
If in doubt and overstrung, try to yell and scream and run. Else, you can contact berni@tbi.univie.ac.at

SEE ALSO
SaDSaT, SaDSaTstat, CompLogLike
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