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Abstract

Inverse folding of proteins with potentials of mean force is one of the most promis-
ing current approaches to the protein folding problem. These potentials are de-
rived from the data contained in known protein structures in the large Protein
Data Banks (e.g. Brookhaven Protein Data Bank). These potentials are based on
two basic assumptions:

(1) Proteins fold into a thermodynamic ground state.

(2) The frequency ¢(I) of a certain interaction I in the data base of all (known)
protein structures is related to the energy contribution E(I) of I by means
of Boltzman’s law.

In a series of papers Sippl and coworkers (Center for Applied Molecular Engineer-
ing, University of Salzburg) [27, 28, 29] showed that a good potential of mean force
can be derived from the frequencies of amino acid residues in structure data bases.
Exploiting this data, they developed the PROSA program package which allows us
to calculate a cost function (z-score) for a given amino acid sequence on a certain
protein structure. In this work, the existence and the extension of neutral paths
and networks on a variety of protein structures were studied using the PROSA pro-
gram. Furthermore, this inverse folding approach allowed us to study the number
of amino acids necessary to model native-like protein structures, i.e., we studied
the feasibility of structure formation with restricted alphabets. We found that
it is possible to generate random amino acid sequences with native like z-scores
and sequences with even better z-scores by adaptive walks. This was even possi-
ble with restricted sets of amino acids, given the right combination of hydrophilic
and hydrophobic amino acids. Neutral paths extended to the length of the amino
acid sequence at z-scores equal to the wild-type and up to six standard deviations
better. Preliminary studies of hydrophilic—hydrophobic patterns in the generated
sequences have not yielded any discernible patterns so far. There seems to be no
bias in the substitution frequency of the amino acids during the adaptive walks
and during the search for neutral neighbors.



Zusammenfassung

Die inverse Faltung von Proteinen unter Verwendung von Potentialen der mittleren
Kraft ist einer der derzeit vielversprechendsten Ansatze zur Losung des Protein-
faltunsproblems. Diese Potentiale werden aus Proteinstrukturdaten entwickelt,
welche man in den groflen Protein-Datenbédnken (z.B. Brookhaven Protein Data
Bank) findet. Sie basieren auf den folgenden grundlegenden Annahmen:

(1) Gefaltete Proteine befinden sich in einem thermodynamischen Grundzu-
stand.

(2) Die Frequenz ¢(I) einer bestimmten Interaktion I im Datenpool aller
bekannten Proteinstrukturen ist mit der Energieverteilung E(I) von I iiber
das Boltzmann-Gesetz verkniipft.

In einer Reihe von Publikationen zeigten Sippl, et al (Center for Applied Molec-
ular Engineering, University of Salzburg) [27, 28, 29|, daf} ein gutes Potential
der mittleren Kraft aus der Frequenz von Aminosauren in Strukturdatenbanken
gewonnen werden kann. Unter Verwendung der dort enthaltenen Daten entwickel-
ten Sie das PROSA Programmpaket. Dieses Programm ermoglicht uns die Berech-
nung einer Kostenfunktion (z-score) fiir eine bestimmte Aminosiuresequenz auf
einer vorgegebenen Proteinstruktur. In dieser Arbeit wurde die Existenz und die
Ausdehnung von neutralen Pfaden und neutralen Netzen auf einer Anzahl von
Proteinstrukturen untersucht. Hierfiir wurde das PROSA Programm verwendet.
Desweiteren versuchten wir herauszufinden wieviele Aminosauren notwendig sind
um Aminosauresequenzen zu

entwickeln deren z-score dem nativen entspricht, d.h. wir untersuchten die Ver-
wendbarkeit von limitierten Alphabeten. Es stellte sich heraus, dafl es mit Hilfe
von Adaptive Walks moglich ist Aminosauresequenzen zu modelieren deren z-score
dem der nativen Sequenz entspricht, bzw. solche mit wesentlich besseren z-scores.
Mit der richtigen Kombination von hydrophilen und hydrophoben Aminosauren
war dies auch bei limitierten Alphabeten moglich. Bei z-scores, die den nativen
ahnlich waren, bzw. bis zu sechs Standardabweichungen besser, entsprach die
Lange der neutralen Pfade der Lange der Aminosauresequenzen. Vorlaufige Unter-
suchungen der hydrophil—hydrophob-Muster ergaben bis jetzt keine erkennbaren
Muster. Die Frequenz der Substitution der Aminosauren bei den Adaptive Walks
bzw. bei der Suche nach neutralen Nachbarn scheint keinem Bias zu unterliegen.



1. Introduction

The protein folding problem is one of the most interesting problems of contempo-
rary biology. The solution to this problem would pave the way for a great number
of scientific and technological applications. During the past decades the folding
problem resisted the attacks of intense theoretical research. However, during the
last few years the invention of new strategies has brought us a few steps closer to
a solution. These strategies are based on the analysis of known three-dimensional
structures using methods borrowed from statistical physics.

One of the most promising approaches seems to be the use of knowledge-based
potentials of mean force, derived from the data contained in known protein struc-
tures in the large Protein data banks (e.g. Brookhaven protein data bank; (URL:
http://pdb.pdb.bnl.gov/). Sippl and co-workers [17, 27] argue that a good po-
tential of mean force can be derived from the frequencies of amino acid residues
in structure data bases. These potentials are based on two basic assumptions:

(1) Proteins fold into a thermodynamic ground state, i.e., the conformation of
a proteins minimizes a potential function.

(2) The frequency ¢(I) of a certain interaction I in the data base of all (known)
protein structures is related to the energy contribution E(I) of I by means
of Boltzman’s law.

One should bear in mind that both assumptions are by no means obvious a prior:
(see section 4.1). Although the prediction of protein conformation from amino
acid sequences has remained an unsolved problem in spite of all efforts, the inverse
folding problem of finding a sequence that will adopt a predefined structure as its
native conformation may be more tractable for several reasons:

At a structural resolution comparable to that of a ribbon diagram of a protein
many sequences will adopt the same structure, and optimization of sequences
in high dimensional sequence spaces should be easy compared to optimization
of structures in 3D. Reliable recognition of correctly folded proteins should be
easier than structure prediction and is all that is needed. Solving the inverse
folding problem is not only a prerequisite for rational design of functional proteins,
but also allows to study sequence-structure relations of proteins. Knowledge-
based potentials of mean force have been used successfully to identify a proteins



native fold among a large set of possible conformations [17, 28, 29]. Since the
score assigned to a given conformation correlates well with its distance to the
native fold (see Figure 10), one might, conversely, interpret the difference in score
between a wild type and some test sequence as a measure of distance between
their respective native folds. The scores obtained from the mean force potentials
would then allow us to search protein sequence space in a similar way as has been
done for RNA secondary structures [9, 26], without having to tackle the problem
of protein structure prediction. The only restriction is that only proteins with
known structure can serve as reference.

Sippl and co-workers have shown in a series of papers [4, 17, 27, 28, 29] that the
potential of mean force W, or rather the rescaled quantity

@)= LD =Wy

Op

where W, and o, are the mean and standard deviation of W (p, Q) when @ runs
over all conformations in a database of known protein structures, can be used to
identify the native fold P among a large set of possible conformations Q.
Conversely, this z-score can be used as an approach to inverse folding: Given
a fixed backbone conformation @, one could search for sequences p that give z-
scores z(p, @) at least as low as the z-score of the native sequence ¢q. Of course,
only structures that are already in the database can be searched for.

In the case of RNA molecules, and if one is willing to accept secondary struc-
tures, i.e., base pairing patterns, as a suitable (coarse grained) description of the
structures, one can actually compute the structure of minimum free energy for (in
principle) arbitrary sequences [18, 23, 30, 31]. These algorithms are based on a
simple thermodynamic model of RNA (secondary) structures, for which the major-
ity of parameters have been measured directly on small oligonucleotides [10]. The
simplicity of the energy model and the relatively small number of contributions in
a given sequence allow this approach to be applied successfully.

Using a brute force computational approach a number of unexpected results on
the global properties of the sequence-structure map of RNA’s have been obtained
[7, 8,9, 26]. The highlights of these studies are:

(i) There are many more sequences than structures, hence many sequences fold

into the same structure.



(ii) The distribution of the number of sequences folding into the same structure
follows a Zipf-like distribution, i.e., there are few very common structures

and many different very rare structures.

(iii) The sequences folding into a common structure are distributed randomly

throughout sequence space. No clustering is visible.

(iv) The sequences folding into a common structure form extremely extended
neutral networks, i.e., there are pathways consisting of sequences that fold

into same structure which extend through all sequence space.

(v) The distance from a random sequence to a sequence that folds into a desired

structure is short compared to the maximum distance in sequence space.

]
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Figure 1: Sequence — Structure relation in the case of RNA secondary structures: Sequences
folding into a particular structure can be found anywhere in sequence space. Such
sequences can be connected by extended nets of structurally neutral neighbors.

The development of knowledge-based potentials of mean force enables us to ask

similar questions for proteins:

(i) How are the sequences folding into common structures distributed through-

out sequence space?



(ii) Is it possible to create random sequences of amino acids, that fold into
a given structure yielding the same or better z-scores than the wild-type
sequence”?

(iii) Do sequences which fold into common structures create neutral paths or
networks throughout sequence space?

iv) Is it possible to create native-like protein structures using a restricted set
g
of amino acids such as ADLG (Alanine, Aspartate, Leucine and Glycine)?

(v) How many amino acids are needed to build typical structures, i.e. is it
possible to create native-like protein structures using only an hydrophobic
and an hydrophilic amino acid?

Recently a number of groups (for details see [5, 20, 25]) have begun to approach
some of these questions experimentally. In this work we tried to find answers with
the help of computer experiments using the PROSA program developed by Sippl, et
al. [29], (see section 4.3).



2. Protein Structure

Proteins play important roles in virtually all biological processes. The wide range

of their activity and their significance are exemplified by the following functions:

1.  Enzymatic catalysis

2. Transport and storage

3.  Coordinated motion

4.  Mechanical support

5.  Immune protection

6. Generation and transmission of nerve impulses

7. Control of growth and differentiation

Proteins consist of one or more polypeptide chains built from a repertoire of twenty
a-amino acids. An a-amino acid consists of an amino group, a hydrogen atom,
and a distinctive R group (side chain) all bonded to a carbon atom (the a-carbon)

which is adjacent to the carboxyl group.

carbonyl _____ -~——— amino acid side chain
carbon

Figure 2: An a-amino acid

Amino acids are amphiphatic molecules, in solution at a neutral pH they are dipo-
lar ions rather than unionized molecules.The tetrahedral array of four different



groups about the a-carbon atom accounts for the optical activity of amino acids.
Of the two possible isomers only L-amino acids are constituents of proteins.

The side chains of the twenty different amino acids vary in size, shape, charge,
hydrogen bonding capacity and chemical reactivity. The sequence of amino acids
in the polypeptide chain(s) is also called the primary sequence of the protein and
specifies the three dimensional structure of the protein.

Table 1. The 20 Standard Amino Acid Residues

Residues Symbols| H | P | + — C | s ar | al

Alanine Ala A X X

Arginine Arg R X X X

Asparagine Asn N X X

Aspartate Asp D X X X X

Cysteine Cys C X X

Glutamate Glu E X X X

Glutamine Gln Q X

Glycine Gly G X X

Histidine His H X X X X X

Isoleucine Ile 1 X X

Leucine Leu L X X

Lysine Lys K X X X X

Methionine Met M | x

Phenylalanine | Phe F X X

Proline Pro P X

Serine Ser S X X

Threonine Thr T X X X

Tryptophane Trp W | x X X

Tyrosine Tyr Y b b X

Valine Val V X X X
Classifications: H ... hydrophilic, P ... polar, 4+ ... positive, — ... negative,
C ... charged, s ... small, ar ... aromatic, al ... aliphatic [32].

The amino acids in the polypeptide chain are linked by peptide bonds i.e. the a-
carboxyl group of one amino acid is joined to the a-amino group of another amino
acid. The carbon-nitrogen bond has partial double bond character, therefore the
peptide group is a rigid planar unit. As a consequence, rotation can only take
place about the bonds on either side of the rigid peptide unit.



Figure 3: The peptide bond. Standard bond distances are given in A.

Rotation about the two single bonds is described by the dihedral angles v and ¢.
1 refers to rotations about the C, — C single bond while ¢ refers to rotations
about the C, — N single bond. In a fully stretched out polypeptide chain ¢ =
1 = 180°. The conformation of the main chain of a protein is completely defined
when ¥ and ¢ are specified for each residue in the polypeptide chain.

Figure 4: Definition of ¢, 1.

The polypeptide chain folds into regular structures stabilized by H-bonds. Three
structural features are prominent in protein secondary structure: Helices, 3
Pleated Sheets and Turns.
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Figure 5: Ramachandran plot; poly-L-ala

Secondary structures are of particular interest for the understanding of the mech-
anism of protein folding. They are also important for the theory and prediction of
protein structures. In the following we will discuss the main structural elements
of proteins.

e Helices

The prediction of a-Helices as essential structural elements in proteins made by
Linus Pauling and Robert Corey turned out to be a milestone in the understand-
ing of biopolymeres. It is a right-handed helix (figure 6) of the polypeptide-chain.
Each amino acid residue in an a-helix forms a H-bond between its carbonyl-group
and the amino-group of the fourth next amino acid:

k— k+ 4; k=1,2,3,....

By creating an a-helix, the polypeptide chain transforms into a more compact and
more stable form.
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Figure 6: a-Helix: left: only a-C-atoms(Cy). middle: Co+ N + C of the backbone. right:
total helix

Helical structures can be described in several ways. One of them utilizes the above
mentioned dihedral angles ¢ and 1 and the angle w which is approximately 180°
in most structures.

Another characterization is based on the number of amino acids n necessary to
complete a full turn of the helix. Furthermore, m which counts the number of
atoms in the ring created by an CO — HN bond, has to be given. The helix is
fully described by n,,. The smallest possible ring can be found in the 2.27-helix.
In this case there are no “X”.
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Figure 7: H-bond in an a-Helix. The continuation of the polypeptide-chain is indicated by the
two circles. “X” symbolizes amino acids in between the H-bond.

There is another important parameter: h. It describes the contraction of the
polypeptide chain in translational direction. It is usually measured in Angstroms
(A).

Questions concerning protein stability can be answered by (¢, v)-potential-fields,
which are very similar to Ramachandran-plots.

In addition to right handed helices there are left handed helices:

Yin = —Urn and Oth = —brh

These helices are no mirror images of their right handed counterparts, because all
amino acids, except gly, are chiral and only the L-isomers are represented.

e (3 Pleated Sheets

In contrast to the a helix, the ( pleated sheet is a mon local structural unit.
The polypeptide chain in this structural element is almost fully extended. It is
stabilized by H-bonds between NH and CO groups in different polypeptide chains.
Adjacent chains in a 3 pleated sheet can run in the same direction (parallel [
sheet) or in opposite directions (antiparallel 3 sheet).

In general these structures are called g-structures The molecular properties are
shown in figure 8. The side chains are alternately orientated to both sides. There
is only one exception: L-pro, because there is no hydrogen bond to the nitrogen
and in addition it cannot rotate to the required angles (1, ¢).

— 10 —



Figure 8: Anti-parallel 3-sheet

e Turns

Globular proteins are of approximately spherical shape, the a-helixes and 3-sheets
they contain cannot be longer than their diameter. Consequently the polypeptide
chain has to change its direction with the help of hairpin- or 3- turns. ‘Sharp”
turns often occur in 3-sheets. They consist out off four amino acid-residues. There
is a H-bond between the CO of the first and NH of the fourth next amino acid.
The following restrictions concerning the occurance of certain amino acid residues

at certain positions can be observed with the different types of turns:

1 all residues are allowed on positions 1-4 except pro in position 3
I’ positions 2 and 3 must be gly

ITI  position 3 must be gly,

I’ position 2 must be gly

ITTI is part of a 3.01p-helix (no further restrictions)

IIT positions 2 and 3 must be gly

IV must have pro in position 3 and a cis-peptide bond

— 11 —
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Figure 9: Most frequent hairpins. X marks the position where an H-atom is required. Type
III shows a strong similarity to a 3.01¢-helix (axes marked)

e ()-turns

These are turns with a length of approximately 6-16 residues, they combine other
secondary structure elements and have an end-to-end distances of 3.7-10 A. Fur-
thermore, the residue-distribution differs from the a-helix and the (-sheet. In

particular gly and pro are very frequent.

- 12 —



3. Globular Proteins

Most biological proteins have characteristic native folds. In physiological condi-
tions the native structure forms spontaneously. The protein’s folded structure is
a function of its amino acid sequence and its natural environment. In the case of
soluble globular proteins the in vivo environment is generally an aqueous solution
of various ingredients. The amino acid sequence defines the molecular identity of a
protein. The study of the biological role, molecular mechanism, catalysis, molecu-
lar interactions, binding of effector molecules, and many more important features
of individual proteins require a knowledge of their three dimensional structures.

In this work we study four globular protein structures in detail.

3.1. Thioredoxin

Thioredoxin is an electron carrier protein. It acts as an electron donor in the
reduction of ribonucleotides and plays an important role in controlling the dark
reaction of photo-synthesis. It controls the activities of various enzymes in many
kinds of cells by reducing disulfide bonds. The active form of thioredoxin contains
two cystein which are oxidized to form a disulfide bond when thioredoxin activates
other enzymes. Thioredoxin is reactivated by reduction of the disulfide bond by
ferredoxin. The Thioredoxin used for the following studies is that of Escherichia
coli. It contains 108 amino acids.

The secondary structure (as shown in Figure 10) contains five a-Helixes (H1
Residue 11 to 17, H2: 32 to 49, H3: 59 to 63, H4: 66 to 70, H5: 96 to 107),
five B-sheets (Residues 3 to 8, 29 to 32, 53 to 59, 76 to 82, 86 to 92) and 12 Turns
(see Figure 9). The active site is located at the amino-terminus of the second
alpha-helix. It contains a disulfide bridge between Cys32 and Cys35. The struc-
ture used for the following calculations is 2trxA.pdb (Brookhaven Protein Data
Bank), resolved at a resolution of 1.68 A.

— 13 —



Figure 10: Thioredoxin from Escherichia Coli. Wild type Sequence:
SDKITHLTDDSFDTDVLKADGAILVDFWAEWCGPCKMIAPILDEIADEYQGKLTVAKLNIDQNPGTAPKYGIRGI
PTLLLFKNGEVAATKVGALSKGQLKEFLDANLA

— 14 —



3.2. Crambin

Crambin is a plant seed protein from abyssinian cabbage (Crambe abyssinica). It
is the seed-specific thionin. Contrary to most thionins of higher plants which are
toxic to various bacteria, fungi, and animal and plant cells, it exhibits no toxicity.
Crambin has no net charge, it is very hydrophobic. It contains 46 amino acids.

Figure 11: Crambin from Abyssinian Cabbage Seed. Wild-type sequence:
TTCCPSIVARSNFNVCRLPGTPEALCATYTGCIITPGATCPGDYAN

The structure used for the following calculations is 1cbn.pdb (Brookhaven Data
Bank), resolved at a resolution 0.83 A. It contains two a-Helixes (H1 Residue 7
to 19, H2: 23 to 30), 3 (-sheets (Residues 1 to 4, 32 to 35, 39 to 41) and 2 Turns.
There are three disulfide bonds: between Cys 3 and 40, 4 and 32, 16 and 26 (see
Figure 11).

— 15—



3.3. Ubiquitin

Ubiquitin is a small protein present in all eucaryotic cells. It plays an impor-
tant role in tagging proteins for destruction. This protein is highly conserved
in evolution: yeast and human ubiquitin differ at only 3 of 76 residues. The
carboxyl-terminal glycine becomes covalently attached to the e-amino group of
lysine residues of proteins destined to be degraded. Ubiquitin from human ery-
throcytes was used for the following calculations.

Figure 12: Ubquitin from Human Erythrocytes. Wild-type sequence:
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQODKEGIPPDQQRLIFAGKQLEDGRTLSDY
NIQKESTLHLVLRLRGG.

The structure used for the following studies was 1ubq.pdb (Brookhaven Protein
Data Bank), resolved at 1.8 A. It contains two a-Helixes (H1 Residue 23 to 34,
H2: 56 yo 59), five B-sheets (Residues 1 to 7, 10 to 17, 40 to 45, 48 to 50, 64 to
72) and 9 Turns (see Figure 12).

— 16 —



3.4. Lysozyme

Lysozyme is an enzyme capable of dissolving certain bacteria (lysis) by cleaving
the polysaccharide component of their cell wall. It is a relatively small enzyme.
The lysozyme from chicken egg white which was used for the following calcula-
tions, is a single ploypeptide chain of 129 residues. This highly stable protein is
cross-linked by four disulfide bridges: between Cys 6 and 127, 30 and 115, 64 and
80, 76 and 94. The active site contains Asp 52 and Glu 35.

Figure 13: Lysozyme from Hen Egg White. Wild-type sequence:
KKLGRCELAAAMKRHGLQNERGLSMGNWVCAAAFESNFNTQATNRNTDGSTDYTFLQINSRWW
CNDGRAPGSRNLCGIPCSALLSSDITASVNCAVKIYSDGNGCNIMVAWRNRCKGTDEQRWIRGCRL

The structure used for the following studies was 11yz.pdb (Brookhaven Protein
Data Bank), resolved at 2.0 A. It contains four a-Helixes (H1 Residue 5 to 15, H2:
25 to 35, H3: 80 to 84 and H4: 89 to 96, five [B-sheets (Residues 1 to 3, 38 to 40,
42 to 46, 50 to 54 and 57 to 60) and 11 Turns (see Figure 13).

— 17 —



4. Protein Inverse Folding

4.1. Knowledge-Based Potentials of Mean Force

The problem of biopolymer folding can be paraphrased in terms of the combinatory
map from the sequence space QJ: consisting of all sequence of length of n built from
the alphabet of « different types of monomers to the shape space S

In principle this function is defined for all sequences. In the case of RNA molecules,
and if one is willing to accept secondary structures, i.e., base pairing patterns, as
a suitable (coarse grained) description of the structures, one can actually compute
the structure of minimum free energy for (in principle) arbitrary sequences [31, 30,
23, 18]. These algorithms are based on a simple thermodynamic model of RNA
(secondary) structures, for which the majority of parameters has been measured
directly on small oligonucleotides [10]. The simplicity of the energy model and the
relatively small number of contributions in a given sequence allow this approach to
be applied successfully. In the case of proteins the situation is much less fortunate.
The mapping S is not computable within the framework of present-day algorithms
and/or computer technology. However, the solution of the inverse folding problem
alone would be sufficient to study the questions raised in the introduction.

An approach analogous to RNA based on minimizing an energy function faces in-
surmountable problems in the case of protein folding: (1) while there is essentially
one predominant type of interactions in nucleic acids, namely base pair stacking
(which is highly specific and involves only a small number of monomers), the domi-
nating energy contributions in protein folding originate from more or less unspecific
hydrophobic interactions, which may involve a large number of monomers. Hence
there is a large number of relatively small contributions to the energy of folding,
implying that the individual energy contributions have to be known even more
accurately than in the RNA case [6]. In reality the hydrophobic contributions are
hardly known or measurable independently of the protein in question at all. Con-
sequently we cannot reasonably use the potential function W (p, @) for computing

— 18 —



the sequence-structure map S. All we know directly about S for proteins is the
small list of sequences for which the structures are in a data base.

In the following we argue that this knowledge together with a special kind of
knowledge-based potential function for proteins can in fact be used to obtain
results on the global features of S despite the fact that we cannot solve the protein
folding problem.

For simplicity of the discussion we will restrict ourselves to the C,-backbone of
the proteins. Let x; denote the spatial coordinates of the C, atom number ¢ along
the chain. For a sequence p we will use the notation p; to denote the monomer at
position ¢. The Euclidean distance between two C,, atoms is given by:

dij == ||xi — x|

Sippl and co-workers [17, 27] argue that a good potential of mean force can be
derived from the frequencies of amino acid residues in structure data bases. As
mentioned earlier, these potentials are based on two basic assumptions:

(1) Proteins fold into a thermodynamic ground state, i.e., the conformation of

a proteins minimizes a potential function.

(2) The frequency ¢(I) of a certain interaction I in the data base of all (known)
protein structures is related to the energy contribution E(I) of I by means
of Boltzman’s law:

8(1) = — exp (~E(1)/RT),

where Z is the partition functions defined as
Z =Y exp(E(J)/RT).
J

One should bear in mind that both assumption are by no means obvious a priori.
Claim (1) leads to Levinthal’s [21] paradox, as in general finding the global opti-
mum of a complicated potential function will require much more time than folding
of a protein requires in nature. Claim (2) implicitly assumes that (a) the energy
contributions built into the potential function (pair energies and surface terms in
the present case) are in fact the dominant contributions, and (b) that the
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frequency of the types of interactions averaged over a large sample of proteins is
untouched by evolutionary selection.

Nevertheless these assumptions are reasonable: It is unlikely that protein struc-
tures even if determined by kinetic folding pathways could be far away from the
ground state; hence protein structures will be very low lying states if not the global
minima of the potential surface, and hence can sensibly be used to estimate the

bl

potentials. Claim (2) is essentially a “maximum entropy” assumption, and we
simply do not have any evidence at present that it is violated.

The final result is a potential of mean force for all pairs (p,Q) consisting of a
sequence p and a backbone conformation @ (as described by the set of Euclidean

coordinates of @)). In the present case it is of the form

W(p, Q)= Wipi,pj, li — jls dij] + > We[ps; x(0)].

1<J 7

The additive pair-contributions W{a, b, k;r| depend on the pair of amino acid
residues (a,b), their separation k along the chain, and their Euclidean distance
r in the conformation Q. Bowie, Eisenberg and co-workers [2, 3, 22] have demon-
strated that the solvent exposure of an amino acid can be used to model the
energetic features of solvent-protein interactions. Consequently, the potential of
mean force W(p, Q) contains surface terms W a, x| depending on the amino acid
residue a and the number y of protein atoms within a sphere of radius Ry centered
at the C* atom of a. The parameter x serves as a (crude) quantitative measure
for the surface-exposure of the residue a. It is worth noticing at this point that the
energy contributions are defined in terms of two classes of parameters: the first
set depends only on the sequence (amino acid residues and separation along the
sequence), while the other depends only on the spatial conformation (Euclidean
distance and surface exposure).

This approach to knowledge-based potentials is by no means the only one, other
groups have developed other knowledge-based, empirical potentials of mean force
which are not based on Boltzman’s law [1, 3, 12, 13, 14]|. These approaches fall into
different groups. The first group considers the observed frequency with which the
distance between pairs of amino acids appear within one or more distance bins, in
known crystal structures. This approach is limited to considering pair interactions
[12], The second group constructs a definition of an “environment” for an amino
acid based on the properties of the amino acids (polarity, secondary structures,
etc.). These characteristics are coarsely binned so one can approximate by fre-
quency counting the conditional probability of a single amino acid appearing in an
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environment. Alan Lapedes et al. [14] have developed a formalism to construct
“contact potentials”. This formalism allows the introduction of machine learning
techniques, such as Neural Networks which can efficiently include higher order in-
teractions without the explosion of parameters. They employ hidden neurons to
detect correlations higher than second order and they do not rely on frequency
counting to approximate probability distributions.
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4.2. The z-Score as a Structure Distance

Sippl and co-workers have shown [4, 17, 27, 28, 29] that the so-called z-score which

is the rescaled quantity

Z(p, Q) — W(pa Q) B WP’

Op

where W, and o, are the mean and standard deviation of W (p, Q) when @ runs
over all conformations in a database of known protein structures, can be used to
identify the native fold P among a large set of possible conformations. Conversely,
this z-score can be used as an approach to inverse folding: Given a fixed backbone
conformation @ one could search for sequences p that give z-scores z(p, Q) close
to the z-score of the native sequence q. Of course, only structures that are already
in the database can be searched for.

We have convincing evidence supporting this view. Markus Jaritz, personal com-
munication, compared the z-scores of perturbed structures. These structures have
been obtained by “heating” the structure in a molecular dynamics simulation and
then cooling (and compactifying) it again. Figure 14 clearly shows a strong corre-
lation between the rms-distance of the conformation from the wild-type and the
z-score.

A second line of evidence comes from X-ray structures measured at different res-
olution by different labs (See table 2). In fact, the z-scores become better with

increasing resolution of the structure determination.

Table 2. z-scores X-ray structures of the same protein at different resultions.

rms z Zpair Zsurf Name
2.0 | —13.56 —11.00 —9.37 | 1spa
2.4 | —12.93 —10.18 —9.18 | laaw
2.5 | —12.77 —-9.91 —9.16 | 3aat
2.8 | —11.39 —-7.54 —9.14 | 2aat
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Figure 14: z-scores of protein structures obtained from perturbing them by high-temperature
molecular dynamics simulations with cooling. The two big symbols show the native
structures at their resolutions.

An alternative interpretation of the z-scores is as a measure on how close the

native structure S(q) is to the native structure S(p) = P. Hence we would use
dp(q) == 2(¢, P) = z(p, P)

as an approximation to a structure distance between P = S(p) and S(q).
As a renormalized form of the z-scores one might use

_2(q, P) — (z(x, P))zeqn
¢(g, P) := 2(p, P) — (2(x, P))zeqn

This re normalization has the advantage that ( & 1 for perfectly fitting sequences
and ( = 0 for random sequences. This rescaling should allow for some semi-
quantitative comparison between sequences/structures of different chain length.
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4.3. The Protein Structure Analysis Program (PROSA)

Several methods are available to decide whether or not a sequence is likely to fold
into a given structure. For our studies we used the empirical mean force potentials
developed by Sippl and coworkers (Center for Applied Molecular Engineering, Uni-
versity of Salzburg) [4, 17, 27, 28, 29| as implemented in the PROSA package. The
potentials are derived from statistics of known three-dimensional protein struc-
tures and have been used successfully to identify a proteins native fold among a
large set possible conformations. Prosa II is a powerful tool in protein structure
research, it supports and guides studies aimed at the determination of a protein’s
native fold. It is helpful for experimental structure determinations and for mod-
eling studies. Usually, the calculation of native folds of proteins from amino acid
sequences is still impossible, even though modeling by homology has turned out to
be quite successful in several cases. In general, if the native structure of a protein
is needed there is still no escape from X-ray analysis and/or NMR-spectroscopy.
Unfortunately, these techniques are time consuming and fail in many cases due to
experimental problems (e.g. lack of isomorphous derivatives, size of the protein
etc.), and the only remaining possibility is an attempt to build a model.

The Prosa program not only offers the possibility to evaluate experimentally de-
termined protein structures, to identify incorrectly folded proteins (or sections of
proteins), it is also a useful tool for the evaluation of theoretical models. Further-
more it is the basis of our approach to the inverse folding problem. The Prosa
program based on the previously discussed knowledge based potentials of mean
force allows us to study a large number of aspects of protein structures. It sup-
ports the following features and options:

Prosa is capable of reading both PDB and BBN (binary backbone) protein struc-
ture files. It has a writebbn command which can be used to generate BBN files if
necessary. It can also read PDB files containing only C'“ coordinates. This offers
the option to analyze C® traces. During the startup of the program C? potentials
are loaded per default, but it is possible to additionally load the C* potentials
and conduct calculations using both potentials.

The default polyprotein for the calculations of z-scores is plI3.0.short.ply which
consists of 125 protein molecules. A larger protein (plI5.0.long.ply) made of 233
modules is provided as an option. These polyproteins are constructed from protein
modules which are connected by linker regions. A polyprotein is a device for the
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generation of alternative conformations for a given amino acid sequence. These
conformations have a good stereo chemistry and have many features of native
protein folds. The set of conformations derived from the polyprotein represents a
sample of the conformation space (= shape space) of a given protein. The Prosa
program can calculate a cost function (z-score) for a given protein conformation

respectively for a given amino acid sequence on a certain protein structure.
The z-score is determined by the following method:

The amino acid sequence of the protein is combined with all conformations in the
polyprotein and the energies of all conformations are calculated. The z-score is
derived from the resulting energy distribution. The z-score z, of the protein is
obtained from the energy W), of the protein by

_WP_W

Zp i
P
Op

where W is the average energy of all fragments derived from the polyprotein and
o, is the associated standard deviation. The total energy is a combination of
pair and surface energies. Pair interaction energies are calculated for residue pairs
whose distance k along the sequence is kjpwer < k < kypper- The default
values are Kkjower = 1, kupper = 600. However, if one is only interested in
short range energy contributions (e.g. sequence separation k& < 9) this variables
can be reset. Pair energies are calculated in the distance range [pot_lb, pot_ub] A.
Outside this range energies are zero. pot_lb and pot_ub are variables that can be
set depending on the energy contributions one is interested in (e.g if one is not
interested in close contacts pot_lb can be increased etc.).
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4.4. Adaptive Walks

For the “optimization” of our amino acid sequences we used the simplest possibil-
ity, an adaptive walk. In general, an adaptive walk will try a random mutation,
and accept it if the cost function (in the present case the z-score) decreases. Here,
a mutation means the exchange of one amino acid. If no advantageous mutation
can be found, the procedure stops, and we may start again with a new initial
string Iy. A disadvantage of the adaptive walk is that it could easily get stuck
in a local optima (especially in case of the restricted alphabets). More elaborate
optimization procedures (e.g. gradient walks) could avoid that, but in general they
need more steps to find a solution. Even if several attempts are needed an adap-
tive walk therefore performs very well, except possibly for very rare structures. A
typical adaptive walk employing the PROSA program is shown in Figure 15.

0 : : : 0
5 14 5r b
o
o
(5]
[%2]
N
10 4 -10 ¢ A
_15 L L L _15 L L L
0 50 100 150 1 10 100 1000
walk length time

Figure 15: Adaptive walks on the 2TRX structure as a function of the z-score and as a function
of the time.

The final sequences derived from the adaptive walks on the TRX structure had
z-scores about 50% better than the score of the wildtype sequence (—9.22). This
may seem surprising at first, however, there is no reason why the wild-types z-score
should be optimal, too much structural stability might even be detrimental to the
proteins function. On the other hand these results could be interpreted in respect
of the accuracy of the potentials of mean force. The results depicted in Figure 14
show that the z-scores of the native structures improve with increasing resolution
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i.e., that the data contained in the resolved structures is by no means completely
accurate. Therefore the fact that sequences with z-scores better than that of the
native structures can be modeled could be an artifact of this inaccuracy. In case of
the 2TRX thioredoxin we found that almost every 5th mutation of the wild-type
sequence would improve the z-score. Although the scores are steadily improving
even after ~ 150 steps the time needed to find each additional sequence becomes
very long at the end of the simulation. Continuing the simulation to z-scores
way beyond those of native proteins, is clearly useless, as it would optimize the
sequences with respect to the “noise” in the potentials.

One of the simplest ways to check whether the inverse folding generates plausible
sequences and to see which regions of sequence space are explored during the
inverse folding is to analyze the resulting distribution of amino acid frequencies.
Figure 16 compares the amino acid frequencies from 9 inverse folded sequences
to that of the wild-type sequence and the average composition of sequences in
the SwissProt database. As can be seen the distribution is reasonably close to
the expected mean composition. In other words, the inverse folding procedure
explores the same regions of sequence space as typical proteins.

2TRX Wildtype|
9 Inverse Seqs
Mean
10.0 A
50 - i
0.0

LASGVEKTIDRPNQFYMHCW

Figure 16: Mean amino acid composition of 9 inverse folded sequences compared to the wild-
type composition and the mean over all sequences in the SwissProt database.

— 27 —



4.5. Neutral Networks

Our preliminary studies showed that the sequences folding into the same secondary
structure S are randomly distributed in sequence space. Because of the high
probability for finding neutral neighbors these sequences are not isolated, but
form connected structures in sequence space. Hence, the question arises, how far
such sets of neutral sequences extend. This can be tested in the following computer
experiment. Starting from an initial sequence Iy which we derive from a previously
conducted adaptive walk, we construct a monotonously diverging “neutral path”
by mutating our test sequence [,,, accepting the mutated sequence I,; if the
mutation is neutral S(I) = S(Ip) and the Hamming distance does not decrease
d(I(n41y, Io) > d(I,,Ip). As mutations we allow the exchange of a single amino
acid in the reference structure.

The length £ of a neutral path is the Hamming distance between the reference
sequence and the last sequence, and hence a lower bound on the diameter of the
connected “neutral network”. Clearly, a neutral path cannot be longer than the
chain length, £<n.

The union of all neutral paths probably forms a dense neutral network, as in the
case of RNA secondary structures. Of course, this need not be the case in general:
rare structures may have short neutral paths confined to small disjoint regions in
sequence space. Nevertheless, neutral nets are not a peculiarity of the few most
frequent structures.

From the existence of such neutral networks one can expect far reaching conse-
quences for evolutionary optimization where the fitness depends on structure [19].
Given a suitable error frequency, an evolving population should perform a ran-
dom walk along the neutral net, until it reaches a point where a better secondary
structure can be reached within a few mutations (i.e. a neutral net with higher
fitness comes sufficiently close). During the times where the population diffuses
on the neutral net, only the phenotype is conserved while genotypic information
is unstable. For even lower error frequencies the population should localize in se-
quence space at a point on the neutral net where the number of neutral neighbors
is especially large. Figure 17 shows the length of the neutral paths from computer

experiments using the lysozyme structure.
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Figure 17: The length of neutral paths on the 1LYZ lysozyme structure at different z-scores

As long as the active site of an (enzymatic) protein is not touched, mutations along
neutral paths and networks could be thought of as so called “silent mutations”.
This is the biological term for mutations that lead to the exchange of an amino
acid in a protein without impairing its function. It can easily be understood that
the existence of neutral neighbors for protein structures is essential for the survival

of every organism in an environment that constantly provokes many different types

of mutations.
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4.6. Secondary Structures

Whether sequences predicted in the above described ways do indeed fold into the
desired structure can ultimately only be answered by experiment. One way to
test whether a computed sequence is plausible, is to try to predict its secondary
structure and compare it to the known secondary structure of the target conforma-
tion. The best available algorithms combine secondary structure prediction with
a search for homologous sequences and thereby attain accuracies over 70% for the
assignment of residues to helix, strand and loop regions [24]. Since our inverse
folded sequences have no or little homology to known sequences we have to expect

somewhat lower accuracies.
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[e2]
o

predicted secondary structure
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-15.0 -10.0 -5.0 0.0

Z-score

Figure 18: Identity between predicted and 2TRX secondary structure as a function of z-score
for sequences from the 5 adaptive walks shown in 16. The full line is a running average
of all 5 data sets.

We mostly used the program SOPM by Geourjon and Deleage [11]. It predicts
~ 65% of residues in the 2TRX wildtype correctly. Similar results were achieved
using the PHD method of Rost and Sanders [24]. Figure 18 shows the overlap
between the 2TRX secondary structure and the SOPM prediction for every 5th
sequence from the 5 adaptive walks shown in figure 15. The overlap between
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the predicted and 2TRX secondary structure at first increases with improving z-
score, then saturates at about 65% once the z-score becomes better than that of
the wild-type sequence, as expected. Note that the potentials depend only on
distances between C® or C# atoms and surface exposure and make no use of sec-

ondary structure.

Sequences generated by the above procedure show little homology to the wild-type
sequence or each other. The distribution of pairwise Hamming distances for 700
sequences with z-score ~ —11 on the 2TRX structure can be seen in Figure 19.
Although, they lie somewhat closer together than random sequences with a typi-
cal amino acid composition would (right curve), pairs with maximal distance still
occur. The position of the maximum depends of course slightly on the z-score.
The final sequences from 9 inverse foldings with z-scores better than —14 were
identical to the wild-type in 16 out of 108 positions on average. This amount of
homology is just about enough to be detected by a BLAST search. This suggests
that sequences with similar structures are distributed widely and almost randomly

over sequence space.

0.15 / b

0.10

frequency

0.05 -

0.00 ——— :
85 95 105
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Figure 19: Distribution of pairwise hamming distances for 700 sequences designed to have =-
scores ~—11 on the 2TRX structure (full curve) and for 500 random sequences of typical
composition. The vertical line at 95.15 is the mean distance to the 2TRX sequence.
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4.7. Substitution Patterns

We investigated whether or not the amino acids were substituted according to a
discernible pattern during the adaptive and neutral walks. For this we screened a
nuber of final sequences derived from these walks for hydrophobicity-hydrophility
patterns. So far we have not found any obvious patterns, there seems to be no
bias in the substitution frequency of the amino acids during the adaptive walks
and during the search for neutral neighbors. Figure 20 shows a typical result.

THE A b PP 00 A PN U 0 U 5 5 PUR AP 5 S

B s B e & +++++++ B B e e B
bbbk = b — b — b ———— b — bbb bbb — = b bbb b — b — bbb — — b — bbb b = — b — bbb — b —— b —
B & ot & S I T R + ++ L U P U S SN S S S P RS S L SRS S P SN S L PR A RS S

S O SO SR M N SRRSO S0 U 0 S U S SN P S A SO SO 0 S S O SRR

Figure 20: Hydrophobicity-Hydrophility patterns of sequences generated by neutral walks on
the Thioredoxin structure at z-scores comparable to the wild-type
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5. Experimental Data

It was our goal to study the extension of neutral paths and neutral networks for
the four protein structures discussed in section 3 : Thioredoxin, Lysozyme, Cram-
bin and Ubiquitin. Furthermore we explored the possibility of creating random
sequences which would yield comparable or better z-scores than the wild-type.
The last question we approached, was the number of amino acid types necessary
to create sequences with z-scores equal or better than that of the wild-type. Of
course, it was not possible to study all possible combinations amino acids, there-
fore we concentrated on the following alphabets of polar (P) and hydrophilic (H)
amino acids: 3 alphabets of type HPHH ... ADLG, 1 alphabet of type HPH ...
ADL, 1 alphabet of type PHP ... QLR and 3 alphabets of type HP ... LD, AS,
LS. Recent experimental studies [5] showed that it is possible to create proteins
with significant a-helical content and folded structures with native-like properties
with the help of synthetic genes which encode random sequences of the amino acids
QLR (glutamine, leucine, arginine). These proteins differ from natural proteins
by their high resistance to denaturant-induced and thermally induced unfolding.
These findings led to the inclusion of this combination of amino acids into our
investigation of restricted alphabets. The restricted alphabet ADLG is also a
good candidate for these studies as it is believed to be a “primordial” amino acid
alphabet employed in the early stages of the evolution of the genetic code

5.1. Thioredoxin

As a first step, we conducted a number of adaptive walks on the Thioredoxin
structure starting from random sequences. The structure we used to generate
the binary backbone files was 2trxA.pdb. From these adaptive walks we derived
various sequences with z-scores equal or better than that of the wild-type (see
Figure 21). The z-scores were calculated using both C, and Cgs-potentials i.e.
sequences were accepted only if the mutation improved both the C, and the Cjs-
potential.

- 33 —



Adaptive walks Thioredoxin

Z-score

0 50 100 150 200 250 300
length of adaptive walk

Figure 21: Results of four adaptive walks on the TRX structure. Each started from a different
random sequence. The horizontal line indicates the z-score of the wild-type

The sequences derived from the adaptive walks were subsequently used to study
the extension of neutral paths on the structure of Thioredoxin. For this we created
binary backbone files using the backbone file of the wild-type and a sequence with
the desired z-score. The sequences used were that of the wild-type and others
within a z-score range of —9.04 to —16.00. The amino acids for the random sub-
stitutions were chosen according to their natural frequencies which we determined
according to their frequency in the Swiss Prot Data Bank. The z-scores were
calculated using both C, and Cgs-potentials. Figure 22 shows some results. We
can see that the lengths of the neutral paths (= sequence length — number of not
mutated amino acids) are roughly equal to the length of the protein, at z-scores
comparable to that of the wild-type (—9.22). Even at z-scores 5 to 6 standard
deviations better than the wild-type z-score, the length of the neutral paths is still
greater than three quarters of the length of the protein.
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Figure 22: Results of different calculations of neutral paths on the TRX structure. The plot
shows £ —n as a function of the z-score. Dot-dashed line: Maximum number of amino
acids in Thioredoxin (108). Solid line: Average number of not mutated amino acids.

Similar calculations, using restricted sets of amino acids were conducted. Fig-
ure 23 shows the results of two different sets of calculations which employed the
alphabet ADLG. Random sequences were used to study the neutral paths. The
z-scores were calculated using both C, and Cg-potentials. We can observe that
although the neutral paths are shorter than those using the entire alphabet, they
still extend to 70% of the sequence length at z-scores comparable to that of the
wild-type.
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Figure 23: Results of two different sets of calculations of neutral paths on the TRX structure
using only the amino acids ADLG. The plot shows £ — n as a function of the z-score.
The horizontal line indicates the maximum number of amino acids in Thioredoxin (108).

The question which arose next was, whether or not it is possible to generate se-
quences with z-scores comparable or better than that of the wild-type, with the
above mentioned alphabets. Figure 24 shows the results of adaptive walks on the
Thioredoxin structure, using the different restricted alphabets. The z-scores were
calculated using both C, and Cg-potentials. The results clearly show that, given
the right combination of amino acids (e.g. AS, LS, ADL, ADLG) two to four
amino acids are sufficient to create sequences with the desired z-scores. However
it was not possible to create such sequences with the combination QLR which

yielded interesting results in experimental studies [5].
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Figure 24: Comparison of the length of adaptive walks on the TRX structure using different
sets of amino acids. Dot ... AD, Circle ... ADL, Square ... AS, Diamond ... DL,
Plus ... QLR, Triangle up ... ADLG, Star ... LS. The horizontal line indicates the
z-score of the wild-type.

Figure 25 shows the minimum z-scores achieved with the different combinations
of amino acids. If we bear in mind, that the z-score of the wild-type is -9.22, we
see that we have found at least four promising combinations of amino acids.
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Figure 25: Minimum z-scores achieved by different adaptive walks on the TRX structure using

different restricted alphabets.

Figure 26 shows the single steps of two adaptive walks conducted with alphabet 3

(DL). Obviously, comparably few random mutations are necessary to achieve the

minimum z-score of -9.53 (respectively -9.09) of this adaptive walk. If we compare

the number of steps necessary to the the length of the corresponding adaptive

walk (= 41, see Figure 24), we see that approximately every second mutation

is accepted. If we bear in mind that the adaptive walks started from random

sequences, we can conclude that the distance from any sequence to a sequence

which fits on a given structure is short, even if only a restricted set of amino acids

is used.
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Figure 26: Two different adaptive walks on the TRX structure using the amino acids DL.
Dot-dashed line: z-score of the wild-type.
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5.2. Crambin

Again we performed a number of adaptive walks, in this case on the Crambin
structure, starting from random sequences. The structure we used to generate the
binary backbone files was 1cbn.pdb. From these adaptive walks we derived various
sequences with z-scores equal or better than that of the wild-type (see Figure 27).
The z-scores were calculated using both C, and Cg-potentials i.e. sequences were
accepted only if the mutation improved both the C,, and the Cg-potential.
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Figure 27: Results of six adaptive walks on the CBN structure. Each started from a different
random sequence. The horizontal line indicates the z-score of the wild-type
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The sequences derived from the adaptive walks were subsequently used to study
the extension of neutral paths on the 1ICBN Crambin structure. For this we cre-
ated binary backbone files using the backbone file of the wild-type and a sequence
with the desired z-score. The sequences used were that of the wild-type and others
within a z-score range of —5.5 to —13.0. The amino acids for the random substi-
tutions were chosen according to their natural frequencies which we determined
according to their frequency in the Swiss Prot Data Bank. The z-scores were cal-
culated using both C, and Cg-potentials. Figure 28 shows some results. We can
see that the lengths of the neutral paths are roughly equal to the length of the
protein, at z-scores comparable to that of the wild-type (—5.5). Even at z-scores
6 to 8 standard deviations better than the wild-type z-score, the length of the
neutral paths is still approximately three quarters the length of the protein.
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Figure 28: Results of different calculations of neutral paths on the CBN structure. The plot
shows £ — n as a function of the z-score. The horizontal line indicates the maximum
number of amino acids in Crambin (46). Thick line: Average number of not mutated
amino acids.
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Similar calculations, using restricted sets of amino acids were conducted. Fig-
ure 29 shows the results of two different sets of calculations which employed the
alphabet ADLG. Random sequences were used to study the neutral paths. The
z-scores were calculated using both C, and Cg-potentials. We can observe that
although the neutral paths are shorter than those using the entire alphabet, they
still extend to 90% of the sequence length at z-scores comparable to that of the
wild-type and 2 to 3 standard deviations better.
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Figure 29: Results of two different sets of calculations of neutral paths on the CBN structure
using only the amino acids ADLG. The plot shows £ — n as a function of the z-score.
The horizontal line indicates the maximum number of amino-acids in Crambin (46).
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The next question was, whether or not it is possible to generate sequences with z-

scores comparable or better than that of the wild type, using restricted alphabets.

Figure 30 shows the results of adaptive walks on the 1ICBN Crambin structure,

using different restricted alphabets. The z-scores were calculated using both C,,

and Cg-potentials. The results clearly show that, given the right combination of
amino acids (e.g. AS, LS, ADL, ADLG) two to four amino acids are sufficient
to create sequences with the desired z-scores. Again it was not possible to create

such sequences with the combination QLR which yielded interesting results in ex-

perimental studies [5].
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Figure 30: Comparison of the length of adaptive walks on the CBN structure using different
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Figure 31 shows the minimum z-scores achieved with the different combinations of
amino acids. If we bear in mind, that the z-score of the wild-type is —5.5, we see
that we have again found the same four promising combinations of amino acids.

Different Alphabets

Z-score

AD ADL AS DL QLR ADLG LS

Figure 31: Minimum z-scores achieved by different adaptive walks on the CBN structure using
different restricted alphabets.
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5.3. Ubiquitin

Using the same procedures as mentioned earlier, we again conducted a number
of adaptive walks, presently on the 1TUBQ Ubiquitin structure, starting from ran-
dom sequences. The structure we used to generate the binary backbone files was
lubq.pdb. From these adaptive walks we derived various sequences with z-scores
equal or better than that of the wildtype (see Figure 32). The z-scores were cal-
culated using both C, and Cg-potentials i.e. sequences were accepted only if the
mutation improved both the C, and the Cs-potential.
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Figure 32: Results of two adaptive walks on the UBQ structure. Each started from a different
random sequence. The horizontal line indicates the z-score of the wild-type
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The sequences derived from the adaptive walks were subsequently used to study
the extension of neutral paths on the 1UBQ Ubiquitin structure. For this we cre-
ated binary backbone files using the backbone file of the wildtype and a sequence
with the desired z-score. The sequences used were that of the wildtype and others
within a z-score range of —9.3 to —17.0. The amino acids for the random substi-
tutions were chosen according to their natural frequencies which we determined
according to their frequency in the Swiss Prot Data Bank. The z-scores were cal-
culated using both C, and Cg-potentials. Figure 33 shows some results. Again
we see that the lengths of the neutral paths are roughly equal to the length of the
protein, at z-scores comparable to that of the wildtype (—9.3). At z-scores up to
7 standard deviations better than the wildtype z-score, the length of the neutral
paths is greater than 60% of the sequence length.
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Figure 33: Results of different calculations of neutral paths on the UBQ structure. The plot
shows £ — n as a function of the z-score. The horizontal line indicates the maximum
number of aminoacids in Ubiquitin (76). Thick line: Average number of not mutated
amino acids.
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Similar calculations, using restricted sets of amino acids were conducted. Fig-
ure 34 shows the results of two different sets of calculations which employed the
alphabet ADLG. Random sequences were used to study the neutral paths. The
z-scores were calculated using both C, and Cg-potentials. We can observe that
although the neutral paths are shorter than those using the entire alphabet, they
still extend to 60% of the sequence length at z-scores comparable to that of the
wildtype and slightly better.
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Figure 34: Results of different sets of calculations of neutral paths on the UBQ structure using
only the amino acids ADLG. The plot shows £ — n as a function of the z-score. The
horizontal line indicates the maximum number of aminoacids in Ubiquitin (76).
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Again we tried to answer the question, whether or not it is possible to generate
sequences with z-scores comparable or better than that of the wildtype, using
retricted alphabets. Figure 35 shows the results of adaptive walks on the 1UBQ
Ubiquitin structure, using different restricted alphabets. The z-scores were cal-
culated using both C, and Cg-potentials. The results show that, given the right
combination of amino acids (e.g. AS, LS, ADL, ADLG) two to four amino acids
are sufficient to create sequences with the desired z-scores. Again it was not possi-
ble to create such sequences with the combination QLR which yielded interesting
results in experimental studies [5].
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Figure 35: Comparison of the length of adaptive walks on the UBQ structure using different
sets of amino acids. Dot ... AD, Circle ... ADL, Square ... AS, Diamond ... DL,
Plus ... QLR, Triangle up ... ADLG, Star ... LS. The horizontal line indicates the
z-score of the wild-type.
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Figure 36 shows the minimum z-scores achieved with the different combinations
of amino acids. The z-score of the wildtype is —9.3, we see that we have again

found the same four promising combinations of amino acids.

Different Alphabets
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AD ADL AS DL QLR ADLG LS

Figure 36: Minimum z-scores achieved by different adaptive walks on the UBQ structure using
different restricted alphabets.
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5.4. Lysozyme

Again we conducted a number of adaptive walks, in this case on the 1LYZ lysozyme
structure, starting from random sequences. The structure we used to generate the
binary backbone files was 11yz.pdb. From these adaptive walks we derived various
sequences with z-scores equal or better than that of the wild-type (see Figure 37).
The z-scores were calculated using both C, and Cg-potentials i.e. sequences were
accepted only if the mutation improved both the C,, and the Cg-potential.

Adaptive walks Lysozyme
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Figure 37: Results of four adaptive walks on the LYZ structure. Each started from a different
random sequence. The horizontal line indicates the z-score of the wild-type
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The sequences derived from the adaptive walks were subsequently used to study
the extension of neutral paths on the 1LYZ Lysozyme structure. For this we cre-
ated binary backbone files using the backbone file of the wild-type and a sequence
with the desired z-score. The sequences used were that of the wild-type and others
within a z-score range of —8.0 to —17.0. The amino acids for the random substi-
tutions were chosen according to their natural frequencies which we determined
according to their frequency in the Swiss Prot Data Bank. The z-scores were
calculated using both C, and Cg-potentials. Figure 38 shows some results. We
can see that the lengths of the neutral paths are nearly equal to the length of the
protein, at z-scores comparable to that of the wild-type (—7.7). At all z-scores,
even those 9 standard deviations better than the wild-type z-score, the length of
the neutral paths is greater than 60%of the length of the protein.
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Figure 38: Results of different calculations of neutral paths on the LYZ structure. The plot
shows £ — n as a function of the z-score. The horizontal line indicates the maximum
number of amino acids in Lysozyme (129). Thick line: Average number of not mutated
amino acids.
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Similar calculations, using restricted sets of amino acids were conducted. Fig-
ure 39 shows the results of two different sets of calculations which employed the
alphabet ADLG. Random sequences were used to study the neutral paths. The
z-scores were calculated using both C, and Cg-potentials. We can observe that
although the neutral paths are shorter than those using the entire alphabet, they
still extend to 80% of the sequence length at z-scores comparable to that of the
wild-type and 2 to 3 standard deviations better.
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Figure 39: Results of two different sets of calculations of neutral paths on the LYZ structure
using only the amino acids ADLG. The plot shows £ — n as a function of the z-score.
The horizontal line indicates the maximum number of amino acids in Lysozyme (129).
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The next question was, whether or not it is possible to generate sequences with z-
scores comparable or better than that of the wild-type, using restricted alphabets.
Figure 40 shows the results of adaptive walks on the 1LYZ Lysozyme structure,
using different restricted alphabets. The z-scores were calculated using both C,,
and Cg-potentials. The results clearly show that, given the right combination of
amino acids (e.g. AS, LS, ADL, ADLG) two to four amino acids are sufficient
to create sequences with the desired z-scores. Again it was not possible to create

such sequences with the combination QLR.
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Figure 40: Comparison of the length of adaptive walks on the LYZ structure using different
sets of amino acids. Dot ... AD, Circle ... ADL, Square ... AS, Diamond ... DL,
Plus ... QLR, Triangle up ... ADLG, Star ... LS. The horizontal line indicates the
z-score of the wild-type.
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Figure 41 shows the minimum z-scores achieved with the different combinations
of amino acids. We have again found the same four promising combinations of

amino acids.

Different Alphabets
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Figure 41: Minimum z-scores achieved by different adaptive walks on the LYZ structure using
different restricted alphabets.
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6. Conclusions and Outlook

The approach to inverse folding outlined in this work may be useful as a tool
for studying general sequence structure relations in proteins as well as for protein
engineering in biotechnological applications. We have found that sequences with
z-scores as good or better than the wild-type score can indeed be found using a
simple adaptive walk in sequence space, i.e., a random point mutation is intro-
duced and accepted if and only if the z-score is decreased. The reason why it
is not necessary to use a more sophisticated optimization technique is that local
minima in the high dimensional sequence space are rare. It remains to be shown
that the sequences we have found by adaptive and neutral walks do indeed fold

into the target conformation.

We found that there is essentially no homology between the inverse folded se-
quences, the distribution of the amino acids is random-like. The neutral paths
on protein structures extend to the length of the amino acid sequence at z-scores
comparable to the wild-type score and better i.e., the neutral walks on all protein
structures are very long, this is a strong indication for the existence of Neutral
Networks. In regard to this aspect, the Sequence — Structure relations of proteins
(see Figure 42) seems to be similar to the Sequence — Structure relations (see Fig-
ure 1). Consequently, we must pose the question, whether or not there is Shape
Space Covering as in the RNA case [26, 15, 16]. For any evolutionary optimization
it is of prime importance how big a volume in sequence space has to be searched
in order to find a sequence with the desired properties. We may therefore pose
the question how close to some given starting sequence a preselected secondary
structure can be found. Stated differently the question is what radius a ball in se-
quence space must have to contain most common structures. This radius is called
the shape space covering radius h.. However, as the answer to this question would
be computationally expensive in case of protein structures, we have not yet begun
to tackle it.

Some of the investigated reduced alphabets show the same properties as the full
set of amino acids, other don’t. The results clearly show that the distinction
between hydrophobic and hydrophilic amino acids is not sufficient to explain the
differences between the various reduced alphabets considered in this work. Further

investigations will be necessary to elucidate the effect of amino acid composition.
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Figure 42: Sequence — Structure relation in the case of protein secondary structures: Sequences
folding into a particular structure can be found anywhere in sequence space. Such
sequences can be connected by extended nets of structurally neutral neighbors.

For small proteins the procedure we used is fast enough to produce large numbers
of candidates, which could then be filtered using additional criteria such as other
potentials, secondary structure prediction, analysis of hydrophobicity and packing
along the chain to selected only the most promising ones. The accuracy of the po-
tentials therefore need not be perfect. Whether it is sufficient can only be decided
by experiment.
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