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Zusammenfassung

RNA-Moleküle sind nicht nur Informationträger, sondern auch selbständige

funktionelle Einheiten. Bei einer großen Anzahl von biologischen Prozessen

spielt ihre dreidimensionale Struktur daher eine wichtige Rolle. Das Studium

der Sekundärstruktur von RNA-Molekülen bietet uns die Möglichkeit, diese in

einer gröberen Auflösung zu untersuchen. Dadurch wird die Vorhersage von

3D-Strukturen unterstützt, und man erhält wertvolle Informationen über ihre

biochemischen Funktionen. Sekundärstrukturen sind darüberhinaus diskret,

und eignen sich daher gut für Computeralgorithmen.

RNA-Sekundärstrukturen können mit Hilfe von dynamischen Computeralgo-

rithmen vorhergesagt werden. Dabei ist der Rechenaufwand für die Computer-

algorithmen O(n3) und der Speicherbedarf O(n2), wobei n die Sequenzlänge

bezeichnet. Lange RNA-Moleküle, wie etwa ganze Virusgenome, sind außer-

halb der Reichweite von Workstations. Für lange RNA-Sequenzen haben wir

deshalb einen Parallelalgorithmus entwickelt, der es erlaubt, die Vorhersage

der minimalen freien Energie, die Zustandssumme und die Basen-Paarungs-

Wahrscheinlichkeiten auf “distributed memory“ Parallelrechner durchzuführen.

Auf einem Intel iPSC Hypercube und einem Intel DELTA Supercomputer

wurde der Algorithmus bereits erfolgreich implementiert. Selbst auf einigen

hundert Prozessoren erhielten wir dabei eine gute Effizienz des Algorithmus.

Als eine erste Anwendung haben wir die Sekundärstruktur eines ganzen HIV1

Virus (n = 9229) vorhergesagt und analysiert.

Mit Hilfe der heute verfügbaren Parallelcomputern wird die Sekundärstruktur-

Vorhersage von langen RNA-Molekülen zu einer Routinemethode werden. Ein

umfassender Vergleich aller heutzutage verfügbaren Virus Genome ist möglich

geworden und könnte wichtige Neuerungen im Verständnis der funktionalen

Bedeutung der Virus-Struktur, sowie in der Frage der Evolution von RNA-

Viren bringen.
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Abstract

RNA molecules serve not only as carriers of information, but also as function-

ally active units. The three dimensional shape of RNA molecules plays a crucial

role in a wide variety of biological processes. Secondary structures provide a

convenient form of coarse graining, and their study yields information useful

in the prediction of the full 3D structures and also in the interpretation of the

biochemical abilities of the molecules. Furthermore, secondary structures are

discrete and therefore well suited for computational methods.

RNA secondary structure can be predicted by dynamic programming algo-

rithms. For these algoritms the computational effort is O(n3) and needs O(n2)

memory, where n denotes the sequence length. Long RNA molecules, such as

the genomes of RNA viruses, are beyond the capabilities of typical worksta-

tions. We have therefore developed a parallel algorithm for the prediction of

minimum free energy, partition function and base pair probabilities of large

RNA sequences on distributed memory machines. The algorithm was suc-

cessfully implemented and tested on an Intel iPSC hypercube and the Intel

DELTA supercomputer. Our algorithm achieves good efficiencies even on hun-

dreds of processors. As a first applications we have predicted and analysed the

secondary structure of a complete HIV1 genome (n = 9229).

With the help of massively parallel computers the secondary structure predic-

tion of long RNA molecules will become a routine method. A complete com-

parison and structure prediction of all presently available RNA virus genomes

is now within reach, and may cause a better understanding of functional RNA

structures in viruses, as well as their evolutionary relationships.



Contents iv

Contents

1 Introduction 1

2 RNA Secondary Structures 4

3 Secondary Structure 7

3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Representation of Secondary Structure . . . . . . . . . . . . . . 11

4 The Energy Model 16

4.1 Base-Base Interactions in Nucleic Acids . . . . . . . . . . . . . . 16

4.1.1 Hydrogen Bonding . . . . . . . . . . . . . . . . . . . . . 16

4.1.2 Vertical Base-Base Stacking . . . . . . . . . . . . . . . . 18

4.2 Thermodynamic Nearest Neighbor Parameters . . . . . . . . . . 21

5 Folding Algorithms 26

5.1 Computing the Partition Function . . . . . . . . . . . . . . . . . 26

5.2 Calculating the Base Pair Probability: Backtracking . . . . . . 32

5.3 The Problem of Large Numbers . . . . . . . . . . . . . . . . . . 35

5.4 Computing the Minimum Free Energy . . . . . . . . . . . . . . 38

6 Hardware: Parallel Computers 41

6.1 The Intel iPSC Hypercube Parallel Computer . . . . . . . . . . 41

6.2 The Intel Delta Parallel Computer . . . . . . . . . . . . . . . . 42

6.2.1 The Mesh Interconnect . . . . . . . . . . . . . . . . . . 43

6.2.2 System Description . . . . . . . . . . . . . . . . . . . . . 43

6.2.3 Types of Nodes . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.4 Message Passing . . . . . . . . . . . . . . . . . . . . . . 45

6.2.5 The NX/M Operating System . . . . . . . . . . . . . . 45

6.2.6 The concurrent File System . . . . . . . . . . . . . . . . 46

7 Implementation of the Parallel Partition Function Algorithm 47

7.1 Parallel MFE fold . . . . . . . . . . . . . . . . . . . . . . . . . . 47



Contents v

7.2 Parallel Partition Function . . . . . . . . . . . . . . . . . . . . . 50

7.3 Calculating Base Pair Probabilities: Backtracking . . . . . . . . 52

8 Performance of the Parallel Algorithm 56

9 Base Pair Probabilities in HIV 1LAI 61

10 Conclusion and Outlook 70

References 72



List of Figures vi

List of Figures

1 Folding of an RNA Sequence . . . . . . . . . . . . . . . . . . . . 4

2 RNA Secondary Structure . . . . . . . . . . . . . . . . . . . . . 7

3 Components of RNA Secondary Structures . . . . . . . . . . . . 9

4 Secondary Structure Motifs . . . . . . . . . . . . . . . . . . . . 10

5 RNA Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6 Circular Representation . . . . . . . . . . . . . . . . . . . . . . 12

7 RNA Dot Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

8 Mountain Representation . . . . . . . . . . . . . . . . . . . . . . 14

9 Generalized Mountain Representation . . . . . . . . . . . . . . . 15

10 Energy Contributions . . . . . . . . . . . . . . . . . . . . . . . . 17

11 Stacking of Nucleic Bases . . . . . . . . . . . . . . . . . . . . . . 18

12 Single Stranded Helices . . . . . . . . . . . . . . . . . . . . . . . 20

13 Energy Contributions . . . . . . . . . . . . . . . . . . . . . . . . 25

14 Secondary Structure Sets and Subsets . . . . . . . . . . . . . . . 27

15 Partition Function of Multicomponent Structures . . . . . . . . 28

16 Multi-loop Energies and Decomposition . . . . . . . . . . . . . . 30

17 Probability of Phl Closing Component . . . . . . . . . . . . . . . 33

18 Probability of Phl in Interior Loop . . . . . . . . . . . . . . . . . 34

19 Probability of Phl in Multi-loop . . . . . . . . . . . . . . . . . . 34

20 The Intel iPSC Parallel Computer . . . . . . . . . . . . . . . . . 41

21 The Touchstone DELTA System Mesh Arrangement . . . . . . . 43

22 The Mesh Interconnection Hardware . . . . . . . . . . . . . . . 44

23 Memory Requirement for the MFE . . . . . . . . . . . . . . . . 48

24 Calculation of the F5 Array . . . . . . . . . . . . . . . . . . . . 49

25 Communication between Processors. . . . . . . . . . . . . . . . 50

26 Memory for the Parallel Partition Function . . . . . . . . . . . . 51

27 Calculating of Base Pair Probabilities . . . . . . . . . . . . . . . 52

28 Message Passing for the Backtracking . . . . . . . . . . . . . . . 53

29 Single Node Time for Qβ . . . . . . . . . . . . . . . . . . . . . . 57

30 Single Node CPU Time versus Sequence Length . . . . . . . . . 58



List of Figures vii

31 Efficiency Plot Parallelization . . . . . . . . . . . . . . . . . . . 60

32 Generalized Mountain Representation of Complete HIV1 . . . . 61

33 Generalized Mountain Representation of the 5’ End of HIV 1LAI 62

34 Dot Plot of the RRE Locus of HIV 1LAI . . . . . . . . . . . . . 64

35 Generalized Mountain Representation of the RRE Locus . . . . 65

36 Dot Plot of the RRE Locus of HIV 1LAI . . . . . . . . . . . . . 66

37 Secondary Structure Distance for HIV 1LAI . . . . . . . . . . . . 68

38 Differences in Base Pair Probabilities of HIV 1LAI . . . . . . . . 69



List of Tables viii

List of Tables

1 Recursion for the Calculation of the Partition Function . . . . . 31

2 Recursion for the Calculation of Base Pair Probability . . . . . . 37

3 Recursion for the Calculation of the Minimum Free Energy . . . 40

4 Used Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Test Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Single Node Times . . . . . . . . . . . . . . . . . . . . . . . . . 59



1 Introduction 1

1 Introduction

RNA molecules serve not only as carriers of information, but also as function-

ally active units. The three dimensional shape of tRNA molecules plays a cru-

cial role in the process of protein synthesis. RNA is known to exhibit catalytic

activity (Cech 1986; Guerrier-Takada et al. 1983; Guerrier-Takada & Altman

1984; Joyce 1989). While the activity of natural called “ribozymes” is usu-

ally restricted to cleavage and splicing of RNA itself, recent evidence suggests

that RNA also plays a predominant role in ribosomal translation (Noller 1991;

Noller, Hoffarth, & Zimniak 1992; Piccirilli et al. 1992).

These discoveries have given much support to the idea that an RNA World

(Gilbert 1986; Joyce 1988; 1989; 1991) stood at the origin of life, in which

RNA served both as carrier of genetic information as well as catalytically ac-

tive substance. RNA may not necessarily have been the first step in prebiotic

evolution, but the idea that RNA preceded not only DNA, but also the inven-

tion of the translational system, seems widely accepted. Furthermore, RNA

provides an ideal, currently the only, system to study genotype-phenotype re-

lationships. Following Sol Spiegelman (Spiegelman 1971), the phenotype for

an RNA molecule can be defined as its spatial structure.

Although RNA offers a limited repertoire of catalytic functions, ribozymes

gain importance for biotechnological applications, since these molecules are

suited for irrational design: Large scale synthesis of RNA molecules underlying

mutation and selection experiments, in which the ribozymes are screened for

positive catalytic functions, are spreading in use.

RNA secondary structures provide a useful, though coarse grained, descrip-

tion of RNA structure. In many biologically evolved RNA molecules such as

viral genomes and tRNA, the secondary structure seems to be more conserved

than the sequence. Viruses belonging to the same family show little sequence

similarity, yet exhibit strongly conserved secondary structure motifs, e.g. in

terminal non-coding regions. The wide variety of tRNA sequences provided

by databases fit into almost identical clover-leaf patterns.
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While we have at present no satisfactory algorithm for prediction of 3D

structures at hand, secondary structures can be computed efficiently by dy-

namic programming algorithms based on graph enumeration (Waterman &

Smith 1978; Zuker & Stiegler 1981). These algorithms usually yield only the

ground state structure; there is of course an exponentially large number of

other configurations, and even though the ground state is more probable than

any other state, its probability within the whole ensemble of structures may

be negligible. Moreover, because of the inaccuracies of the energy model, the

predicted ground state is not always correct. The correct structure, as known

from biochemical analysis, does however appear in the ensemble of structures

with high probability.

The approaches are routinely used to overcome this problem: Zuker (Zuker

1989) devised a version of the minimum energy folding algorithm that com-

putes a set of suboptimal structures in a certain energy range, see also (Jacob-

son & Zuker 1993). A more elegant solution was suggested by McCaskill (Mc-

Caskill 1990), who proposed an algorithm to compute the partition function

of the thermodynamic ensemble and the matrix of base pairing probabilities

of an RNA molecule. The representation of the base pair probabilities is done

in a dot plot, where the probability for a base pair is symbolized by the size of

a square. Different competing structure elements can be shown, this gives us

an idea of the variability of the structure. The Vienna RNA Package (Hofacker

et al. ) provides an efficient serial implementation of both the minimum free

energy and the partition function algorithm, the algorithms are only limited

by the resources of the present day computers.

The partition function algorithm, however, is quite demanding both in

terms of memory and CPU time. The algorithm requires CPU time that scales

roughly as the cubic power of the sequence length, and memory that scales

quadratically with sequence length. This is not a problem for small RNA

molecules such as tRNAs. For large RNA molecules such as viral genomes,

memory, rather than computational speed, is usually the fundamental resource

bottleneck. The complete genome of bacteriophage Qβ (4220 bases) was folded

on an IBM RISC6000/550 workstation in about 10 h (Hofacker et al. 1994a)
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using 340 MegaBytes of memory. Folding a large virus like HIV1 with about

9200 bases the folding procedure would last about 105 h, on the same computer,

and was performed on a CRAY-M90 (Huynen et al. 1996), using 63 h of CPU

time and 1.6 GigaBytes of memory. While using a few days of CPU times

would often be acceptable, few workstations provide enough memory for this

kind of calculations. On the other hand, these resources can easily be provided

by modern parallel computers.

The implementation for massively parallel computers of the folding algo-

rithms developed in this diploma thesis was based on the philosophy, that

memory is the fundamental resource bottleneck, rather than computational

speed. Even though CPU time grows as the cubic power of chain length, se-

quences such as HIV that are approximately 10000 bases in length still require

only on the order of 84 min to fold on 384 nodes of the Intel Delta super-

computer. The use of parallel computers puts us in the position to predict

secondary structures of available virus genomes in rather short time.

As a first application and test of the parallel algorithm, the partition func-

tion and base pair probabilities for the complete virus genome of HIV1LAI

were calculated on the DELTA and compared to the results obtained from the

serial program running on the CRAY (Huynen et al. 1996), see section 9. The

secondary prediction of all available virus genomes now seems to be a feasi-

ble computational task, and will help identify important secondary structure

motifs and their role in the viral life cycle.
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2 RNA Secondary Structures

The presentation of this section follows the dissertation of I. Hofacker (Hofacker

1994). RNA molecules consist of ribonucleotides linked together by covalent

chemical bonds. Each ribonucleotides contains one of the four bases adenine,

cytosine, guanine, or uracil. The specific sequence of bases along the chain is

called the primary structure and determines the kind of the molecule.

In biological systems RNA chains bend and twine about themselves and

bases in close vicinity form hydrogen bonds with a complementary base: A

binds with U, G with C (Watson-Crick base pairs).
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Figure 1: Folding of an RNA sequence into its spatial structure. The process is partitioned

into two phases: in the first phase only the Watson-Crick-type base pairs are formed which

constitute the major fraction of the free energy, and in the second phase the actual spatial

structure is built by folding the planar graph into a three-dimensional object. The example

shown here is phenylalanyl-transfer-RNA tRNAPhe, whose spatial structure is known from

X-ray crystallography.
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Much like DNA, RNA can form stable double helices of complementary

strands. Since RNA usually occurs single stranded, formation of double he-

lical regions is accomplished by the molecule folding back onto itself to form

Watson-Crick G-C and A-U base pairs or the slightly less stable G-U pairs.

Base stacking and pairing are the major driving forces for RNA structure for-

mation, see section 4. Other, usually weaker, intermolecular forces and the

interaction with the aqueous solvent shape its spatial structure.

Since the number of degrees of freedom in the RNA chain is very high and

exceeds that in polypeptides, the full structural prediction problem is hard to

solve. However, for RNA it is possible to focus on an intermediate level rep-

resentation of the folding. This secondary structure representation contains

only information on which base pairs are formed and relegates more detailed

and additional information to a later and subsequent stage of analysis. The

resulting secondary structures are useful in the prediction of the full 3D struc-

tures and in the interpretation of the biochemical function of the molecules for

several reasons:

(1) The conventional base pairing and the base pair stacking cover the major

part of the free energy of folding.

(2) Secondary structures are used successfully in the interpretation of RNA

function and reactivity.

(3) Secondary structures are conserved in evolutionary phylogeny.

At the same time the secondary structure representation is very convenient:

(1) Secondary structures are discrete and therefore easy to compare.

(2) They are easy to visualize since they are planar graphs.

(3) Efficient methods exist for the computation of secondary structures.

In the following section we will give a formal definition of secondary struc-

tures as graphs: RNA secondary structures can be represented as planar
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vertex-labeled graphs or as trees. Note that our definition ranks pseudo-knots

as a tertiary interaction. Although pseudo-knots seem to be important for

biological function, their inclusion would complicate the mathematical and

computational treatment unduly.
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3 Secondary Structure

3.1 Definitions

The presentation of this section follows the dissertation of I. Hofacker (Hofacker

1994).

Definition 3.1. (Waterman 1978; Waterman & Smith 1978) A secondary

structure is a vertex-labeled graph on n vertices with an adjacency matrix A

fulfilling

(1) ai,i+1 = 1 for 1 ≤ i < n;

(2) For each i there is at most a single k 6= i − 1, i + 1 such that aik = 1;

(3) If aij = akl = 1 and i < k < j then i < l < j.

We will call an edge (i, k), |i − k| 6= 1 a bond or base pair. A vertex i

connected only to i−1 and i+1 will be called unpaired. Condition (3) assures

Figure 2: An example for an RNA secondary structure, with free dangling ends, stems

and loops.
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that the structure contains no pseudo-knots. A vertex i is said to be interior

to the base pair (k, l) if k < i < l. If, in addition, there is no base pair (p, q)

such that p < i < q, we will say that i is immediately interior to the base pair

(k, l). A base pair (p, q) is said to be (immediately) interior, if p and q are

(immediately) interior to (k, l).

Definition 3.2. A secondary structure consists of the following structure

elements

(1) A stem consists of subsequent base pairs (p, q), (p + 1, q − 1), . . ., (p +

h − 1, q − h + 1), (p + h, q − h) such that neither (p − 1, q + 1) nor

(p + h + 1, q− h− 1) is a base pair. h + 1 is the length of the stem, (p, q)

is the terminal base pair of the stem.

(2) A loop consists of all unpaired vertices which are immediately interior to

some base pair (p, q), the “closing” pair of the loop.

(3) An external vertex is an unpaired vertex which does not belong to a loop.

A collection of adjacent external vertices is called an external element.

If it contains the vertex 1 or n it is a free end, otherwise it is called joint.

Lemma 3.3. Any secondary structure Φ can be uniquely decomposed into

stems, loops, and external elements.

5’

3’

q+1 q q-1 . . . q-h q-h-1

p-1 p p+1 . . . p+h p+h+1

Subsequent base pairs (p, q), (p+1,q−1), . . . , (p+h,q−h) form a stem such that neither
(p+h+1,q−h−1) nor (p−1,q+1) is a base pair. h + 1 is the length of the stem, (p,q)
is the terminal base pair. (p+h,q−h) is the closing pair of a loop. Base pairs (p,q) to
(p+h−1,q−h+1) can be seen as closing base pairs of minimal loops of size z = 0 and
degree k = 2.

terminal basepair (p,q)
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free end joint joint free end

component 1 component 2 component 3

Figure 3: An example for an RNA secondary structure consisting of three components

and six external vertices (2 joints and 4 free ends).

Definition 3.4. A stem [(p, q), . . . , (p+k, q−k)] is called terminal, if p−1 = 0

or q + 1 = n + 1, or if the two vertices p − 1 and q + 1 are not interior to any

base pair. The sub-structure enclosed by the terminal base pair (p, q) of a

terminal stem will be called a component of Φ. We will say that a structure

on n vertices has a terminal base pair, if (1, n) is a base pair.

Lemma 3.5. A secondary structure may be uniquely decomposed into com-

ponents and external vertices. Each loop is contained in a component. The

open structure has 0 components.

Definition 3.6. The degree k of a loop is given by 1 plus the number of

terminal base pairs of stems which are interior to the closing bond of the loop.

A loop of degree 1 is called hairpin (loop), a loop of a degree larger than 2 is

called multi-loop. A loop of degree 2 is called bulge if the closing pair of the

loop and the unique base pair immediately interior to it are adjacent; otherwise

a loop of degree 2 is termed interior loop.

Definition 3.7. The size z of a loop is given by the number of unpaired

vertices immediately interior to the closing base pair (p, q) of the loop. If a

stem ends in a base pair (p, q) with no unpaired vertices immediately interior

to it, we speak of a loop with size zero. m denotes the minimum number of

unpaired digits in a hairpin loop (minimal loop size).
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5
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multiple loop

Figure 4: Classification of the loops arising in the decomposition of RNA secondary

structure.

It is often useful to lump loops of all degrees together into one class and to

consider, for example, the total number of loops

nL = nH + nB + nI + nM

which must be identical to the number of stems, nL = nS.
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3.2 Representation of Secondary Structure

A string representation S can by obtained by the following rules:

(1) If vertex i is unpaired, then Si =’.’

(2) If (p, q) is a base pair and p < q, then Sp =’(’ and Sq =’)’

These rules yield a sequence of matching brackets and dots called bracket

notation.

Secondary structure graphs as defined above can be drawn by placing the

bases of a sequence equidistant to one another on a line. Pairing bases are

connected by arcs.

G C G G A U U U A * C U C A G * * G G G A G A G C * C C A G A * U * A A * A * * U G G A G * U C * U G U G * * C G * U C C A C A G A A U U C G C A C C A

Figure 5: The secondary structure of tRNAPhe in linked graph representation.

A particularly easy way to draw secondary structure graphs was suggested

by Ruth Nussinov (Nussinov et al. 1978). The bases of the sequence are

placed equidistant to one another on a circle and for each base pair a chord is

drawn between the two bonded bases. Since the structures are un-knotted by

definition, no two chords will intersect. See Figure 6 for circular representation

of tRNAPhe.

Paulien Hogeweg and Danielle Konings conceived a related graphical method

for the comparison of RNA secondary structures called mountain representa-

tion (Hogeweg & Hesper 1984; Konings & Hogeweg 1989; Konings 1989) by

identifying ’(’, ’)’, and ’.’, with “up”, “down”, and “horizontal”, respec-

tively, see Figure 8 for mountain representation.

• Peaks correspond to hairpins. The symmetric slopes represent the stems

enclosing the unpaired bases in the hairpin loop, which appear as a

plateau.
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5’ 3’non-standard
G
C
A
U

Figure 6: The secondary structure of tRNAPhe in Circular representation.

• Plateaus represent unpaired bases. When interrupting sloped regions

they indicate bulges or interior loops, depending on whether they occur

alone or paired with another plateau on the other side of the mountain

at the same height respectively.

• Valleys indicate the unpaired regions between the branches of a multi-

stem loop or, when their height is zero, they indicate unpaired regions

separating the components of secondary structures.

The height of the mountain at sequence position k is simply the number of base

pairs that enclose position k; i.e., the number of all base pairs (i, j) for i < k

and j > k. The mountain representation allows straightforward comparison

of secondary structures and inspired a convenient algorithm for alignment of

secondary structures (Konings & Hogeweg 1989).

The presentation of an ensemble of structures obtained by the partition

function algorithm can be represented by a matrix of base pair probabilities.

Therefore various competitive structures can be displayed in a dot plot, and
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give us much more information than only one single minimum free energy

structure. A dot plot is a two-dimensional graph in which the size of the dot

at position (i, j) within the graph represents the probability Pij of the base

pair. We obtained our dot plots here using PSdotplot from the Vienna RNA

Package (Hofacker et al. ). In principle dot plots contain complete base pairing

information, in practice we suppress the dots corresponding to base pairs that

occur with a probability of less than 10−5. Figure 7 shows the tRNAPhe as

an example. The plot is divided into two triangles. The upper right triangle

contains the base pairing probability matrix (Pij); the size of the squares is

proportional to the pairing probability. The lower-left triangle displays the

minimum free energy structure for comparison.
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Figure 7: RNA Dot Plot of tRNAPhe. The above triangle shows the base pair probability,

and the upper the minimum free energy.
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Figure 8: The secondary structure of tRNAPhe from Yeast (see Figure 1) in

original mountain representation. The same structure in string representation is

(((((((..((((........)))).(((((.......))))).....(((((.......))))))))))))....

The generalized mountain representation is displaying the size and distri-

bution of secondary structure elements as a modified version of the mountain

representation. In the original mountain representation, see Figure 8 only a sin-

gle secondary structure is represented in a two dimensional graph. In the graph

the x-coordinates are the positions in the sequence, whereas the y-coordinates

are proportional to the number of base-pairs by which every nucleotide is en-

closed. We construct the modified version of the mountain representation as

follows: Let us consider the numbers

mk :=
∑

i<k

∑

j>k

Pij

for all sequence positions k. By definition, mk counts all base pairs which

contain k (in the terminology of Zuker and Sankoff (Zuker & Sankoff 1984)

that are all base pairs to which sequence position k is interior, weighted with

their respective pairing probabilities.
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Figure 9: The secondary structure of tRNAPhe from Yeast (see Figure 1) in mountain

representation and generalized mountain representation.

To see that this measure is in fact a close relative of the mountain repre-

sentation, assume for a moment that Pij is the pairing matrix of a minimum

free energy structure. Thus Pij = 0 or 1. In this case mk is the number

of base pairs that contain k, i.e., it is constant for all positions in the same

loop, increases by one at each paired position at the 5’ side of a stack, and

decreases by one at each paired position at the 3’ side of a stack. The gen-

eralized mountain representation gives a weighted average of the ensemble of

secondary structures. The y-coordinate of base k corresponds to the number

of base pairs that is expected to enclose k on average. In the original mountain

representation the steepness of the slope can have any downstream minus the

probability of being paired to a base upstream. Figure 9 shows a generalized

mountain representation of tRNAPhe and its original mountain representation.



4 The Energy Model 16

4 The Energy Model

4.1 Base-Base Interactions in Nucleic Acids

Base-base interactions in nucleic acids are of two kinds: (a) base pairing in the

plane of the bases (horizontal) due to hydrogen bonding and (b) base stacking

perpendicular to the plane of bases stabilized by London dispersion forces and

hydrophobic effects (Saenger 1984; Poerschke Berlin 1977). Whilst hydrogen

bonding is fundamental to the genetic code, both kinds of interactions play

a significant role in determining the spatial structure and energy state of an

RNA molecule. The presentation of this section follows the diploma thesis of

J. Cupal (Cupal 1997).

4.1.1 Hydrogen Bonding

Hydrogen bonds (Schuster 1987) are mainly electrostatic in character. A hy-

drogen bond X–H· · ·Y is formed when a hydrogen atom H is situated between

two atoms X, Y of higher electro-negativity. The strength of the hydrogen

bond is determined by the partial charges located on X and Y. In the case

of base-base interactions, the hydrogen bonding involved is of type N–H· · ·O

and N–H· · ·N, with the donor N–H group of either the amino or imino type.

Compared with covalent bonds, hydrogen bonds are weaker and do not show

well-defined length and orientation. Modification of the charges on the in-

volved atoms in a hydrogen bond due to polarization lead to additivity and

cooperativity of the bond forming process: H becomes more electro-positive,

X,Y more negative. The thus increased affinity of X,Y for accepting further

hydrogen bonds facilitates the forming of (at least) a second hydrogen bond.

With bases A,C,G and U ten combinations of purine-pyrimidine base pairs

involving at least two hydrogen bonds are possible, see Figure 10. Watson-

Crick, Reverse Watson-Crick, Hoogssteen and Reverse Hoogsteen A-U pairs

differ in relative orientation of the bases and in selection of the binding sites.
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Figure 10: The ten possible purine-pyrimidine base pairs (Saenger 1984; Tinoco CSHL

Press 1993).

In apolar solvents, a mixture of Watson-Crick and Hoogsteen base pairs are

formed with at least two hydrogen bonds, involving all potential binding sites.

Association constants depend greatly on the chemical nature of the two bases:

Modification of bases leads to different association constants.

Thermodynamic investigations have shown that complementary A-U and

G-C bases are more stable than self-associates. Watson-Crick, Reversed Watson-



4 The Energy Model 18

Crick, Hoogsteen and Reversed Hoogsteen base pairs cannot be differentiated,

so that all thermodynamic data for A-U and G-C refer to a combination of

base pair types (Saenger 1984). Quantum chemical studies have demonstrated

that electronic complementarity is most important for the stability of base

pairs, a term referring to the intrinsic electronic structures of associating bases

and not merely to the number of hydrogen bonds (Saenger 1984): Relative

energy values for different base pairs suggest that complementary pairs in the

Watson-Crick sense are more stable than the self-associates of the individual

components. All non-complementary base pairs (such as A-G, G-U) are less

stable than the corresponding self-associated pairs.

4.1.2 Vertical Base-Base Stacking

In addition to the horizontal base-base interactions due to hydrogen bonding

described above, vertical stacking of bases such that one base plane is at the

van der Waals distance (∼ 3.4 Å) and parallel to the adjacent base plane, is

observed in aqueous solution and in the solid state (Saenger 1984). This in-

teraction strongly influences the stability of nucleic acid secondary structure

Figure 11: Reaction Scheme of base stacking (Saenger 1984; Poerschke Berlin 1977).
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(Poerschke Berlin 1977). Association and stacking of bases in aqueous solution

goes beyond the dimeric state and follows isodesmic behavior: The addition

of one base to another or to an existing stack is reversible with a constant

free energy increment for each step and thus additive; each addition step is in-

dependent and displays the same thermodynamic and kinetic parameters, see

Figure 11. Thermodynamic parameters for the self-association (stacking) of

nucleosides and bases in aqueous solution indicate that (a) association (reac-

tion) constants K are characteristic for weak interactions, (b) both enthalpies

∆H and ∆S are negative, (c) Gibbs Free Energy change ∆G is negative in the

order of thermal energy kT = 0.6 kcal/mol. Methylation of bases in general

leads to a moderate increase of stacking. Stability of stacks greatly depends on

the chemical nature of the bases; purine-purine stacks are most stable, followed

by pyrimidine-purine and pyrimidine-pyrimidine stacks.

Bases linked together to oligonucleotides or polynucleotides in aqueous so-

lution form single-stranded, helical structures due to stacking interactions be-

tween adjacent bases, see Figure 12. Their stabilities exhibit the same depen-

dence on the character of the stacking bases with polyA chains forming stable

helices and polyU forming random coils at room temperature. Again methyla-

tion gives rise to increased stability, indicated by higher melting temperature

Tm at higher degree of methylation. Investigations on oligomers of different

chain length suggest that the formation of the single stranded structure is

again non-cooperative (Poerschke Berlin 1977).

Forces mainly contributing to the stabilization of base stacking in aqueous

solution are dipolar and London dispersion forces in combination with hy-

drophobic forces due to an overall gain in entropy during the association pro-

cess: Bases dissolved in water adopt a hydration sphere with the distribution of

water structures within this sphere shifted into a state with more-ordered H2O

molecules. Association of bases results in the reduction of their surface ex-

posed to water and thus in the reduction of the higher-order hydration sphere

(and increase of entropy). Albeit, hydrophobic interactions cannot explain the

stacking specificity, see above. These sequence determined properties are due

to dipolar and London dispersion forces, which depend mainly on permanent
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dipoles and polarizability of the interacting molecules. Both effects are more

pronounced in purine than in pyrimidine bases.

Quantum chemical calculations were employed to estimate the total stabi-

lizing energy of base paired stacking dimers as 5′C-G 3′

3′G-C 5′
. Due to the restric-

tions of the model (molecules in vacuo), the base pairing components of the

total energy appear to be larger than the stacking components. In aqueous

solutions, however, hydrophobic interactions have to be taken into account.

Melting experiments on oligoA-oligoU double helices show that with increas-

ing chain length (a) Tm increases and (b) the slope at the point of inflection

(Tm) becomes steeper due to enhanced cooperativity, thus suggesting a two-

state model (helix - coil). Melting temperatures of double-helical nucleic acids

increase also with the G-C/A-U ratio of the polynucleotide. Because of this

dependence of melting behavior on nucleotide composition, in a double heli-

cal nucleic acid with random base sequence, A-U rich regions should melt at

lower temperatures than G-C rich regions. The resulting local breakdown of

the helical order leads to broader spectra of the relaxation process. Analysis

Figure 12: Base stacking to polyA single stranded helices (Saenger 1984; Poerschke Berlin

1977).
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of melting profiles yields different melting points for individual regions of dis-

tinct base composition. From these melting information, stability parameters

for individual base pairs can be derived.

4.2 Thermodynamic Nearest Neighbor Parameters

The results of both quantum chemical calculations and thermodynamic mea-

surements suggest that horizontal (base pairing) contributions to the total en-

ergy depend exclusively on the base pair composition, whereas vertical (base

stacking) contributions depend on base pair composition and base sequence

i.e. the upstream and downstream neighbors along the chain (Saenger 1984).

The nearest neighbor model introduces the assumption that a base pair, or any

other structural element of an RNA, is dependent only on the identity of the

adjacent bases and/or base pairs. The model is justified by the major con-

tribution of short-range interactions (hydrogen bonding, base stacking) to the

overall stabilizing energy of nucleic acid structures. In addition, it is natural

to assign loop entropies to entire loops instead of individual bases. Treating

stacks as special types of loops, one assumes therefore that the energy of an

RNA secondary structure Φ is given by the sum of energy contributions ε of

it’s loops L.

E(Φ) =
∑

L∈Φ

ε(L) + ε(Lext), (1)

where Lext is the contribution of the “exterior” loop containing the free ends.

Note that here stacked pairs are treated as minimal loops of degree 2 and

size 0. In the following we shall discuss the individual contributions in some

detail.

In particular, the energy model contains the following contributions (Turner,

Sugimoto, & Freier 1988):

Stacked pairs and G-U mismatches contribute the major part of the

energy stabilizing a structure. Surprisingly, in aqueous solution parallel stack-

ing of base pairs is more important than hydrogen bonding of the complemen-

tary bases. By now all 21 possible combinations of A-U G-C and G-U pairs
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have been measured in several oligonucleotide sequences with an accuracy of a

few percent. The parameters involving G-U mismatches were measured more

recently in Douglas Turner’s group (He et al. 1991) and brought the first

notable violation of the nearest-neighbor model: while all other combinations

could be fitted reasonably well to the model, the energy of the 5′G-U 3′

3′U-G 5′
stacked

pair seems to vary form +1.5 kcal/mol to −1.0 kcal/mol depending on its con-

text.

Unpaired terminal nucleotides and terminal mismatches: unpaired

bases adjacent to a helix may also lower the energy of the structure through

parallel stacking. In the case of free ends, the bases dangling on the 5′ and 3′

ends of the helix are evaluated separately, and unpaired nucleotides in multi-

loops are treated in the same way. For interior and hairpin loops, the so called

terminal mismatch energy depends on the last pair of the helix and both

neighboring unpaired bases. While stacking of an unpaired base at the 3′ end

can be as stabilizing as some stacked pairs, 5′ dangling ends usually contribute

little stability. Terminal mismatch energies are often similar to the sum of the

two corresponding dangling ends. Typically, terminal mismatch energies are

not assigned to hairpins of size three. Few measurements are available for the

stacking of unpaired nucleotides on G-U pairs, and for this reason they have

to be estimated from the data for G-C and A-U pairs.

Loop energies are destabilizing and modeled as purely entropic. Few

experimental data are available for loops, most of these for hairpins. The

parameters for loop energies are therefore particularly unreliable. Data in the

newer compilation by Jaeger et al. (Jaeger, Turner, & Zuker 1989) differ widely

from the values given previously (Freier et al. 1986). Energies depend only on

the size and type (hairpin, interior or bulge) of the the loop. Hairpins must

have a minimal size of 3, and values for large loops (k > 9) are extrapolated

logarithmically:

H(k) = H(30) + const. ∗ log(k/9) (2)

Asymmetric interior loops are furthermore penalized (Papanicolau, Gouy, &

Ninio 1984), using an empirical formula depending on the difference |u1 − u2|
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of unpaired bases on each side of the loop.

∆Fninio = min
{

∆Fmax, |u1 − u2| ∗ ∆Fninio [min{4.0, u1, u2}]
}

(3)

For bulge loops of size 1, a stacking energy for the stacking of the closing and

the interior pair is usually added, while larger loops are assumed to prohibit

stacking. Finally, a set of eight hairpin loops of size 4 are given a bonus energy

of 2 kcal/mol. These tetraloops have been found to be especially frequent in

rRNA structures determined from phylogenetic analysis. Melting experiments

on several tetraloops (Antao & Ignacio Tinoco 1992) show a strong sequence

dependence that is not yet well reflected in the energy parameters.

No measured parameters are available for multi-loops, their contribution

(apart from dangling ends within the loop) being usually approximated by the

linear ansatz

∆G = MC + MI · degree + MB, (4)

depending on the size of the loop and MB the number of base pairs interior to

the closing base pair degree, i.e. its degree−1. Good results have been achieved

using MC = 4.6, MI = 0.4 and MB = 0.1 kcal/mol. While a logarithmic size

dependency of loop energies would be more realistic, the linear ansatz allows

faster prediction algorithms. Since all energies are measured relative to the

unfolded chain, free ends do not contribute to the energy.

Energy parameters for the contributions described above have been derived

mostly from melting experiments on small oligonucleotides. The first compi-

lation of such parameters was done by Salser (Salser 1977). The parameters

most widely in use today are based on work of D. Turner and coworkers . The

current work uses the parameters compiled in (Freier et al. 1986; Turner, Sugi-

moto, & Freier 1988; He et al. 1991), who performed measurements at 37◦C in

1 M NaCl. A variety of modifications might be in order in the future. The dif-

ferences between symmetric and asymmetric loops have newly been reported

to be only half the magnitude suggested by Papanicolau (Papanicolau, Gouy,

& Ninio 1984) and of higher sequence dependence (Peritz et al. 1991). Serra

et. al. found a dependence of hairpin loop energies on the closing base pair
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(Serra et al. 1993) and presented a model to predict the stability of hairpin

loops (Serra, Axenson, & Turner 1994). Walter and coworkers suggested a

model system for the coaxial stacking of helices (Walter et al. 1994). Wu and

Walter studied the stability of tandem G-A mismatches and found them to de-

pend upon both sequence and adjacent base pairs (Walter, Wu, & Turner 1994;

Wu, McDowell, & Turner 1995). Ebel and coworkers measured the thermody-

namic stability of RNA duplexes containing tandem G-A mismatches (Ebel,

Brown, & Lane 1994). Morse and Draper presented thermodynamic param-

eters for RNA duplexes containing several mismatches flanked by C-G pairs.

Mismatches are reported to have a wide range of effects on duplex stability;

the nearest neighbor model is considered not to be valid for G-A mismatches

(Morse & Draper 1995). These results are, however, not yet included into the

parameter set used in this work.

The energy contributions described above result in nearest neighbor param-

eters for the individual types of loops, thus constituting the energy model used

in the present work. Assigning energy values to secondary structure graphs,

depending on the degree k and size z of each loop, we distinguish the following

cases:

(1) Stacking Pairs (k = 2, z = 0): The energy I(i,i+1,j−1,j) depends on

the identity of the bases i, i+1, j−1, j

(2) Interior Loops and Bulges (k = 2): The energy I(i, k, l, j) depends on

the identity of the bases i, k, l, j and on the size z of the loop with

z = k − (i + 1) + j − (l + 1).

(3) Hairpin Loops (k = 1): The loop energy H(z) depends on the size z of

the loop with z = j − i. m is the minimal loop size with m = 3.

(4) Multi-loops (k ≥ 2): Multi-loop energies M are modeled by the linear

ansatz

M = MC + MI · degree + MB · unpaired, (5)
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where MC denotes the multi-loop closing energy, MI denotes the energy

contribution related to the number of stems (= degree) and MB the

destabilizing energy per unpaired base (size of the loop).

In this description the dangling end energies and mismatch energies for multi-

loops are not considered.
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Figure 13: The secondary structure of Yeast tRNAPhe. The sequence (n = 76)

is taken from the EBI database (Steegborn et al. 1995): GCGGAUUUALCUCAGDDGGGAGA-

GCRCCAGABU#AAYAP?UGGAG7UC?UGUGTPCG"UCCACAGAA UUCGCACCA.

The Free Energy of the structure according to the energy model used in this work without

dangling end energies and mismatch energies for multi-loops is −12.26 kcal/mol. Multi-loop

energies are MC = 4.60kcal/mol, MB = 0.40 kcal/mol and MI = 0.10 kcal/mol. See the

appendix for the abbreviation and translation of modified bases.
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5 Folding Algorithms

5.1 Computing the Partition Function

In this section we explain in detail the algorithm for the computation of the

partition function of an RNA molecule first derived by McCaskill (McCaskill

1990). In section 5.2 we explain the recursion that is used for calculating the

base pair probability, called backtracking.

The free energy F is related to the partition function Q by

F = −kT ln Q, (6)

where Q is the partition function, T is the temperature and k is the Boltzmann

factor. The partition function of a given RNA molecule is

Q =
∑

Φ∈M

e−F (Φ)/kT , (7)

where M is the set of all secondary structures Φ compatible with the nucleotide

sequence.

The additivity of free energy contribution of the various loops L of a struc-

ture Φ, see equ. (1), implies a multiplicativity in the partition function Q.

Q =
∑

Φ∈M

e−[
�

L∈Φ FL]/kT (8)

=
∑

Φ∈M

∏

L∈Φ

e−FL/kT (9)

Decomposing an individual secondary structure Φ into its components, S1

. . .Sn, leads to an expression emphasizing that every loop is contained in one

of the components and that the contribution of the structure to the partition

function can be derived from the product of the contributions of its compo-

nents.

Q =
∑

Φ∈M

∏

S∈Φ

∏

L∈S

e−FL/kT (10)

=
∑

Φ∈M

∏

S∈Φ

e−FS/kT (11)
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This multiplicativity of the partition function contributions in terms of com-

ponents (and loops) parallels the multiplicativity of the number of structures.

Therefore, the complete partition function of an RNA molecule can be derived

by following the recursion scheme presented here.

The finite set S of all structures compatible to a string [σi . . . σj] is split

into subsets S1, S2, and S3 such that S1 ∪ S2 ∪ S3 = S and Si ∩ Sj = 0, see

Figure 14. S1 contains the open chain; there is only one unpaired structure,

with the number of structures in this subset being always 1. S2 is the collection

of all single-component structures where the leftmost base σi forms the closing

base pair with another base σl and all bases right of σl are unpaired. The

partition function of structures in this subset is denoted QA
ij. S3 is the subset

of all multi-component structures, consisting of at least two components, and

of all single component structures with a tailing end at the left (5’) side. This

set is further split into subsets. Each subset contains those structures which

can be formally constructed from an arbitrary – even unpaired – structure at

the left (5’) side on a substring [σi...σk−1] and an single-component structure

at the right side on a substring [σk...σj ], where σk forms the closing base pair

(k, l) of the component and all bases > l are unpaired, see Figure 15. There is

a subset for each value of k, with k running from i+1 to j−m−1. The number

of structures in a set is equal to the product of the number of structures on the

two substrings. Using this decomposition we can calculate the whole partition

all structures

open chain single component multi component

Figure 14: The complete set S of all secondary structures Φ compatible to string [σi...σj ]
is split into subsets S1, S2, and S3.
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function of the structure out of smaller parts. The complete partition function

Qij on the string [σi...σj] is therefore the sum of the contributions of the three

subsets:

Qij = Qij(S1) + Qij(S2) + Qij(S3) (12)

The first term is always 1, because the energy of the open structure is 0 by

definition and e0 = 1. The second term is the sum of the contributions of all

structures in subset S2. Their contribution is denoted QA
ij. The set of multi-

component structures is recursively split into subsets consisting of all structures

formed by an arbitrary structure on substring [σi...σk−1] and a single compo-

nent on substring [σk...σj]. The contribution of all structures contained in a

certain subset is derived by the product of the contributions Qi,k−1 of all struc-

tures on substring [σi...σk−1] and the contributions QA
kj of all single-component

structures on [σk...σj]. The contribution of all multicomponent structures is

the sum of the contributions of all subsets, see Figure 15. Therefore, we obtain

i j-m-1 jji+1i i i+8 j

k=j-m-1

...

multi component structures

k=i+1

...

k=i+8

j−m−1
∑

k=i+1

Qi,k−1 QA
kj

Qii · Q
A
i+1,j Qi,i+7 · Q

A
i+8,j Qi,j−m−2Q

A
j−m−1,j

Figure 15: The contribution of each set is derived by the multiplication of the un-
constrained partition function on the left substring times the contribution of all single-
component structures on the right string. Summing up yields the total contribution of all
multi-component structures.
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for the complete partition function

Qij = 1 + QA
ij +

j−m−1
∑

k=i+1

Qi,k−1Q
A
kj (13)

The contribution to the partition function of all single-component structures,

QA
ij, is obtained by summing up all contributions QB

il of all structures which

contain a base pair (i, j).

QA
ij =

j
∑

l=i+m+1

QB
il (14)

Hence QB
ij is the partition function of the segment Sij, given that σi and σj

pair, i. e. that (i, j) ∈ Φij. QB
ij can be written as a recursive formula

QB
ij =

∑

L

e−FL/kT
∏

(h,l)∈L

i<h<l<j

QB
hl (15)

where the sum runs over all possible loops closed by (i, j). If L is a hairpin

loop, there is no pair (h, l) ∈ L; if L is an interior loop or a bulge, there is

exactly one pair (h, l) ∈ L. But if L is multi-loop, then there are n pairs

(h, l) ∈ l with i < h1 < l1 < · · · < hn < ln < j. Clearly no base can pair with

itself, therefore the initial condition of the above recursion formula is QB
ii = 0.

Dividing QB
ij into the contribution coming from the different loop types,

equ. (15) can be rewritten as

QB
ij = e−H(ij)/kT +

j−m−2
∑

k=i+1

j−1
∑

l=k+m+1

QB
kl e

−I(i,j,k,l)]/kT

+

j−m−2
∑

k=i+1

QM
i+1,k−1Q

M1
k,j−1e

−MC/kT (16)

Calligraphic symbols H, I,M refer to the classification of loops described in

the previous sections according to the degree of the loops. The number of base

pairs immediately interior the loop gives the value of k (k = 0 → hairpin loop,

k = 1 → stack, interior loop, bulge). The computation of interior loops is of

order O(n4) if we do not restrict loop size. Fortunately we can restrict the

size of long interior loops to u < umax, because larger loops can regarded as
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prohibitive. The calculation of interior loops is therefore of order O(n2) and

proportional to u2
max.

interiorloop : QB
ij =

j−m−2
∑

k=i+1
u≤umax

j−1
∑

l=k+m+1

QB
kl e

−I(i,j,k,l)]/kT (17)

The third term in equ. (16) represents the multiple loop contribution, see Fig-

ure 16. We obtain for the multi-loop contributions

QM
ij =

j−m−1
∑

k=i+m+1

QM
i,k−1 QM1

kj +

j−m−1
∑

k=i

QM1
kj e−MB(k−i)/kT (18)

with QM
ii = 0 and QM

i+1,i = 0.

j-1i+1

l

k-1

k

i j

QM1
k,j−1

�
�� �

QM1′

k′,k−1�
�� �QM1′′

k′′,k′−1
�
� ���

QM
i+1,k−1

QM ′

i+1,k′−1

QM ′′

i+1,k′′−1

�
�
� ���

k′

k′′

�
�� �

exp(MC/kT )

Figure 16: Recursive decomposition of multi-loops and multi-loop energies in the partition
function: Multi-loop structures are constructed from the closing base pair (i, j) with multi-
loop closing energy MC , a region running from k to j−1 containing a single component with
a possible tailing end at the right side, and a region running from i + 1 to k − 1 containing
an arbitrary structure. Multi-loop energy contributions are attributed to individual vertices
or base pairs and are additive, see equ. (18).
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QB
ij = e−H(ij)/kT +

j−m−2
∑

k=i+1
u≤umax

j−1
∑

l=k+m+1

QB
kl e

−[I(i,j,k,l)]/kT

+

j−m−2
∑

k=i+1

QM
i+1,k−1Q

M1
k,j−1 e−MC/kT

QM1
ij =

j
∑

l=i+m+1

QB
il e−[MI+MB(j−l)]/kT

QM
ij =

j−m−1
∑

k=i+m+1

QM
i,k−1 QM1

kj

+

j−m−1
∑

k=i

QM1
kj e−MB(k−i)/kT

QA
ij =

j
∑

l=i+m+1

QB
il

Qij = 1 + QA
ij +

j−m−1
∑

k=i+1

Qi,k−1Q
A
kj

Table 1: Recursion for the calculation of the partition function: Calligraphic
symbols denote energy parameters for different loop types: hairpin loops H(ij), interior
loops, bulges, and stacks I(i, j, k, l); the multi-loop energy is modeled by the linear ansatz
M = MC + MI · degree + MB · unpaired, e.g. (Zuker & Sankoff 1984). The partition
function QB

ij of substructures on the substring [ij] subject to the condition that i and
j form a base pair is determined recursively from smaller fragments. The contributions
depend on the type of the secondary structure element as a consequence of the energy
model. The base pair (i, j) can be the closing pair of a hairpin, it may close an interior
loop (or extend a stack), or it might close a multi-loop. The auxiliary variables QM and
QM1 are necessary for handling the multi-loops (McCaskill 1990), QA and restricting the
size of interior loops to umax, equ. (17) helps reducing the CPU requirements to O(n3).
The unconstrained partition function of the substring [ij] is stored in Qij . The first term
accounts for the unpaired structure. The second term collects all structures that consist
of a single component, possibly with an unpaired “tail” at the 3’ end. The final term
arises from the formal construction of multi-component structures from a 1-component
part at the 3’ side and an arbitrary structure at the 5’ side.
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The contribution of all structures forming a single rightmost stem, QM1
kj , is

obtained to:

QM1
ij =

j
∑

l=i+m+1

QB
il e−[MI+MB(j−l)]/kT (19)

Table 1 summarizes the recursion scheme for the partition function. The

next section will extend the recursion scheme to the computation of the base

pair probability.

5.2 Calculating the Base Pair Probability: Backtrack-

ing

The partition function Q = Q1n can be used to calculate the thermodynamic

quantities of the RNA structure. Much more interesting, however, is the wealth

of structural information that is contained in the probability of base pairing.

It allows us to examine secondary structures much precisely than using only

the minimum free energy structure. The base pairing matrix can be obtained

by the so called backtracking from the Qij’s.

The probability of a given structure φ with energy E is proportional to the

exp(−F/kT ).

P (φ) =
1

Q
e−F (φ)/kT (20)

We define Phl as the probability that h is bound to l in the equilibrium

ensemble of structures

Phl =
∑

Φ
(h,l)∈Φ

P (Φ) =
Q(h,l)

Q
(21)

where Q(h,l) is the partition function over all structures containing the pair

(h, l).

There are three possibilities for a base pair (h, l). It can close up a single

component, with no external base pairs, or (h, l) is interior to an interior loop

closed by (i, j) or (h, l) is interior a multi-loop.
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The probability for a base pair closing a component is calculated as

P component
hl =

Q1,h−1Q
B
hlQl+1,n

Q1n
(22)

As seen in Figure 17 the base pair (h, l) splits the structure into three indepen-

dent substructures giving rise to the three factors in equ. (22). The calculation

uses the quantities Qij and QB
ij computed in the first part of the program.

1 N

h

l

QB
hl

Q1,h−1

Ql+1,n

Figure 17: Probability of Phl closing component

The situation where (h, l) forms an interior loop is depicted in Figure 18,

and leads to

P interiorloop
hl =

∑

ij
i<h<l<j

Pij
QB

hl

QB
ij

eI(i,j,h,l)/kT (23)

where
QB

hl

QB
ij

exp(I(i, j, h, l)/kT ) is the conditional probability of finding the pair

(h, l) given the pair (i, j). Since we have to sum up over all possible base pairs

(i, j) fulfilling (i < h < l < j) the calculation, as formulated, would be of order

O(n4). Because we have restricted the size of interior loops in section 5.1, we

have to follow the same restriction here, thereby reducing the calculation to
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h

l

i j

QB
hl

eI(i,j,h,l)/kT

QB
ij

Figure 18: Probability of Phl inside interior loop

order O(n2).

P interiorloop
hl =

∑

ij

i<h<l<j;u<umax

Pij
QB

hl

QB
ij

eI(i,j,h,l)/kT (24)

For base pairs inside a multi-loop we have to consider the three different

cases, depicted in Figure 19. All three cases are summed up to get the base

h

l

i j

QB
hl

e−[(h−i−1)MB/kT ] QM
l+1,j−1

QB
ij

ji

l

h

QB
hl

QM
i+1,h−1

QM
l+1,j−1

QB
ij

h

l

i j

QB
hl

QM
i+1,h−1

e−[(j−l−1)MB/kT ]

QB
ij

Figure 19: Three different possibilities for a base pair (h, l) interior of a multi-loop. left:
the region [i+1, h−1] is unpaired, [l +1, j−1] contains at least one pair; right: [l+1, j−1]
unpaired, [i + 1, h− 1] contains a pair; middle: both regions contain at least one pair.

pair probability for base pairs interior multi-loops.

P multiloop
hl =

∑

ij
i<h<l<j

Pij
QB

hl

QB
ij

e−[(Mc+MI)/kT ] ×
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(

e−[(h−i−1)MB/kT ]QM
l+1,j−1 + e−[(j−l−1)MB/kT ]QM

i+1,h−1 +

+QM
i+1,h−1Q

M
l+1,j−1

)

(25)

The computational effort for computing the P multiloop
hl can be reduced to O(n3)

at the expense of memory by introducing two additional quantities. We reduce

the double sum over (i, j) to a single sum by introducing

P M
il =

∑

i>j

Pij

QB
il

QM
l+1,j−1 (26)

and

P M1
il =

∑

j>l

Pij

QB
ij

e−[(j−l−1)MB/kT ] (27)

These sums must be calculated at the appropriate point in the recursion, and

have to be stored as two triangle matrices. The expression for Phl can then be

written:

P multiloop
hl =

∑

i<h

QB
hle

−[(Mc+MI)/kT ] ×

(

P M1
il QM

i+1,h−1 + P M
il

(

e−[(h−i−1)MB/kT ] + QM
1+1,h−1

)

)

(28)

As discussed previously, the probability of a certain base pair Phl is finally

given by the sum of all three possibilities.

Phl = P component
hl + P interiorloop

hl + P multiloop
hl (29)

5.3 The Problem of Large Numbers

The energies of secondary structures scale roughly linearly with sequence length.

The partition function Q, consequently, grows exponentially, and can exceed

the range of double precision floating point numbers even for sequences of only
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a few hundred bases. The problem can be solved by rescaling. Let Q̃ be an

estimate for Q. We can now rescale the partition function by Q̃ to obtain a

value near 1. For each subsequence of length l we rescale Qi,i+l+1 by Q̃l/n.

The same scaling factor is also used for QB, QM and QM1. As can be seen by

inspection of table 2 the recursions for the rescaled quantities stay essentially

unchanged. The estimate Q̃ can be calculated if the minimum free energy Emin

is already known, we use Q̃ = exp(1.04Emin/kT ), where T is temperature in

Kelvin and k is Boltzmann’s constant. The factor 1.04 has been found to yield

a good estimate.
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P component
hl =

Q1,h−1Q
B
hlQl+1,n

Q1n

P interiorloop
hl =

∑

ij
i<h<l<j;u<umax

Pij
QB

hl

QB
ij

eI(i,j,h,l)/kT

P multiloop
hl =

∑

i<h

QB
hle

−[(Mc+MI)/kT ] ×

(

P M1
il QM

i+1,h−1 + P M
il

(

e−[(h−i−1)MB/kT ] + QM
i+1,h−1

)

)

P M
il =

∑

i>j

Pij

QB
ij

QM
l+1,j−1

P M1
il =

∑

j>l

Pij

QB
ij

e−[(j−l−1)MB/kT ]

Phl = P component
hl + P interiorloop

hl + P multiloop
hl

Table 2: Recursion for the calculation of base pair probability: Calligraphic
symbols denote energy parameters for different loop types: hairpin loops H(ij), inte-
rior loops, bulges, and stacks I(i, j, k, l); the multi-loop energy is modeled by the linear
ansatz M = MC +MI ·degree+MB ·unpaired, e.g. (Zuker & Sankoff 1984). The quan-
tities QB

ij , QM
ij , Q1,j and Qi,n were calculated in section 5.1 and have to be stored for the

backtracking. The base pair (i, j) can be the closing pair of a hairpin, it may close an
interior loop (or extend a stack), or it might close a multi-loop. The auxiliary variables
P M and P M1 are necessary for handling multi-loops (McCaskill 1990), Restricting the
size of interior loops to umax, equ. (25) helps reducing the CPU requirements to O(n3).
The first term, P

component
hl , describes the probability of a base pair closing a component,

P
interiorloop
hl denotes the probability of a base pair closing an interior loop. The calcu-

lation of P
multiloop
hl is reduced to O(n3) by introducing P M

il and P M1

il , these quantities
have to be stored during computation.
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5.4 Computing the Minimum Free Energy

The Problem of large numbers see section 5.3 forces us to calculate a mini-

mum free energy of the sequence. The minimum free energy algorithm of the

ground state secondary structure (Zuker & Stiegler 1981; Zuker & Sankoff 1984;

Hofacker et al. 1994a) relys on the same mechanisms and displays the same

CPU requirements as the partition function: (a) The complete set of all

structures is (recursively) split into subsets of single-component and multi-

component structures and (b) multicomponent structures are formally con-

structed from smaller fragments. Therefore, the algorithm implements dy-

namic programming; earlier computed values for substrings yield values for

larger strings, thus reducing CPU requirements to O(n3). In the following de-

scription of the recursions, dangling ends have been neglected for clarity. Our

implementation does, however, include them.

Let F B
ij be the minimum free energy of all structures on [σi...σj ], which are

enclosed by (i, j), i. e. (i, j) ∈ Φij. Three subsets are contributing to this set

of structures, depending on the number of base pairs immediately interior to

(i, j), see equ. (16). The minimum energies of these three subsets are again

(recursively) obtained from smaller fragments:

F B
ij = min

{

H(ij), min
k∈[i+1,j−m−2]
l∈[k+m+1,j−1]

{

F B
kl + I(i, j, k, l)

}

,

min
k∈[i+1,j−m−2]

{

F M
i+1,k−1 + F M

k,j−1 + MC

}

}

(30)

H(ij) denotes the free energy of a hairpin loop closed by (i, j). The second

element is the minimum energy of all structures where (i, j) closes an interior

loop; their minimum energy equals the sum of the minimum energy of the

smaller fragment, F B
kl , and the energy of the closing loop, I(i, j, k, l). Multi-

loop structures enclosed by (i, j) are obtained by constructing the multi-loop

from two sections, see Figure 16. The minimum free energy is thus the sum of

the minimum energy of the two parts, F M
i+1,k−1 and F M

k,j−1, plus the multi-loop

closing energy MC. F M
k,j−1 denotes the minimum free energy of the rightmost

stem plus an arbitrary number of unpaired bases at the right side and is ob-
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tained from the sum of the minimum energy of the stem, F B
il , the multi-loop

base energy, MB(j − l), which is added for each unpaired base, and the multi-

loop internal energy, MI.

F M
ij = min

l∈[i+m+1,j]

{

F B
il + MB(j − l) + MI

}

(31)

F M
i+1,k−1, equ. (30), denotes the minimum free energy of the remaining section

of a multi-loop structure, see Figure 16. This section may contain one or more

stems. In analogy with equ. (18), we derive for the minimum free energy

F M
ij = min

{

min
k∈[i+m+1,j−m−1]

{

F M
i,k−1 + F M

k,j

}

, (32)

min
k∈[i,j−m−1]

{

F M
kj + MB(k − i)

}

}

. (33)

The first element yields the minimum energy of all multi-loop sections, which

can themselves be constructed from one part containing the rightmost stem

a remaining part consisting of at least one stem at the left side. The energy

is the sum of the energy of the two components. The second element yields

the minimum free energy of multi-loop substructures, which consist only of a

single remaining stem. These structures are constructed only from the stem

plus unpaired bases at both sides. The energy of the structure is obtained

from the sum of the minimum energy of the stem plus the bases at the right

side, F M
kj , see equ. (31), plus the energy of the unpaired bases at the left side

of the stem, MB(k − i).

The minimum free energy Fij of all structures on string [σi...σj] can now

be obtained from the F B as

Fij = min
k∈[i+1,j−m−1]

{

Fi.j−1,
[

Fi,k−1 + F B
kj

]

}

. (34)

The first term, describes the case that j is unpaired, forming a free end. The

second term, Fi,k−1 + F B
kj, describes structures where j is paired, and therefore,

the pair (k, j) closes a component.

Table 3 summarizes the algorithm for the computation of the minimum

free energy.
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F B
ij = min

{

H(ij), min
k∈[i+1,j−m−2]
l∈[k+m+1,j−1]

{

F B
kl + I(i, j, k, l)

}

,

min
k∈[i+1,j−m−2]

{

F M
i+1,k−1 + F M

k,j−1 + MC

}

}

F M
ij = min

{

min
k∈[i+m+1,j−m−1]

{

F M
i,k−1 + F M

kj

}

,

min
k∈[i,j−m−1]

{

F M
kj + MB(k − i)

}

}

Fij = min
k∈[i+1,j−m−1]

{

Fi,j−1,
[

Fi,k−1 + F B
kj

]

}

Table 3: Recursion for the calculation of the minimum free energy: Calli-
graphic symbols denote energy parameters for different loop types: hairpin loops H(ij),
interior loops, bulges, and stacks I(i, j, k, l); the multi-loop energy is modeled by the
linear ansatz M = MC +MI ·degree+MB ·unpaired, e.g. (Zuker & Sankoff 1984). The
minimum free energy F B

ij of substructures on the substring [i, j] subject to the condition
that i and j form a base pair is determined recursively from smaller fragments. The
contributions depend on the type of the secondary structure element as a consequence
of the energy model. The base pair (i, j) can be the closing pair of a hairpin, it may
close an interior loop (or extend a stack), or it might close a multi-loop. The variable
F M

ij contains the minimum free energy the substructures on the sequence [i, j] subject
to the condition that i and j are part of a multi-loop. The unconstrained minimum free
energy of the substring [i, j] is stored in Fij . The first term accounts for the case where
j is unpaired and forms a free end. The second term collects all structures that consist
of a component closed by the pair (k, j) and an arbitrary structure on the substring
[i, k − 1]. Not all entries of Fij need be computed, it is sufficient to calculate e.g. the
first row F1j .
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6 Hardware: Parallel Computers

6.1 The Intel iPSC Hypercube Parallel Computer

The parallel algorithm of the the minimum free energy and partition function

described in section 5 were developed on an Intel Ipsc/860 distributed memory

parallel computer with maximal 16 i860 processors and 8 Mbytes of memory

for each processor. A typical iPSC system application has a host program that

runs either on a local remote host or on the system resource manager (i386

processor ) and a node program that runs on a group of allocated processors

called nodes. The processing nodes are interconnected in a hypercube architec-

ture. In a hypercube of dimension n, each node has n neighbors and the total

number of nodes in the hypercube is 2n, for developing our parallel algorithms,

we used an Intel Ipsc/860 with 24 nodes. The iPSC/860 Operating System is a

multi-user, multi-programming system. Each node on the iPSC/860 runs the

NX/860 operating system. The host runs the UNIX operating system.

System
Resource
Manager

node

cabinet

TCP/IP

Workstation

Figure 20: The iPSC distributed memory parallel computer architecture, see (Int 1990).

Compilation of the program code is done on the system resource manager, also the host

program runs on it. The node program runs on all allocated nodes of the node cabinet.

Sending and receiving data from the local workstation is done by TCP/IP.
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In our case the host program reads the input file starts the node program

on all allocated nodes and sends the input to the first node. At the end of

the program the host program receives the output of the node program and

deallocates nodes.

6.2 The Intel Delta Parallel Computer

Data production was performed on the Touchstone DELTA System, see sec-

tions 8,9. The DELTA is a high-speed concurrent multicomputer, consisting of

an ensemble of processors called nodes connected as a two-dimensional mesh.

The DELTA System is also a distributed memory parallel computer with max-

imal 512 nodes and 16 M bytes of memory for each node.

The DELTA System itself contains four types of processing nodes:

• Numeric nodes, doing the calculations of the programs

• Mass storage nodes, providing the numeric nodes with access to the disk

and tape drives.

• Gateway node, connecting the System to an Ethernet network.

• Service nodes, supporting a UNIX-like environment for user logged in to

the mesh.

To run an application on the DELTA System, one has to put the executable

code on the system, and issue on the system a start command that both al-

locates numeric nodes to the application and runs it on those nodes. The

allocated nodes are released after completing the program. The mass storage

nodes connected to the disks contain the Concurrent File System (CFS). The

CFS is UNIX-like and distributes file blocks on all available disks, using read

and write algorithms that allow several users to access the disks simultaneously.

Gateway nodes provide the TCP/IP interface used for Ethernet access. Work-

stations on the network can exchange information with application programs

running on the numeric nodes.
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NODE

MRCMRC

NODE

MRC

NODENODE

NODE NODE

MRCMRC

Figure 21: The Touchstone DELTA System mesh arrangement of the MRC node pairs

6.2.1 The Mesh Interconnect

The interconnection network is a two-dimensional mesh, where each node is

connected to the mesh through a mesh routing chip (MRC). After the sending

node transmits a message to its MRC, the message moves from MRC to MRC

until it reaches the receiving node. No intermediate processors are interrupted.

Only the sending and receiving nodes participate in the message transfer. Long

messages are divided into packets and the MRCs transmit the packets over the

network interleaved with messages from other nodes. In the most applications

there is no need to minimize the distance of message passing, by allocating a

special node arrangement.

6.2.2 System Description

The complete DELTA System contains 576 nodes, which are arranged as a 16

by 32 mesh in nine cabinets. Each cabinet contains four card cages, each with

16 nodes and arranged 4 by 4 mesh. In addition to the 16 node boards, each

card cage also contains a Unit Service Module (USM) that performs system

initialization and runs diagnostics under the control of the system console.
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ROUTING PLANE

MRC

BACKPLANE

MIM

Connector
High-Density

Mesh Expansion Connectors

NODE BOARD

Figure 22: Mesh interconnection Hardware. Each node board has a daughter card called

Mesh Interface Module (MIM) that is connected through the backplane to an MRC on a

mesh routing plane. Each card cage is connected to its own routing plane. Each routing

plane contains a 4 by 4 array of 16 MRCs, one MRC for each node in the card cage, see (Int

1991).

6.2.3 Types of Nodes

The numeric nodes are i860 processing boards. They are dedicated to execut-

ing numerically intensive tasks, like those found in scientific applications. The

i860 operates at 40 MHz and is rated at 33 MIPs, 80 (peak) single-precision

MFLOPS and 60 (peak) double-precision MFLOPS. Mass storage nodes pro-

vide I/O services to the numeric nodes. They are i386 processing boards with

a SCSI interface. Either the disk drives containing the Concurrent File Sys-

tem or tape drives can be connected to the SCSI interface of the mass storage

nodes. Gateway nodes, also i386 processing boards, connect the system to an

Ethernet network. For the DELTA System it is a combination of a gateway

node, a Bus Interface Adapter (BIA), and a Ethernet controller. Each gateway

node has an Intel’s Parallel Bus Interface (PBX), this is connected to a BIA

that resides in a slot adjacent to the gateway node. Service nodes are i386

processing boards that allow login access to the system.
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6.2.4 Message Passing

When a packet arrives at an MRC, the MRC examines the routing information

in the packet header, there are the X-direction and the Y-direction determined.

Routing is always first X then Y. If the MRC finds the X displacement to

be none zero it routes the packet to the next MRC and decrements the X

displacement. If the X displacements is zero routing is done in the Y direction.

At the end of the routing the packet is transferred into the node. An error

occurs if the Cycling Redundancy Check (CRC) word calculated by the receiver

does not match the CRC at the end of the packet, or if the sender sends a packet

to a non existing XY address, in which case the message is thrown away. If

a message is too long it is divided into packets. Each packet is treated as an

unique message and is sent through the MRC to the receiving node,there all

packets are collected to reconstruct the whole message.

6.2.5 The NX/M Operating System

The node memory is limited to 16M-byte, but the NX/M operating system

takes up 500K bytes and message passing buffering 3M-bytes, leaving 12.5M-

bytes per node for user applications. The NX/M operating system provides

message passing, memory management and process management capabilities.

The message passing calls allow synchronous and asynchronous message ex-

change as well as interrupt-driven message handling. Synchronous calls block

processing until the exchange is complete, while asynchronous calls permit

processing to continue as the message is being passed. The handling of the

message passing commands is the same as on the iPSC hypercube, but on the

iPSC we use a host program necessary for allocating the nodes and for input

output of the program. On the Delta mesh architecture we used a single node

program loaded on the nodes. To log in to the mesh from a remote worksta-

tion you issue the rlogin command and specify the name of one of the gateway

nodes.
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6.2.6 The concurrent File System

The Concurrent File System treats all of the disks as a single logical disk with

a single file system. Each file is distributed across the disk volumes in 4K-byte

logical blocks. The volumes are numbered so that consecutive volumes are

not on the same I/O node. The way CFS partition files makes it possible to

transfer file portions in parallel when more than one compute node requests

portion of a file residing on disks on different mass storage nodes.
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7 Implementation of the Parallel Partition

Function Algorithm

7.1 Parallel MFE fold

For calculating the partition function of an RNA sequence we have to calculate

first the minimum free energy (MFE) of the sequence. The MFE is used to

avoid overflows in floating point figures, see section 5.3. Although the memory

requirements for calculating the MFE are less (we use integers instead of floats

or doubles) than calculating the partition function we ported it to a parallel

computer. A brief inspection to the algorithm in section 5.4 shows, that it can

be parallelized quite easily. A message passing version of the MFE algorithm

was already available (Hofacker et al. 1996). It required some modifications in

order to accustom the improved energy model. At present we have omitted the

backtracking, since we need the MFE only to rescale our partition function.

The principle of a parallel program is distributing the computational work

on several processors, to speed up the calculation. In our case we have to

compute all entries of the triangle matrices C and FM (corresponding to F B

and F M in section 5.4). Since an entry for a substructure of length d depends

only on smaller substructures d′ < d, all entries on the diagonal d are indepen-

dent of one another and can therefore be computed concurrently. The major

computational difficulty is, that each entry on requires the explicit knowledge

of a large number of previously calculated entries. This leads to a complicated

message passing for each diagonal d on parallel computers with distributed

memory. All entries of the diagonal d are distributed among the N processors,

such that each processor has to calculate the same amount of entries. This

guarantees good load balancing and consequently good parallel performance,

see section 8.

In the following we present a parallelized version of the serial folding algo-

rithm for distributed message passing systems. The distribution of data to the



7 Implementation of the Parallel Partition Function Algorithm 48

2

3

4

1

Figure 23: Memory requirement for calculating the diagonal d. The triangle representing

the triangular matrices C and FM is divided into sectors with an equal number of diagonal

elements, one for each processor. The computation proceeds from the main diagonal towards

the upper right corner.The information needed by processor 2 in order to calculate the

elements of the dashed diagonal are highlighted. To compute its part of the dashed diagonal

processor 2 needs the horizontally and vertically striped parts of the arrays FM and the

shaded part of the array C. The shaded part does not extend to the diagonal, because we

have restricted the maximal size of interior loops to umax. For efficiency reasons the FM array

is stored both as rows and columns. The C is also stored for later use in the backtracking,

to simplify communication it is stored both as rows and columns.

nodes is shown in Figure 23. To avoid reorganizing the data along the compu-

tation, all arrays are initially allocated to the maximum size. Apart from the

2 large triangle matrices the algorithm also uses several arrays of length n, as

well as the trapezoid part of C shown in Figure 23. Neglecting linear arrays,

the memory requirement M per processor is therefore:

M =
(4d2 + 2d(umax + 2)

2N

)

· sizeof(int) bytes. (35)

The first term in equ. (35) counts the large C and FM arrays, the second

term the additional trapezoid array C. Additional memory could be conserved

by storing C as columns only. However, since the partition function uses more
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Figure 24: Calculation of the F5 array is done by node 1. Two columns of the C array

contribute to F5, see table 3. Because the expense of calculating the F5 arrays is small,

parallelizing this part would actually slow down the algorithm by introducing more commu-

nication delays.

memory anyways, conserving memory within the MFE part is of minor impor-

tance.

In addition to the large C and FM arrays we have to calculate the linear

array F5, containing the minimum energy for subsequences on the

interval [1, j] (F1,j in section 5.4). This is a relatively small amount of work,

which is not worth parallelizing. Rather, we the entries are always calculated

by node 1, which also holds the necessary columns of C, so that no additional

message passing is necessary.

After completing a diagonal each processor has to either send a row or

receive a column from his right neighbor or send a row or receive a column

from his left neighbor.

An ideal parallel algorithm should share the amount of computational work

equally to all available processors. In our case we have to divide up all diagonal

entries of the diagonal d equally to the processors. Therefore, the amount of

work is simply d/N , because each node can only calculate a direct number of



7 Implementation of the Parallel Partition Function Algorithm 50

entries, we have to divide up the rest amount of entries equally to all processors.

N − (dmodN) calculate (d/N) + 1 diagonal entries per node and the other

processor have to compute only d/N diagonal entries.

Figure 25: Distribution of work between processors and communication events. Horizontal

arrows mark occasions where rows of data are sent from processor 1 to processor 2. Vertical

arrows symbolize columns of data being sent from processor 2 to processor 1. The dashed

lines show where communication switches from sending rows to columns and vice versa. The

shaded areas are computed by nodes 2 and 4, respectively, light areas by nodes 1 and 3.

7.2 Parallel Partition Function

We have divided the parallel partition function algorithm (PPFA) into two

parts. The first calculates the partition function of the sequence and all data

needed for backtracking. All data are kept in memory during the entire com-

putation. This leads to a quite fast algorithm, on the other hand the space

requirement is enormous. Parallelization of the PPFA proceeds similarly to the

PMFEA described in the previous section. Each diagonal is divided equally

among all processors, this is done in the same way as discussed in section 7.1.
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We need a lot of message passing, thus each node has to know the part of the

diagonal each processor is computing. To manage all the message passing eas-

ily, that information is kept in an additional array. In the backtracking of the

program, we decided to use a different strategy for parallelizing the program

to reduce the amount of message passing, see section 7.3.

2

3

4

1

Figure 26: Representation of memory usage for the PPFA. The triangle represents the

triangular matrices of the required arrays. For calculating the partition function Q we need

at least 5 triangular matrices. Some of them have to be stored to do the backtracking

calculation. The arrays Qm, Q and Qb are stored in form of rows, Qmm and Qq as columns.

The diagonal d is divided to an equal number of entries for each processor. Each processor

calculates the dashed line entries of it’s part of d. To compute its part processor 2 needs

the rows of Qm, Q, Qb and the columns of Qmm, Qq additionally the shaded part of the Qb

array. The shaded part does not extend to the diagonal, because we have restricted the

maximal size of interior loops. After the calculation of one diagonal d the rows of the Qb

and Qm arrays are stored permanently (dashed lines), otherwise rows and columns we do not

need any more for the ongoing calculation are removed from the memory.

The message passing for calculating the whole matrix of data is done in

the same way as in the parallel MFE, but additional messages are necessary

to distribute the data that are needed for the backtracking. All data for the

backtracking, i.e. the Qb and Qm are stored in form of rows. The last element

of a row is always calculated by node N , which then sends it to the node that
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will store it permanently, as shown in Figure 26.

7.3 Calculating Base Pair Probabilities: Backtracking

The backtracking is parallelized in a different way, to simplify communication

and reduce the number of messages. Each processor has to compute a hori-

zontal slice of the triangle matrices as shown in Figure 27. Although the load

balancing is somewhat worse in this method, it minimizes the communication

overhead. Backtracking proceeds from the longest subsequences to shorter

ones, i.e. in reverse order than calculation of the partition function.

2

3

4

1
Qm

Qm

Pr-trapez

Prmlt
Prml

Pr

Figure 27: Data needed by processor 1 for calculation of its part of the diagonal d: The

shaded trapezoid regions of Pr is needed for contributions from interior loops, and newly

calculated values of Pr are then stored in rows (horizontal stripes). The shaded rows and

columns of Qm (upper left and lower right) are needed for multi-loop contributions. In this

decomposition, the same columns of Qm are needed for every diagonal d, reducing the amount

of message passing. The auxiliary arrays Prmlt and Prml are stored as columns (vertical

stripes); only those columns intersecting the current diagonal are needed. The calculation

proceeds from the upper right corner towards the main diagonal.
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Figure 28: Message Passing for the Backtracking. All solid rows and columns are in the

processors 1’s memory and necessary for computing the current diagonal d, for the next d

a lot of message passing has to be done. First processor 1 needs the next row of Qm (dotted

row), currently stored by processor 3. At the same time, the lowest row of Qm is no longer

needed on processor 1 and is sent to processor 2. Columns of Pr-arrays are also sent from

processor 1 to processor 2.

Not shown in Figure 27 is the formation of the Qm columns. Each processor

needs a certain amount of these columns, not shifting during calculation. For

each diagonal d we have to create Qm colum j = 1 + d. To create it each

processor sends its part of the column to the processor requiring it. One can

easily see, that the algorithm is serial at the very beginning and becomes

more parallel as it progresses. Towards the end the work is distributed ideally

on the nodes. The advantage of the algorithm is a simpler communication

structure, the disadvantage is a poorer load balancing. The loss of efficiency

is not too great, because at the beginning all rows and columns are short

and the computational effort is small. At the end of backtracking, when the

computational requirements are greatest there, we have ideal parallelism.

In total, the backtracking algorithm uses 6 triangular arrays: Qm stored both

as rows and columns, Pr and Qb as rows, and Prml and Prmlt as columns. In

addition a triangular array with values from Pr is used on each processor. The
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total memory requirement M per processor, neglecting small linear arrays, is

therefore:

M =
(6n2 + 2n(umax + 2)

2N

)

· sizeof(floats, doubles) bytes. (36)

The memory requirement for the whole algorithm is therefore dominated by

the backtracking.
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Quantity row-wise column-wise trapezoid

1) Parallel minimum free energy

F B C C C

F M FM FM

F F5

2) Parallel partition function

QB Qb Qb

QM Qm

QM1 Qmm

QA Qq

Q Q

3) Backtracking: Base pair probability

Qm Qm

Qb

P Pr Pr

P M + P M1 Prmlt,Prml

Table 4: Used quantities in the parallel algorithms. 1) To calculate the minimum free

energy we need 5 triangular matrices of integers and an additional trapezoidal array with

values from C. The F5 array holds the first row of the array F and is stored only on the first

processor. 2) To compute the partition function we need 5 triangular matrices of floats or

doubles and an additional trapezoidal array of Qb. Qb and Qm have to be stored permanently

for the backtracking. 3) For the backtracking 6 triangular matrices and one additional

trapezoidal array are needed.
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8 Performance of the Parallel Algorithm

In this section we discuss the performance of the parallel partition function

algorithm (PPFA), consisting of the minimum free energy calculation, cal-

culation of the partition function and backtracking. The calculation of the

MFE is only done to obtain an estimate for the partition function that can

be used for rescaling. Here we discuss the performance of both programs to-

gether, called the PPFA. The exact number of instructions needed in the whole

PPFA is sequence dependent. Therefore, we are not in the position to measure

the performance of the program in terms of Flops (floating point operations).

We tested the performance of our parallel programs on several RNA virus

genomes, such as Qβ bacteriophage (n = 4220), polio viruses (n ≈ 7500), and

HIV viruses (n ≈ 10000), see table 5.

Length Name Description

697 mit16sce 16S RNA

1562 eub16stm 16S RNA

1962 mit16szm 16S RNA

3023 eub23stm 23S RNA

4228 QBETA Qβ viral genome

6421 CGMMV Cucumber green mottle mosaic virus

7440 POL2LAN Poliovirus type 2 (Lansing strain)

9022 HIVNY5CG HIV 1 viral genome

9754 HIVANT70 HIV 1 viral genome

10271 HIV2UC1GNM HIV 2 viral genome

Table 5: Test sequences used for the performance analysis on DELTA.

The implementation of the PPFA was done for distributed memory parallel

computers as described in section 6. In the following we will use t to denote

the time required to perform the computation of the PPFA in real time (“wall

clock time”), while T = tN refers to the total CPU time consumed on all

processors. In order to measure the parallel performance of our algorithm, we
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need to compare the performance on multiple processors to the performance

on a single node. In our case this was impossible because of the memory

requirements, instead we derive hypothetical single node CPU times T ∗ below.

An ideal parallel algorithm would compute its computational work N times

faster than one processor would. In practice there is always a loss of efficiency

caused by communication overhead and poor load balancing. For constant

sequence length n the number of messages is proportional to N , we therefore

expect a roughly linear dependence of T as a function of N . Figure 29 shows

that this is indeed the case. The single node execution times T ∗ can therefore

be estimated from a linear regression.

1 51 101 151 201 251
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Figure 29: Plot of T = tN versus number of nodes. Data are for the Qβ sequence
(n = 4220) and two different values of umax, u1max = 30 and u2max = 15. The linear
regression (dotted lines) gives a good estimate of the execution time on a single node.

Since one has to calculate the sequence many times using different numbers

of nodes, this method of obtaining single node execution times is somewhat

tedious. If one examines the partition function algorithm, see section 5.1, one
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notices that the total computational work follows quite well:

T ∗ ≈ an3 + bu2
maxn

2 (37)

Where the term an3 comes from the calculation of multi-loops and the term

bu2
maxn

2 from the calculation of interior loops. By fitting the parameters a, b

in equ. (37), one can obtain easily single node times for any sequence length

n without computation. Two different methods were used to estimate the

parameters a and b. A good fit can be obtained from the values of T ∗ for

different umax, as done in Figure 29, where umax is the maximal size of interior

loops.

an3 =
T2u

2
1max − T1u

2
2max

u2
1max − u2

2max

and bn2 =
T1 − T2

u2
1max − u2

2max

(38)

Alternatively, a and b can be obtained from a nonlinear fit of T ∗ versus n,

as done in Figure 30. Single node execution times for various sequence lengths

and the resulting values for a and b are summarized in table 6.
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T=a*n^3 + b*M^2n^2
nonlinear fit to T*

Figure 30: Plot of T ∗ versus sequence length n. To calculate the hypothetical single node
CPU time we used the values of the a and b coefficients listed in table 6. On the other hand
we got single node times from a linear regression tN versus N . One can see the nonlinear
regression fit quite well to the curve obtained using a and b from table 6.
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Length Min Nodes T ∗ [s]

697 2 829

1562 8 6065

1962 12 10955

3023 30 34733

4220 60 86869

6421 144 282787

7440 192 430430

9022 320 748831

9229 320 799456

9754 384 937952

10271 448 1.089 · 106

1) a=900 ± 20 ns b=1200 ± 150 ns

2) a=870 ns b=1400 ns

Table 6: Single Node Times. Min Nodes denotes the minimal number of nodes necessary

for folding, and T ∗ is the hypothetical single node execution time for the computation. 1)

are the parameters obtained from equ. (37) using T ∗ from Figure 29 for different umax. 2)

shows the values for a and b obtained from Figure 30 doing a nonlinear fit.

Now that we know T ∗, we are in the position to calculate the efficiency of

the PPFA. The efficiency of a parallel algorithm is defined as,

E(N) :=
T ∗

(Nt)
(39)

where T ∗ is the single node execution time, N is the number of processors,

and t is the real time used for the computation. An ideal parallel algorithm

would have efficiency of 1. In practice any efficiency above 50% is satisfactory

for highly parallel algorithms. As shown in Figure 31 our algorithm reaches

good efficiencies when the minimal necessary number of nodes is used.
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Figure 31: Plot of efficiency versus number of processors. Longer sequences re-
quire more memory, therefore the minimum number of nodes increases. By using
more processors the amount of computation of a node decreases, but the amount of
message passing is constant, resulting in a loss of efficiency. Conversely, efficiencies
improve with sequence length for constant number of processors.
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9 Base Pair Probabilities in HIV 1LAI

As a first application we have calculated the base pair probability and partition

function of a full length HIV 1LAI genome using the parallel partition function

algorithm (PPFA).HIV 1 is a highly complex retrovirus. Its genome is densely

packed with information for the coding of proteins and biologically significant

RNA higher order structure.
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Figure 32: Generalized mountain representation of HIV 1LAI obtained from the base pair

probability matrix. This representation gives a good impression of the average structure of

the RNA molecule, see section 3.2. The older serial folding on the CRAY shows multi-loops

were somewhat less stable than in the new version, because dangling end energies were

neglected, In the new folding a number of components from 500 to 4000 are replaced by a

huge multi-loop. Although the curves do well on the first part of HIV 1LAI the slopes and

the peaks of the generalized mountain representation are very similiar.
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We compare our results with an older computation on a CRAY-M90 (a large

memory configuration of the CRAY YMP) (Huynen et al. 1996).The serial

algorithm used in CRAY study did not account for dangling end energies and

uses a slightly different set of energy parameters, this causes a slightly different

base pair probability output and generalized mountain plot see Figure 32.

The impact of differences will be discussed here. The data for two important

regions of the HIV 1 genome ( 5’ end and the Rev response element RRE) are

compared in detail.

At the 5’ end of HIV 1 resides the trans-activating responsive (TAR) el-

ement, which interacts with the regulatory Tat protein, see Figure 33. The

binding of the Tat protein to TAR increases transcription rates (Feng & Hol-

land 1988; Jeang et al. 1991). The TAR hairpin presents itself in the folding

data as a beautiful stem-loop structure (5-54). The entire TAR motif seems

to be quite well separated from the rest of the structure.
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Figure 33: Generalized mountain representation of the 5’ end of HIV 1LAI The full line

is obtained from the base pairing probability matrix of the complete HIV 1LAI sequence

computed on the CRAY.
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Reverse transcription of HIV 1 RNA into DNA is primed by a tRNAlys

that is bound to a region of 18 nucleotides in the 5’ LTR, positions 182-199,

see Figure 33. The nucleotide sequence in this region, the so called Primer

Binding Site (PBS), is complementary to the nucleotides at the 3’ end of the

tRNA. Figure 33 shows that the PBS is located in a partly unpaired region

belonging to an interior loop (the mountain representation is partly horizontal

in the PBS region).

The Packing Signal Region forms a quite well defined linear stem-loop

structure immediately following the PBS region. The major-splice donor (SD)

is located at the 5’ side of this region, position 289. It resides in a strongly

conserved (Harrison & Lever 1992) and stable (Baudin et al. 1993) secondary

structure a few positions up-stream from the packaging signal. Figure 33 shows

that it is located close to a minimum in the generalized mountain representa-

tion, enclosed only by a few base pairs, which form a multi-loop carrying both

the packaging signal region and the PBS region.

The packaging signal (PACK) forms a very well defined linear stem-loop

structure from position 297 through position 342. Both Figure 33 and Fig-

ure 34 show this structural motif very clearly. It consists of three or four

stems separated by interior loops. One of the stems, which is not present in

the minimum free energy structure, is quite unstable. The packaging signal

itself extends a few nucleotides into the coding region of the gag gene. A well

defined component boundary separates this region from the rest of the genome.

These results are in agreement with (Hayashi, Ueno, & Okamoto 1993).

The Rev response element (RRE, also called CAR), is an RNA structure

that is located within the env gene. The binding of the Rev protein to RRE

promotes the transport of unspliced HIV transcripts to the cytoplasm (Malim

et al. 1989; Malim & Cullen 1989; Mann et al. 1994; Kimura & Ohyama 1994).

The RRE region forms a well defined structure on the outside of a large bulk

of secondary structure, enclosed by more than 350 base pairs. The stem-root

structure (I) contains a total of 32 base pairs in the MFE structure, which do

not show any significant alternative structures. It separates the binding region

well from the rest of the RNA.
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Figure 34: Dot plot of the TAR region at the 5’ end of HIV 1LAI . The upper right

triangle contains the base pairing probability matrix (Pij) obtained on the CRAY; the size

of the squares is proportional to the pairing probability. The lower-left triangle displays (Pij)

obtained on the DELTA for comparison. Hairpin loops appear as diagonal patterns close to

the separating line between the two triangle, with the distance from this line indicating the

loop size.

The long stem-loop structure furthermore indicates that the structure is

easily accessible. There is very little interaction from the outside into the

RRE region. The consensus secondary structure for the RRE in HIV1 consists

of 5 hairpins in a multiple branched conformation closed by a single stem

structure (Konings 1992). An alternative structure of only 4 hairpins, in which
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Figure 35: Generalized mountain representation of the RRE locus of HIV 1LAI . The

baseline of both plots has been shifted to zero for easy comparison. The five-fingered struc-

tural motif of the CRAY folding is different to the DELTA folding. The DELTA folding

contains an additional small hairpin between loops number IV and V. Loop III, VI are

almost identical. The region IIb/IIc is not well defined in both foldings.

the hairpins III and IV of the consensus model merge to form one hairpin,

has however been proposed (Mann et al. 1994). Note that this alternative

structure matches the predicted minimum free energy structure, see Figure 36.

Extensive computer analysis has shown that the alignment of the RRE at the

level of the sequence does not coincide with the alignment at the level of the

secondary structure (Konings 1992). This has two important implications: 1)

methods that predict secondary structure of RNA on the basis of co-variation

of positions within the sequence (Gutell 1993) can not be used here, and 2)

the RRE has structural versatility.
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Figure 36: The picture on top of the page shows the dot plot of the RRE locus of

HIV 1LAI . The base pair probabilities dot plots are labeled CRAY and DELTA. The picture

below shows three possible structures of the RRE region. The minimum free energy structure

obtained with the new energy parameters is shown to the right. In middle we see the

MFE structure from the CRAY folding (Huynen et al. 1996). The left structure, labeled

PHYLO, has been inferred from a comparison of several HIV 1 RREs (Konings 1992). Stacks

occurring in all structures are shown in black.
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The structural versatility could also play a role in a single HIV clone; i.e. as

long as the structural conformation is close to the consensus conformation the

RRE is functional. This is exactly the motivation for analyzing and presenting

the secondary structure as an ensemble of base-pair probabilities instead of a

single or a few (alternative) structures. It is puzzling thus, that the high affinity

binding site for the Rev protein, which lies in structure IIb, has a relatively ill

defined secondary structure. Apparently the local secondary structure of the

sequence is not that relevant for the binding of Rev. An alternative hypothesis

is that the structural versatility of this region actually has a function. The

binding of Rev proteins is cooperative process; the binding of the first Rev at

the high affinity site facilitates the binding of other Rev proteins along stem

IIa and stem I. This process has been attributed to protein-protein interactions

(Mann et al. 1994). An alternative possibility is that the binding of Rev to the

high affinity site stabilizes a specific conformation of the secondary structure,

therewith giving the other binding sites, in particular the one stem IIa, the

right secondary structure for the binding of other Rev proteins.

To present the differences between the pairing probabilities obtained from

the two implementations of Mc Caskills algorithm (McCaskill 1990), we used

a modified version of the RNApdist program from The Vienna RNA Pack-

age (Hofacker et al. 1994b) to get the distance between the thermodynamic

ensemble of RNA secondary structure. For each base i we calculated a dis-

tance as follows: First we calculated the probabilities P
(
i , P

)
i , P ◦

i of i being

paired upstream, downstream or unpaired, respectively; T [1] = P
(
i =

∑

j>i Pij,

T [2] = P
)
i =

∑

j<i Pij, T [0] = P ◦
i = 1 − P

(
i − P

)
i . The distance dist(T1, T2)

was then calculated as:

dist(T1, T2) = 2 −
∑

k=0,1,2

2
√

T1(k)T2(k) (40)

The output of the program is the distance at each position i, see Figure 37.

As another way of comparing the two secondary structures, we calculated

the differences in probabilities for all possible pairs |P DELTA
ij − P CRAY

ij |). In
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Figure 37: Frequency distribution of distances. In most positions the distance between

the two structures is very small, almost no positions display distances close to the maximum

of 2. The mean structure distance over all positions is 0.21, for unrelated structures we

would expect a distance of about 0.6.

Figure 38 we plot the differences versus the distance of the base pair (j − i).

Comparing the results in Figure 38 to 32 we detect a high diversity for base

pairs with (j − i) about 8500. This is a consequence of the large multi-loop

predicted by the PPFA at this base distance which is not present in the CRAY

prediction.
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Figure 38: Differences in base pair probabilities versus distance j − i of the pair. Clearly

visible are several bands, e.g. at j − i ≈ 8500 and 6500, corresponding to long range pairs

predicted by the DELTA folding, but not by the CRAY.
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10 Conclusion and Outlook

RNA structures play a significant role in a wide range of problems today. The

secondary structures provide a convenient way of coarse graining, and their

study yields important information about RNA useful in the prediction of the

full 3D structures and in the interpretation of the biochemical function either.

Secondary structures are discrete and therefore well suited for computational

methods.

Earlier algorithms for structure prediction provided information only about

the thermodynamically optimal structure, the minimum free energy structure.

To understand the biological role of an RNA molecule, it is not sufficient, to

know only one single structure. RNA molecules are not fixed in a single struc-

ture, they can vary over an ensemble of structures. The partition function

algorithm of (McCaskill 1990), evaluates the complete thermodynamic ensem-

ble of structures and provides us with a wealth of information on optimal and

suboptimal structures in form of the base pair probabilities matrix. This puts

us in the position to learn more about the stability and structural flexibility

of these molecules.

For small RNA molecules like tRNAs RNA structure prediction has long

been a useful tool providing us with information concerning the relationship

between sequence and structure. For long RNA molecules it becomes a com-

putationally demanding task, requiring computation time that scales as O(n3)

and memory proportional to O(n2). In the past these requirements have made

investigations of large RNA molecules, of great biochemical and medical im-

portance, such as genomes of RNA viruses all but impossible. A single HIV1

Virus structure prediction for sequence length n = 9229 requires supercom-

puters such as the CRAY and is far away from a routine method, because of

the time consumption.

On the other hand such requirements are easily met by modern massively

parallel computers such the DELTA. We have therefore developed an imple-

mentation of the folding algorithms to message passing machines. With the



10 Conclusion and Outlook 71

help of our program running on powerful parallel computers secondary struc-

ture prediction and analysis of the complete set of presently available RNA

virus genomes has become a feasible task. Calculating the base pair proba-

bilities for all virus genomes may cause a better understanding of functional

tasks of the virus structure in respect of exploring evolutionary questions. As

a first example we tested our parallel partition function algorithm (PPFA) on

HIV1, to give an example that structure prediction of large virus genomes is

now a feasible computational task.
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