
A Variation on Algorithms for

Pairwise Global Alignments

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Magister rerum naturalium

Vorgelegt der
Fakultät für Naturwissenschaften und Mathematik

der Universität Wien

von
Ulrike Mückstein

am Institut für
Theoretische Chemie und Molekulare Strukturbiologie

im September 2001



1

Dank an alle,

die zum Gelingen dieser Arbeit beigetragen haben:

Peter Stadler, Ivo Hofacker, Peter Schuster.

Ingrid Abfalter, Aderonke Babajide, Stephan Bernhart, Martin Fekete, Christoph Flamm,

Dagmar Friede, Kurt Grünberger, Jörg Hackermüller, Christian Haslinger, Philipp Kobel,

Michael Kospach, Stefan Müller, Bärbel Stadler, Roman Stocsits, Andreas Svrcek-Seiler,

Caroline Thurner, Günther Weberndorfer, Andreas Wernitznig, Stefanie Widder, Christina

Witwer, Micheal Wolfinger, Daniela Dorigoni, Judith Jakubetz.

Irene und Heinz Dorfwirth, Eva und Heinz Mückstein, Lukas Endler, Raphael Mückstein

und Ferdinand Eder.



2

Abstract

Alignment algorithms normally generate only a single optimal alignment. No
information about possible alternative alignments or the reliability of the re-
sult is provided. We address this problem by calculating match probabilities
and by generating a fairly distributed ensemble of optimal and suboptimal
alignments.
The partition function of all possible alignments of two sequences is com-
puted by means of a dynamic programming algorithm incorporating affine
gap models. The algorithm is designed to avoid redundant solutions by de-
termining the order of gaps in regions were gaps in one sequence are adjacent
to gaps in the other sequence. This is important to avoid combinatorial ex-
plosion trough the generation of duplicate or non-canonical solutions.
The partition function can be used to determine the probability of an align-
ment as well as the probability of each possible match between two sequence
positions. To obtain the probability of each match between positions i and j
of the two sequences, respectively, the partition function over all alignments,
which contain this match, is divided by the partition function over all possible
alignments of the two sequences. For the calculation of match probabilities a
detailed derivation of the recursion relations for partition functions of align-
ments of subsequences is needed.
Furthermore the partition function is used for stochastic backtracking gen-
erating a properly weighted ensemble of optimal and suboptimal alignments.
In this way one acquires an overview of the alignment landscape and the
entropy of the ensemble of stochastic alignments, that is a measure of the
variety of the optimal and suboptimal alignments generated.
These methods were used to implement a program in C.
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Zusammenfassung

Typische Alignmentalgorithmen generieren nur ein einziges optimales Align-
ment. Es werden keine Informationen über mögliche Alternativen zum op-
timalen Alignment oder über die Zuverlässigkeit der Ergebnisse geliefert.
Wir lösen dieses Problem durch die Berechnung der Wahrscheinlichkeit eines
Matches von zwei Resten in einem Alignment und indem wir ein fair verteiltes
Ensemble von optimalen und suboptimalen Alignments erzeugen.
Die Zustandssumme aller möglich Alignments von zwei Sequenzen wird mit-
tels eines Dynamic Programming Algorithmus, der ein affines Gapmodell
beinhalted, berechnet. Der von uns entworfene Algorithmus vermeidet re-
dundante Ergebnisse, indem die Abfolge von Gaps in Regionen, in denen
Gaps in einer Sequence direkt auf Gaps in der anderen folgen, genau fest-
gelegt wird. Diese ist wichtig um eine kombinatorische Explosion durch die
Erzeugung von duplizierten oder nicht kanonischen Ergebnissen zu verhin-
dern.
Die Zustandssumme kann sowohl für die Berechnung der Wahrscheinlichkeit
eines Alignments als auch zur Berechnung der Wahrscheinlichkeit eines Matches
zwischen zwei Resten verwendet werden. Um die Match Wahrscheinlichkeit
von zwei Resten zu berechnen, wird die Zustandssumme über alle Align-
ments, in denen diese beiden Rest aligned sind, durch die Zustandssumme
aller möglichen Alignments zwischen den beiden Sequenzen geteilt. Für
die Berechnung der Match Wahrscheinlichkeit ist die detaillierte Ableitung
der Rekursionsbeziehungen der Zustandssummen von Alignments von Teilse-
quenzen nötig.
Die Zustandssumme wird auch für ein stochastisches Backtracking verwen-
det. Mittles stochastischen Backtrackings kann man ein korrekt gewichtetes
Ensemble von optimalen und suboptimalen Alignments erzeugen. Diese
Methode verschafft einen Überblick über die Alignment Landschaft und die
Entropie der Ensembles von stochastischen Alignments, die ein Maßfür die
Vielfalt von optimalen und suboptimalen Alignments ist.
Diese Methoden wurden in einem Programm in C implementiert.
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1 Introduction

In the last decades the use of alignment programs to compare DNA or amino

acid sequences has become a routine task. Computer programs to align

sequences, search a database with a given sequence or compare multiple se-

quences are readily available.

The standard approach of most alignment programs is to find the best scor-

ing alignment between a pair of sequences. Two types of alignment methods,

that are based on dynamic programming, are commonly used: Global align-

ment methods, that aligne the sequences along their whole length [52] and

local homology search methods, that find significantly similar segments be-

tween sequences [58]. Basically there are two ways an alignment can be

scored, either maximizing the similarity or minimizing the distance between

two sequences [63, 56, 59]. We will focus on global similarity alignments here.

Although alignment algorithms are designed to detect similarities, they pro-

duce alignments and scores also when applied to sequences that are not

related at all [60]. An important question for a biologist faced with the re-

sults of an alignment program is therefore the question about the accuracy

of the proposed alignment. One way to address this question is the use of

a statistical model of evolution. In a computer simulation both sequences

are scrambled using random permutations and the scrambled sequences are

aligned over and over again. In this way asymptotic estimates of the mean

and the variance of the optimal alignment scores can be derived. If the align-

ment score of the original pair of sequences is significantly better than the

expected score, one accepts the computed alignment as significant [37]. An-

other approach is to simulate random mutation of a pair of initially identical

sequences and then feed the mutated sequences into the alignment algorithm

to obtain a measure of accuracy of the alignment algorithm [33].

The methods outlined above yield an overall judgment whether two se-

quences are related. They do not deal with the fact that there are regions

of differential probability of substitution along a nucleic acid or protein se-

quence [61, 23]. These regions of different variability along the sequences are
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reflected in regions of higher and lower reliability in an alignment. The aim

of our work is to provide detailed information on what parts of an alignment

are uniquely defined and what parts display ambiguities.

Alignment algorithms are designed to optimize a mathematical score [71].

In the context of a similarity scoring system the scores rewards aligning

similar residues and penalizes substitutions and gaps. Therefore an opti-

mal alignment is the alignment that exhibits the most correspondences and

the least differences [19]. The “optimal solution” found by common align-

ments algorithms is not unique. There can be different alignments of two

sequences that have the same optimal score. Furthermore, there may be

relevant near-optimal solutions [18], that also contribute to the biological

correct alignment. Therefore a single “optimal” answer is often unsatis-

factory. Different approaches have been used to evaluate the regional dif-

ference in the reliability of a pairwise alignment by including near-optimal

and suboptimal solutions [55, 51, 47]. Vingron and Argos [66], for exam-

ple, evaluated near optimal alignments to introduce the concept of ’stable

regions’. A stable region in an alignment is one which is used by all optimal

and suboptimal alignments, whose score is at most a given threshold value

away from the score of the optimal alignment. When only a small threshold

value is allowed, few suboptimal alignments score within this threshold and

a large fraction of the optimal alignment will be stable. Upon increasing the

threshold value, the stable regions decrease in size because more suboptimal

alignments are taken into account and compete with the optimal alignment.

Therefore residue matches that remain stable even when a large threshold

value allows for the consideration of many suboptimal alignments, are likely

to be aligned reliably.

All these methods have in common that they use only a restricted set of

suboptimal alignments to derive their solutions. Dynamic programming can

also by applied to calculate the partition function over all solutions of a

search space. McCaskill [46] calculated the full equilibrium partition func-

tion for RNA secondary structure and the probabilities of all base pairs by
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a recursive scheme of polynomial order N 3 in the sequence length N . In the

Vienna RNA Package [32] a partition function algorithm is used to calculate

base pair probabilities in the thermodynamic ensemble. In RNA secondary

structure prediction computation of the partition function is an frequently

applied method. For alignments the partition function was first used by

Miyazawa [49] to determine the probabilities of all possible matches and in-

dels between two sequences. Miyazawa used the probabilities of all possible

correspondences between residues to construct alignments consisting only of

highly probable matches. Kschischo and Lässig [41] developed a theory of

probabilistic alignments derived from a thermodynamic partition function,

they called finite-temperature alignments. The key applications of finite-

temperature alignments are estimation of the reliability of single matches in

an alignment and assessing the relative significance of different local align-

ments with high scores.

In this work we used the partition function to calculate the probabilities

of all possible matches between two sequences and for stochastic backtrack-

ing. For the calculation of the partition function a variation of a dynamic

programming algorithm that is designed to avoid redundancy is employed.

Furthermore, we introduced a variable parameter that influences the relative

weight of alignment paths with different scores.

The match probabilities can be displayed conveniently in a dot plot (see

Figure 1). In this representation conserved regions of the alignment are vi-

sualized by runs of larger dots parallel to the diagonal of the plot. Each

dot symbolizes a match between different positions of each sequence, the

size of the dot is proportional to the probability of this match. The parti-

tion function is also used for stochastic backtracking. Repeated application

of the stochastic backtracking generates randomly selected alignments, with

frequencies according to the probability of each individual alignment. Thus

the stochastic backtracking provides a fairly distributed ensemble of possible

alignments.
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Figure 1: Dot plot of the alignment between cytochrome c from skipjack tuna, Euthynnus

pelamis, (CCBN) and Rhodospirillum rubrum cytochrome c2 (CCQF2R; position 24 - 135).

The codes given in parenthesis are taken from the PIR protein sequence database [6]. The

horizontal axis of the dot plot is labeled by CCQF2R, the vertical axes by CCBN. Regions

of high sequence similarity are illustrated by large black dots representing high match

probabilities. In regions of lower sequence similarity many different possibilities to align

the two sequences exits. The different possibilities to align these regions are depicted by a

multitude of small dots, each representing a match of low probability. The alignment was

prepared using the score matrix Gonnet 120 (see section 3.3.1), T = 0.4 (see section 2.6).
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2 Theory

2.1 General Concepts

The notion that genomic DNA is the blueprint for a living organism leads

to the idea that evolution must be directly related to changes in DNA. The

history of these changes is called molecular evolution. The simplest events

that occur during the course of molecular evolution are substitution of one

base for another and the insertion or deletion of one base.

An alignment represents a specific hypothesis about the evolution of the

sequences. The alignment of two sequences is essentially build up by four

different states. Figure 2 illustrates the four states of an alignment: If the

corresponding residues in the alignment are identical, this is referred to as

a match. Aligning two functionally conserved residues, such as the F-Y

pair, which represents an alignment of a phenylalanin residue with a tryrosin

residue, both aromatic amino acids, is called a mismatch or substitution. An

insertion or deletion is one or more residues aligned to a gap symbol (‘-’). It

is not possible to distinguish insertions from deletions in an alignment. In

the alignment in figure 2 the insertion of CT in the above sequence might

also have been a deletion in the lower sequence.

C P S G C T N F K - C A

C P T G - - N Y K K C A

Figure 2: This figure shows a pairwise alignment of two protein sequences

a = {CPSGCTNFKCA} and b = {CPTGNWKKCA}. The four building states of

the alignment are: match (aligned residues are identic), mismatch (aligned residues are

different), deletion (residues in one sequence have been deleted in the other sequence) or

insertion (residues have been added to one of the sequences).

Insertions and deletions are referred to as indels. In the case of indels two

states have to be distinguished: indels in the upper sequence and indels in

the lower sequence.
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2.2 Scoring Models

To compute the “best alignment” between two sequences, we need a way to

score the alignment. The simplest way to give a score to an alignment of

two sequences is to calculate their Hamming distance: For two sequences of

equal length, we count the different positions [19]. This distance measure

is in general not flexible enough. Sequences may have different lengths and

corresponding residues may have been shifted to different positions by dele-

tions or insertions. We need a more flexible scoring system to take this into

account: The total score we assign to an alignment should be a sum of terms

for each aligned pair of residues, plus terms for each indel.

The scoring systems discussed here all use similarity scores. The concept of

similarity alignments is to reward similarity (e.g. matching residue a with

residue a) by a positive score, s(a, a) > 0, whereas aligning dissimilar resi-

dues is penalized by a negative score or gets a score of zero, s(a, b) ≤0. In

the simplest case linear gap penalties are used, aligning a residue to a gap is

penalized by a negative score, s(a, -) = s(-, a) < 0. The standard cost, γ(lg)

of a gap of length lg is given by:

γ(lg) = −lg d

where d is the gap penalty. The pairwise alignment score for two sequences a

and b, S(a, b), is therefore the sum of substitution scores and gap penalties

over all aligned residues, so that the best alignment is the one with the

highest score, where L is the length of the alignment.

S(a,b) = max

L∑

i=1

s(ai, bi),

2.2.1 Substitution matrices for nucleic acid alignments

In the case of nucleic acid alignments, the scoring model can be applied as

described above. Only two substitution scores are used: a match between

two residues is rewarded by a positive score, whereas a mismatch is penalized.
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Scores can be represented in the form of a 4× 4 “unitary” matrix consisting

of ones (or another positive score) on the diagonal for scoring A-A, C-C, G-

G and T-T matches and zeros (or a negative score) for scoring mismatches.

Generally a substitution in one direction, e.g. a C-G mismatch, is similarly

scored as a substitution in the other direction, in this case a G-C mismatch,

the scoring matrix is therefore symmetrical, and only half of the off-diagonal

scores are needed to provide a complete scoring scheme for residue substitu-

tions. The scores for nucleic acid alignments used in this work are taken from

ClustalW [62]. In ClustalW a ”unitary” matrix that scores one for matches

and zero for mismatches is used. Other scoring schemes for nucleic acids use

different score for transition and transversions [16]. For protein alignments a

more elaborate scoring model is applied, taking into consideration how often

different amino acids are replaced by other amino acids in evolution and the

relative mutability of different amino acids.

2.2.2 Substitution matrices for protein alignments

There are several ways weights can be assigned for differences in amino acid

sequences. Some methods propose scores based on chemical, functional,

charge and structural properties of the amino acids [38, 26]. Other scor-

ing systems take into account structural similarities of amino acids and the

ease of genetic interchange [15, 12] or rely on structural superpositions of

proteins [36, 53]. However by far the most common way is to use Dayhoff’s

PAM substitution matrix series [10] and other empirically based log-odds

matrix series e.g. Gonnet’s matrix series [21, 8] or Henikoff’s BLOSUM

matrix series [29, 28]. The empirical log-odds matrices used in this work

are similarity matrices. They contain values proportional to the probability

that one amino acid mutates into another amino acid for all pairs of amino

acids. Each matrix of a matrix series is defined for the alignment of proteins

with certain evolutionary distances. The evolutionary distance is measured

in PAM (Percent Accepted Mutations) units. A PAM 1 mutation matrix

describes an amount of evolution which will change, on average, 1% of the
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amino acids. To derive a mutational probability matrix for a protein se-

quence that has undergone N percent accepted mutations, a PAM n matrix,

the PAM 1 matrix is multiplied by itself n times. This results in a family of

scoring matrices.

Altschul [2] developed a statistical theory of log-odds score systems. A log-

odd score is the logarithm (to an appropriate base) of the ratio between

2 probabilities. Durbin et al. [11] showed that in the case of alignments,

a log-odds score will correspond to the logarithm of the relative likelihood

that the sequences are related, compared to being unrelated. According to

Durbin et al. identities and conservative substitutions are expected to be

more likely in alignments than by chance, and therefore contribute positive

score terms. Non conservative changes are expected to be observed less fre-

quently in real alignments than by chance, and thus contribute negative score

terms. Using an additive scoring scheme corresponds to the assumption that

mutations at different sites in a sequence have occurred independently.

For the construct of a substitution matrix score terms are needed for each

aligned residue pair. Consider a pair of sequences a and b, of lengths m and

n, respectively. Let ai be the ith symbol of a and bj be the jth symbol of

b. These symbols will come from some alphabet A: In the case of DNA

A={A, T, G, C} and in the case of proteins the twenty amino acids. Given a

pair of aligned sequences, you want to assign a score to the alignment that

gives a measure of the relative likelihood that the sequences are related as

opposed to being unrelated:

The random model, R, assumes that a letter a of some alphabet A occurs

independently with some frequency qa and a letter b occurs independently

with some frequency qb. Therefore, the probability that two letters a and b

are aligned to each other is the product of their individual frequencies:

P (a, b | R) = qaqb

Considering the random model the probability of the alignment of two se-

quences, a and b, is hence the product of the probabilities for each letter:
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P (a, b | R) =
∏

i

qai

∏

j

qbj

In the alternative match model, M , aligned pairs of residues occur with a

joint probability pab. The value pab is equivalent to the probability that the

residues a and b have each independently derived from the same original

residue in their common ancestor. The probability that two residues are

aligned is therefore given by:

P (a, b |M) = pab

This probability for the whole alignment between sequences a and b under

the match model is then the product of the joint probabilities of all aligned

letters:

P (a, b |M) =
∏

i

paibi

The ratio of these two likelihoods is known as the odds ratio. The odds ratio

for matching two letters a and b is equivalent to the probability that the

two residues a and b haven been independently derived from some common

ancestor in contrast to be of different origin.

P (a, b |M)

P (a, b | R)
=

pab

qaqb

= p(a, b)

And the odds ratio of the alignment between sequences a and b is the product

of the odd ratios for each match:

P (a,b |M)

P (a,b | R)
=

∏

i

paibi

qai
qbi

In order to develop an additive scoring system, we take the logarithm of

this ratio, known as the log-odds ratio. Therefore the score for aligning

residue a and residue b, s(a, b), is the log likelihood ratio of the residue pair

(a, b) occurring as an aligned pair, as opposed to a nonaligned pair. Usually
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an affine transformation of this log likelihood ratio is performed, where the

constants ω and k are selected as to obtain expedient scores:

s(a, b) = ω + k log
pab

qaqb
(1)

The total score of the alignment of sequence a and sequence b is the sum of

scores for each aligned pair of residues, plus the terms for gaps. The s(a, b)

scores can be arranged in a matrix. For proteins the scores form a 20 × 20

matrix, with s(ai, bj) in position i, j in the matrix, where ai, bj are the amino

acid in the ith row and the jth column of the matrix. This representation is

known as a score matrix or a substitution matrix. Since it is impossible to

distinguish between the two possible directions of a substitution, the matrix is

symmetric about the diagonal. It is sufficient to use only one of the triangles

of the 20×20 scoring matrix, because substitution scores are symmetric. An

example of a substitution matrix derived essentially as described above is

shown in figure 3.

2.2.3 Gap penalties

The inclusion of gaps and gap penalties is necessary to obtain the best possi-

ble alignment between two sequences. As discussed earlier (see page 11), the

simplest way to penalize gaps is a linear gap penalty. In the case of linear

gap penalties a fixed amount is charged for each residue aligned to a gap

symbol. Thus the cost of a gap is proportional to its length, where d is the

gap penalty and lg is the length of the gap.

γ(lg) = −lg d

The observation that a single mutational event can delete or insert multiple

residues suggests that a long gap should not cost substantially more than

a short gap [14, 48, 25]. A particular mutation involving a single gap of n

residues should therefore be more likely than n consecutive mutations result-

ing in n single gaps. The simplest way of implementing this feature of gap
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Cys C 12

Ser S 0 2

Thr T −2 1 3

Pro P −3 1 0 6

Ala A −2 1 1 1 2

Gly G −3 1 0 −1 1 5

Asn N −4 1 0 −1 0 0 2

Asp D

Val

Tyr

Trp

−5 0 0 −1 0 1 2 4

Glu E −5 0 0 −1 0 0 1 3 4

Gln Q −5 −1 −1 0 0 −1 1 2 2 4

His H −3 −1 −1 0 −1 −2 2 1 1 3 6

Arg R −4 0 −1 0 −2 −3 0 −1 −1 1 2 8

Lys K −5 0 0 −1 −1 −2 1 0 0 1 0 3 5

Met M −5 −2 −1 −2 −1 −3 −2 −3 −2 −1 −2 0 0 6

Ile I −2 −1 0 −2 −1 −3 −2 −2 −2 −2 −2 −2 −2 2 5

Leu L −8 −3 −2 −3 −2 −4 −3 −4 −3 −2 −2 −3 −3 4 2 8

V −2 −1 0 −1 0 −1 −2 −2 −2 −2 −2 −2 −2 2 4 2 4

Phe F −4 −3 −3 −5 −4 −5 −4 −6 −5 −5 −2 −4 −5 0 1 2 −1 9

Y 0 −3 −3 −5 −3 −5 −2 −4 −4 −4 0 −4 −4 −2 −1 −1 −2 7 10

W −8 −2 −5 −6 −6 −7 −4 −7 −7 −5 −3 2 −3 −4 −5 −2 −6 0 0 17

C S T P A G N D E Q H R K M I L V F Y W

Figure 3: The PAM250 substitution matrix. The log-odds values have been scaled and

rounded to the nearest integer for purposes of computational efficiency. In a log-odds

matrix, positive scores indicate a given pairing is more likely to occur in related sequences

than in random sequences, e.g., the score for matching a glutamate (E) with an aspartate

(D) has score 3. Zero scores indicate matches, that are as likely to occur in related

sequences as in random sequences and negative scores indicate matches, that are more

likely to occur in random sequences than in related ones.
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penalties is to use a larger gap open penalty (go), which is charged once for

opening the gap, and a smaller gap extension penalty (gext) for each extra

position in the gap. This method for penalizing gaps is called affine gap

penalty [4, 67]:

γ(lg) = −(go + gext(lg − 1))

Durbin et. al. [11] demonstrated that gap penalties also correspond to a

probabilistic model of alignment. They pointed out that the probability of

a gap occurring at a particular site in a given sequence is the product of a

function f(lg) of the gap-length and the combined probability of the set of

inserted residues:

P (g) = f(lg)
∏

i in g

qai
(2)

The representation of the probability of a gap as the product of f(lg) with

the qai
terms corresponds to an assumption that the length of the gap is

not correlated to the residues it contains. The values for the qa probabilities

here are the same as those used in the random model (see page 13), because

they both correspond to unmatched independent residues. If we divide the

probability of the gap by the probability of the gapped region according to

the random model to form the odds ratio, the qa terms cancel out, so we are

left only with a term dependent on length:

γ(lg) = log f(lg)

If an affine transformation is performed on the substitution scores (see page

15), the same transformation has to be applied to the gap penalties, in this

case gap penalties are calculated as:

γ(lg) = ω + k log f(lg) (3)

In the probabilistic interpretation gap penalties correspond to the log prob-

ability of a gap of length lg.
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2.3 The Number of Alignments

Waterman [69] presents a brief combinatorial treatment of alignments to es-

timate the number of different alignments between two sequences. Given two

sequences a with length m and b with length n, the problem is in how many

ways a = {a1, a2, . . . ai, . . . am} can be aligned with b = {b1, b2, . . . bj, . . . bn}.
One way to think of an alignment is that an alignment is produced when

gaps, – , are inserted into the sequences, the aligned sequences must both be

of the same length. It is not allowed to match a gap symbol with a gap sym-

bol. Therefore the length of the alignment, L, of a with b has to be between

max[m, n] ≤ L ≤ m + n. The case L = m + n comes by first deleting all ai

and then deleting all bj:

 n.....a 1 a 2 a
 n..... 1  2 bbb

For combinatorics on alignments it is important to recognize that alignments

can end in exactly three ways:

... bn ... bn

... am... am...

...

where
(

bn

−

)
corresponds to an indel of bn,

(
bn

am

)
corresponds to an identity or

substitution, and
(
−

am

)
corresponds to an indel of am. The fate of the bases

that are not displayed is not specified. Let f(m, n) denote the number of

alignments between the two sequences a and b. The recursion for f(m, n) is:

f(m, n) = f(m− 1, n) + f(m− 1, n− 1) + f(m, n− 1)

For two sequences of length 1000, for example, we have f(1000, 1000) ≈ 10767

alignments. There are approximately 1080 particles in the universe; Avo-

gadro’s number is in the order of 1023. It is therefore obvious that one
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cannot examine all alignments.

If it is agreed not to count permutations such as

G

C

G

C
and

as distinct, the situation improves slightly. The new way of counting align-

ment traces is to ignore permutations of al al+1−

− − bk
. Waterman points out that

the key is to realize that there must be k aligned pairs, 0 ≤ k ≤ min(m, n).

There are
(

m
k

)
ways to choose a’s and

(
n
k

)
ways to choose b’s, so there are(

m
k

) (
n
k

)
alignments with k aligned pairs:

g(m, n) =
∑

k≥0

(
m

k

)(
n

k

)
=

(
m + n

n

)

If g(m, n) is defined as above, g(0, 0) = g(1, 0) = g(0, 1) = 1, g(m, n) =
(

m+n
n

)

and n = m

g(n, n) =

(
2n

n

)
∼ 1√

nπ
22n, for long n

Two sequences with n = m = 1000 have g(1000, 1000) ≈ 10600 alignment

traces, so that a direct search is still impossible.

2.4 Alignment Algorithms

The first method for generating sequence alignments was described by Needle-

man and Wunsch [52] and was based on maximizing the similarity score

between sequences. Waterman [69] pointed out that the method used by

Needleman and Wunsch fits into a broad class of algorithms introduced by

Richard Bellman under the name dynamic programming [7]. Dynamic pro-

gramming is a programming technique that is designed for problems that
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generate an exponential search space in a structurally recursive fashion. Dy-

namic programming can evaluate such a search space in polynomial time if

subproblems are shared and the principle of subproblem optimality holds [17].

A dynamic programming algorithm can be dived into two subtasks: The

“first” phase is the construction of the search space, in the case of alignments

this is the set of all possible alignments between two sequences. During the

“second” phase these alignments are evaluated and a choice is made accord-

ing to some optimality criterion.

During the 1970s a mathematical model of the distance d(a, b) between se-

quences was developed [63, 56]. David Mount [50] reviewed the work of

the mathematician Peter Sellers [56], who constructed a metric space on the

space of sequences. To model a metric space of sequences the alignment

was formulated in terms of distance instead of similarity between sequences.

The distance is the number of changes that must be made to convert one

sequence into the other and represents the number of mutations that will

have occurred following separation of the genes during evolution. Such an

“edit-distance”, defined as the minimum cost of converting one sequence into

another via a series of edit operations, always fulfills the axioms of a metric

1. d(a, b) = 0 if and only if a = b,

2. d(a, b) = d(b, a) (symmetry),

3. d(a, b) ≤ d(a, c) + d(c, b) for any c (triangle inequality),

provided the cost of the individual edit operations are positive and sym-

metric. For sequence alignments the edit operations are: point mutation

(replacement of one letter by another) and insertions of gaps. An alignment

thus represents the most likely evolutionary history of two sequences. Sell-

ers also showed that the smallest number of steps required to change one

sequence into the other could be calculated by the dynamic programming

algorithm. Optimal alignments can be computed via the same schemes for

maximum similarity by replacing the minimum distance by a maximal simi-

larity scoring scheme.
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2.4.1 The Needleman-Wunsch Algorithm

The idea for the recursion used to find an optimal alignments is to build the

alignment by utilizing previous solutions for optimal alignments of smaller

subsequence. The simplest way to find an optimal alignment is to use a dy-

namic programming algorithm with a linear gap penalty γ(lg) = −gd, where

lg is the length of the gap and d is the gap penalty.

For the calculation of a global optimal alignment between two sequences a of

length m and b of length n an (m + 1, n + 1) matrix, M , is constructed [19].

The value M(i, j) is the score of the best alignment between the initial seg-

ment a1...i of sequence a up to ai and the initial segment b1...j of sequence

b up to bj. The matrix M is build recursively. We begin by initializing

M(0, 0) = 0, M(i, 0) = −id and M(0, j) = −jd. The values M(i, 0) rep-

resent an alignment of all residues of sequence a to gaps. If the values

M(i− 1, j − 1), M(i− 1, j) and M(i, j − 1) are known, it is possible to cal-

culate M(i, j): The three ways an alignment can be extended up to position

(i, j) are shown in figure 4:

i ai can be aligned to bj, in which case M(i, j) = M(i−1, j−1)+s(ai, bj),

ii ai can be aligned to a gap, in which case M(i, j) = M(i− 1, j)− d,

iii bj can be aligned to a gap, in which case M(i, j) = M(i, j − 1)− d.

... bj

... ai ... ai

... ... bj

...

Figure 4: The alignment up to position (i, j) can be obtained by aligning ai to bj , by

introducing a gap in sequence b and aligning ai to this gap or vice versa by introducing a

gap in sequence a and aligning bj to this gap.
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The recursion to find the optimal alignment is therefore:

M(i, j) = max





M(i− 1, j − 1) + s(ai, bj)

M(i− 1, j)− d

M(i, j − 1)− d

(4)

The best score for an alignment of a1...m and b1...n is, by definition, the value

of the final cell of the matrix, M(m, n). In order to retrieve an optimal align-

ment, a path of choices that led to value M(m, n) has to be recovered. The

method for finding this path is known as backtracking. Backtracking works

by building the alignment in reverse, starting from the final cell, M(m, n), we

move back to the cell (or one of the cells) from which the value of M(m, n)

was derived. At each step of the backtracking process, there are three possi-

ble values from which the value of M(i, j) could have been calculated:

− A U G G

− 0 −2 −4 −6 −8

↖

A −2 2 ←− 0 ←− −2 ←− −4

↑ ↖

U −4 0 4 ←− 2 ←− 0

↑ ↖ ↖ ↖
G −6 −2 0 6 ←− 4

Figure 5: A global dynamic programming matrix for sequences a = {AUGG} and

b = {AUG}. The score for a match is 2, the score for a mismatch is 0, the gap penalty

is −2. Arrows indicate the cell (or the cells) from which the M(i, j) values have been

derived. The path of choices for an optimal alignment is marked by bold arrows.

i M(i, j) was generated by adding s(ai, bj) to the value of cell M(i −
1, j − 1), in this case residues ai is aligned to residue bj in the current

alignment.
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ii M(i, j) was computed by subtracting the gap penalty (d) from the

value of cell M(i− 1, j), in this case residue ai is aligned to a gap.

iii M(i, j) was derived by subtracting the gap penalty (d) from the value

of cell M(i, j − 1), therefore residue bj is aligned to a gap.

At the end of the backtracking process we reach the start of the matrix,

M(0, 0). An example of the backtracking procedure is shown in figure 5.

The backtracking procedure described here finds only one alignment with

the optimal score. If for any value M(i, j) two or three possibilities to com-

pute this value exist, an arbitrary choice is made between the equal options.

2.4.2 Gotoh’s Algorithm

The dynamic programming algorithm introduced by Needleman and Wunsch

was subsequently improved by Gotoh [24], who adjusted the algorithm for

use with affine gap penalties. In the case of affine gap penalties, there are

six possibilities to extend an alignment up to position (i, j), see Figure 6.

...

... bj−1  bj

...

... ai−1

  ai

... bj−1

...

... ai−1

... j  b
  ai  ai   ai

j  b

...

...
j  b

  ai

...

...

j  b

Figure 6: The six ways of extending an alignment up to position (i, j) if affine gap penalties

are used.

Three of the possibilities to extend an alignment were already discussed in

the case of linear gap penalties: aligning ai with bj, aligning ai to a gap and

aligning a gap to bj. When using affine gap penalties of the form γ(lg) =

−(go +gext(lg−1)), opening a gap is penalized with a larger gap penalty than

extending an existing gap. Two further ways to expand the alignment are
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therefore the extension of a gap in one of the sequences. The sixth possibility

to elongate the alignment is that closing of a gap in one sequence is ensued

by opening a gap in the other sequences. As already indicated (see page 19)

permutations like G

−

−

C
and −

C

G

−
are not counted as distinct. In order to

generate non-ambiguous alignments it is necessary to select one of these two

similar configurations and to avoid the other.

M(i, j) = max





M(i− 1, j − 1) + s(ai, bj)

E(i− 1, j − 1) + s(ai, bj)

F (i− 1, j − 1) + s(ai, bj)

E(i, j) = max

{
M(i, j − 1) − go

E(i, j − 1) − gext

F (i, j) = max





M(i− 1, j) − go

E(i− 1, j) − go

F (i− 1, j) − gext

(5)

To compute an alignment using Equation (5), three (m+1, n+1) matrices are

needed: The first matrix, M , contains matches and mismatches between the

two sequences: A match (or mismatch) of ai and bj can be added following

another match M(i, j) = M(i− 1, j − 1) + s(ai, bj) or the alignment can be

extended with a match following a gap in either of the sequences M(i, j) =

E(i− 1, j − 1) + s(ai, bj) or F (i− 1, j − 1) + s(ai, bj).

The auxiliary arrays E and F are necessary to keep track of the length of

gaps. Array E is used to compute gaps introduced in the sequences indexed

with i (sequence a). A gap in sequence a can be opened following a match

(or mismatch) E(i, j) = M(i, j − 1) + go or a gap can be extended after it

has been opened E(i, j) = E(i, j − 1) + gext. The auxiliary F keeps track of

gaps in the sequence indexed by j (sequence b). In addition to the options

gap open after a match or mismatch, F (i, j) = M(i − 1, j) + go, and gap
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extend, F (i, j) = F (i− 1, j)+ gext, a third option, opening a gap in sequence

b immediately following a gap in sequence a, F (i, j) = E(i − 1, j) + go, is

available. This asymmetry of the recursion ensures unambiguous alignments.

In case a gap in one sequence is directly followed by a gap in the other

sequence, the gap in sequence a is always located in front of the gap in

sequence b. Such an algorithm can execute in O(mn) time, as was shown by

Gotoh [24].

+s(a i  , b j )

+s(a i  , b j )

+s(a i  , b j ) (+1,+1)

E
(0,+1)

F
(+1,0)

M

−g

−g o

  ext

−g ext

−go

−go

Figure 7: This diagram shows the relationship between the three states of an alignment

with affine gaps penalty. The three states of the alignment are: M match (or mismatch),

E gaps in the sequence indexed with i and F gaps in the sequence indexed with j.

The backtracking procedure for the algorithm with affine gap penalties is

essentially the same as for an algorithm with linear gap penalties: The start

position for backtracking is max{M(m, n), E(m, n), F (m, n)}. Then we look

for the cell from which max{M(m, n), E(m, n), F (m, n)} was derived. Back-

tracking now proceeds similar to the linear case:

i M(i, j) was calculated by adding s(ai, bj) to either M(i − 1, j − 1),

E(i− 1, j − 1) or F (i− 1, j − 1), in each case ai is aligned to bj.

ii E(i, j) was derived either by subtracting the gap open penalty from the

value in position M(i, j−1) or by subtracting the gap extension penalty
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from the value of position E(i, j − 1), in either case the alignment is

extended by aligning residue bj to a gap.

iii F (i, j) was computed by subtracting the gap open penalty from either

M(i− 1, j) or E(i− 1, j), or by subtracting the gap extension penalty

from F (i− 1, j), in each case ai is aligned to a gap.

The backtracking procedure described here finds just one alignment with the

optimal score. If at any point two of the derivations are equal, an arbitrary

choice is made between equal options. The backtracking algorithm is easily

modified to recover more than one alignment.

2.5 Suboptimal Alignments

Most standard sequence alignment methods generate only a single optimal

alignment. For two proteins with a very close evolutionary relationship a

high alignment score usually implies that their sequences have a high degree

of relatedness. In this case it is often sufficient to generate just one optimal

alignment to determine their homology. When the evolutionary relationship

between two sequences is more distant, the optimal sequence alignment may

change with small alternations of the parameters [65]. Furthermore, the dy-

namic programming algorithms used to derive the “optimal” alignment have

an inherent ambiguity, that arises from the non uniqueness of optimal solu-

tions and the particular scheme by which the search space is evaluated [18].

This uncertainty about sequence alignment methods has given rise to more

sophisticated sequence comparison methods: One approach to improve the

reliability of sequence alignments is the inclusion of near-optimal solutions.

A near-optimal alignment is an alignment whose score lies within the neigh-

borhood of the optimal score.

Saqi and Sternberg [55] developed a computer program using a variant of the

Sellers algorithm [56, 54], which finds the minimum distance D(a,b) of an

alignment of two sequences. They generated the distance matrix D, where
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D(i, j) is the minimum distance of the alignment of a1 . . . ai and b1 . . . bj. Af-

ter obtaining an optimal alignment they modified those cells (i.j) that corre-

spond to a match or mismatch, by increasing their value by a small amount

∆. For distance alignments, increasing the value of a cell (i.j) results in a

lower probability that this cell is included in an optimal alignment. This

procedure was repeated iteratively to obtain a set of suboptimal alignments.

The stability of an alignment was given through the number of iterations

through which an alignment persists.

Vingron and Argos [66] made use of suboptimal alignments to determine re-

liable regions in protein sequence alignments. They introduced the concept

of ’stable regions’ using the existence of a matched span in many reasonable

alignments as the indicator for the credibility of an alignment region. Sub-

optimal alignments with a score close to the score of an optimal alignment

are considered. The reliable regions of similarity between two sequences are

those regions for which all optimal and suboptimal alignments share a re-

gional path. Vingron and Argos used the method of forward-backward align-

ment to generate a set of suboptimal alignments. Using this method one

can calculate the score of the best possible alignment through every residue

pair of a comparison matrix. The algorithm to calculate the maximal score

of an alignment path going through a point involves a modification of the

classical Needleman-Wunsch algorithm [52]. It has been described first by

Altschul and Erickson [3]. Zucker [70] applied it to RNA secondary structure

prediction and Carillo and Lipman [9] used it to limit the search space in the

simultaneous alignment of several sequences.

The core of the computation of forward-backward alignments is the calcula-

tion of two matrices, each of which is analogous to the matrix computed in

the Needleman-Wunsch algorithm. The first matrix D− stores in every cell

(i, j) the score of an alignment that starts at the N-terminal ends of the se-

quences and ends with the residue pair (i, j). The second matrix D+ contains

for every point the score of the optimal alignment from the C-terminal ends

of the sequences to each point (i, j) (Figure 8). For every point (i, j), there



2 Theory 28

D +

D −

s(ai, bj)

D + D − s(a i, b j)+  −

L

H

L

T

L

H

L

T

L

H

L

T

L

H

L

T

V    H    I     Q     L

 2   −2    2   −2    6

−2   8   −4    5   −4

   2   −4  10    1   11

 0     1    3     9    3

 2   −2    2   −2    6

 9    2    11   −1   6

−3   7   −1    9   −2

  1    −2   1    −4    6

   0   −1    0   −1  −2

 9    2    11   −1   6  

 −3    9   −3   11  −4

   1   −4    9   −1  11

   0    1     3     9    3

−2    6   −2    3  −2

   0   −1   0    −1  −2

   2   −2    2   −2    6

*

V    H    I     Q     L*

V    H    I     Q     L*

V    H    I     Q     L**

**

*

Figure 8: Principle of the algorithm for finding suboptimal points according to Vingron

and Argos [66]. The computation is performed on the two example sequences LHLT

and VHIQL using the Dayhoff PAM250 matrix and gap open and gap extension penal-

ties of 5 and 1 respectively. The C-termini of the sequences are marked by an asterisk.

Computation of D− starts at the lower rightmost matrix position while D+ starts at the

upper leftmost position (the starting positions of the matrices are marked by bold boxes).

The encircled numbers provide an illustration of the calculation procedure for each of the

matrix positions.

cannot be an overall alignment containing (i, j) that would be better than

the sum of the partial alignment in D− from (0,0) to (i,j) and of the partial

alignment in D+ from (i,j) to (m,n) minus a correction involving the subtrac-

tion of the similarity score of the residue pair (i, j), as it has been counted

twice. Therefore, adding equivalent positions of the matrices D− and D+

yields for every point the maximal score that an alignment, going through

this point, can possibly assume. Suboptimal alignments can be constructed
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by backtracking toward the C-terminus in D+ and toward the N-terminus in

D−. This method yields a small (hopefully representative) sample of subop-

timal alignments.

Considering a sample of suboptimal alignments with a score close to the score

of the optimal alignment Vingron and Argos determined reliably aligned re-

gions: The reliable regions of similarity between two sequences are those

regions for which suboptimal alignments, which score higher than the opti-

mal score minus a tolerance value ε, share the same regional path, i.e. those

regions for which a population of locally different suboptimal alignments does

not exist. Sequence regions predicted to be reliably aligned at high ε-values

are most likely to be correctly matched.

2.6 Partition Function

The construction of suboptimal alignments by the mathematical intersection

of two alignment paths does not generate all suboptimal alignments but only

a limited set of locally suboptimal alignments. By using the approach of

foreward-backward alignment (see page 28) for retrieving suboptimal align-

ments, one can therefore easily miss suboptimal alignments which contribute

substantially to the biological correct solution.

A method to avoid this problem is to use the partition function of all align-

ments between two sequences. Computation of the partition function is fre-

quently applied in RNA secondary structure prediction [46, 32], its applica-

tion for alignments was pioneered by Miyazawa [49].

The probability of an alignment A is the product of the probabilities of all

substitutions, insertions and deletions constituting the alignment:

Prob(A) =
∏

i∈sub

pa∗
i b∗i

∏

i∈ins

p−b∗i

∏

i∈del

pa∗
i −

where sub is an abbreviation for substitution, ins for insertion and del for

deletion. The stars associated with the residue indices indicate that positions

in the alignment, not positions along the sequences, are addressed.
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The probability of an individual match or mismatch, pab, is the product of

the probability p(a, b) that the two residues have a common ancestor, as

opposed to be of different origin, times the frequencies of these residues (see

also page 15).

pab = p(a, b) qaqb

The probability of a gap is the product of a function f(lg) of the length of

the gap, lg, and the combined probabilities of the residues in the gap (see

page 17).

pg = f(lg)
∏

i∈g

qai

The probability of the alignment is therefore given by:

Prob(A) =
∏

i∈ sub

p(a∗
i , b

∗
i ) qa∗

i
qb∗i

∏

i∈ ins

f(lins)
∏

i∈ ins

qb∗i

∏

i∈ del

f(ldel)
∏

i∈ del

qa∗
i

=
∏

i∈a

qai

∏

i∈b

qbi

∏

i∈ indel

f(lindel)
∏

i∈ sub

p(a∗
i , b

∗
i )

= prob(a) prob(b)
∏

i∈ indel

f(lindel)
∏

i∈ sub

p(a∗
i , b

∗
i ) (6)

where the product of the probabilities of all residues of sequence a that are

matched in the alignment,
∏

i∈ sub qa∗
i
, and the probabilities off all residues

of sequence a that are aligned to a gap (indel)
∏

i∈indel qa∗
i

constitutes the

probability of sequence a, prob(a) =
∏

i∈a qai
. The gap length dependent

function f(lg) is the same for insertions and deletions. Therefore the prod-

ucts of f(lins) for all insertions and f(ldel) for all deletions can be combined

to account for the product of f(lindel) for all residues in the alignment that

are aligned to a gap,
∏

i∈ indel f(lindel) =
∏

lg
f(lg).

The score for the alignment is the sum of the scores for all gaps in the

alignment, γ(lg) = ω + k log f(lg) (see page 17) plus the sum of the scores

for all substitutions, s(a, b) = ω + k log p(a, b) (see page 15). Therefore we

have:
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S(A) =
∑

lg

γ(lg) +
∑

(i,j)∈A

s(ai, bj)

= ω + k
{ ∑

lg

log f(lg) +
∑

(i,j)∈A

log p(ai, bj)
}

(7)

eS(A) = eω
∏

lg

ek logf(lg)
∏

(i,j)∈A

ek logp(ai,bj)

= eω

{
∏

lg

f(lg)
∏

(i,j)∈A

p(ai, bj)

}k

= eω
{ Prob(A)

prob(a) prob(b)

}k

The quantity e
S(A)

k is therefore directly proportional to the probability of the

alignment:

eS(A) =
e(ω/k)

prob(a) prob(b)
Prob(A) (8)

We subsume the constant factors in a constant c, that is:

c =
e(ω/k)

prob(a) prob(b)

The probability of the alignment is therefore given by:

Prob(A) =
e(ω/k)

prob(a) prob (b)
e

S(A)
k = c e

S(A)
k
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The sum over the probabilities of all possible alignments between the two

sequences a and b has to be 1:

∑

A

Prob(A) = c
∑

A

e
S(A)

k = 1

In statistical mechanics it is customary to introduce the partition function

Z as the sum of the Boltzmann factors for all possible states. In the present

context we therefore set:

Z =
∑

A

e
S(A)

k (9)

Thus we see that c = 1
Z

and we recover the relationship between “energies”

and probabilities of states that is familiar from statistical mechanics:

Prob(A) =
1

Z
e

S(A)
k (10)

Miyazawa [49] used the substitution matrix of Dayhoff et al. [10] to derive

the value of the scoring matrix dependent parameter k. Like any substitution

matrix that makes statements about the probability of observing ab pairs in

real alignments, Dayhoff’s matrix is defined as a log-odds matrix [37, 5]. For

computational convenience the entries of the score matrix were multiplied by

10 and rounded to the nearest integer. The score for a substitution, s(a, b),

is therefore:

s(a, b) = 10 log10

(
pab

qaqb

)

Thus, the substitution score, s(a, b), is equivalent to the log-likelihood ratio

of this substitution times a constant factor, which, in case of Dayhoff’s PAM

matrix, is given by:

k =
10

loge 10
≈ 4.3429
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Kschischo and Lässig [41] developed a theory of probabilistic alignments de-

rived from a thermodynamic partition function. They called these probabilis-

tic alignments finite-temperature alignments. A finite-temperature alignment

is a probability distribution over all alignment paths A. The probability of a

given alignment A is shown in Equation (10). Kschischo and Lässig pointed

out that a finite temperature alignment is controlled by three parameters:

The average gap frequency and the length of the alignment path are deter-

mined by the scoring scheme used while the parameter k governs the relative

weight of alignment paths with different scores.

We multiply the parameter k by a variable factor T . The inverse of this

composed parameter is named β. In the case of Dayhoff’s PAM matrix β is

therefore:

β =
1

k T
=

loge 10

10 T
(11)

The relative weight of alignment paths with different scores can easily be

modified by changing the value of T . At low T values optimal and near

optimal alignment are preferentially generated. For T = 1 we obtain the

“true” probability of the alignment. Increasing the temperature T decrease

the weight given to the optimal alignments. In the limit of T →∞ random

alignments with a uniform probability distribution are generated.

In a thermodynamic interpretation the score of the alignment, S(A), is

treated as if it were negative energy, the matrix-dependent constant k cor-

responds to Boltzmann’s constant and the variable factor T is analogous to

the temperature. We used a similarity scoring scheme to compare sequences,

the scores for reliable alignments thus have positive values. Therefore the

the algebraic sign of energies and entropy is opposite to the thermodynamic

convention.

Including the variable T in our considerations the partition function at con-

stant T is given by:

Z(T ) =
∑

A

e
S(A)
k T =

∑

A

eβ S(A) (12)
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And the probability of the alignment is:

Prob(A) =
1

Z(T )
eβ S(A) (13)

2.7 Match Probabilities

Using the partition function, the probability of each match (i, j) between

the two sequences can be calculated. To derive the match probabilities, we

define a class Ω of alignments that meet certain criteria. The probability to

find an alignment that belongs to the class Ω is:

Prob(Ω) =
1

Z

∑

A∈Ω

eβS(A) =
Z(Ω)

Z

The probability that i and j are matched is then given by:

pij = Prob(Ωi,j)

where Ωi,j is the class of alignments in which ai is matched to bj.

Ωi,j = {A | (i, j) ∈ A}

For each A ∈ Ωi,j the score of the whole alignment is the sum of the score of

the partial alignment Ai,j
1,1 from position (1, 1) to position (i, j) and the score

of the partial alignment Am,n
i,j from position (i, j) to position (m, n), minus

the score of the match (i, j), s(ai, bj).

S(A ∈ Ωi,j) = S(Ai,j
1,1) + S(Am,n

i,j )− s(ai, bj)

The partition function over all alignments containing the match (i, j) is there-
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fore:

Z(Ωi,j) =
∑

A∈Ωi,j

eβ S(Ai,j
1,1)+β S(Am,n

i,j )−β s(ai,bj) (14)

=
∑

A∈
� i,j

1,1

eβ S(Ai,j
1,1)

︸ ︷︷ ︸
Z M

ij

×
∑

A∈
� m,n

i,j

eβ S(Am,n
i,j )

︸ ︷︷ ︸
�

Z M
ij

× e−β s(ai,bj)

= Z M
ij Ẑ M

ij e−β s(ai,bj) (15)

where Z M
ij = Z(Ai,j

1,1) is the partition function of the set A
i,j
1,1 of all alignments

of the partial sequences of a1 . . . ai and b1 . . . bj that end with a match of ai

and bj. Analogously Ẑ M
ij = Z(Ai,j

m,n) is the partition function of the set

Ai,j
m,n of all alignments of the partial sequences of am . . . ai and bn . . . bj with

a match of ai and bj.

The probability that residue ai is aligned to residue bj, p(i, j), is therefore:

p(i, j) =
Z M

ij Ẑ M
ij

Z
e−β s(ai,bj) (16)

where the normalization factor Z is the partition function over all alignments

between the two sequences. In the course of the calculation of the partition

function the Z M
ij values are calculated. To compute the Ẑ M

ij values, the

partition function of all alignments is calculated in reverse order. We start

the calculation of the partition function at the C-terminus, that is at positions

am and bn and proceed in the direction of the N-terminus (see page 37).

2.8 Calculation of the partition function

The partition function can easily be calculated using dynamic programming.

Giegerich [18] pointed out that dynamic Programming Algorithms have an

inherent ambiguity that arises from two independent sources. One source is

the non-uniqueness of optimal solution, the other emerges from the partic-

ular recursion scheme by which the search space is evaluated. By using the
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partition function to generate suboptimal alignments, one extracts the infor-

mation provided by the ambiguity of the search space to improve the results.

The second source of ambiguity, which is caused by the recursion scheme

used, has effects that antagonize an exact solution of the partition function.

These effects are the generation of duplicate and non-canonical solutions.

Duplicate solutions arise from the fact that the algorithm used may produce

the same solution several times. This may lead to a combinatorial explosion

of redundancy. Often, the search space exhibits additional redundancy in

terms of solutions that are represented differently, but are equivalent from a

more semantic point of view. Therefore canonization is important in eval-

uating statistical significance [42], and also in reducing redundancy among

near-optimal solutions [18]. Examples of ambiguity in alignments arising

from solutions that are represented differently but are semantically equiva-

lent are given in Figure 9.

AAA− GG −TTAA 

AAAC − − CTTAA

AAA− − G GTTAA

AAAC C − − TTAA AAA− − C CTTAA

AAAG G− −TTAA

Figure 9: Examples of ambiguity in alignments after Giegerich [18]. The first and the

second alignment are equivalent under most scoring schemes. The third alignment shows

two deletions separated by an insertion and is considered a mal-formed alignment.

For dynamic programming algorithms designed to retrieve an optimal solu-

tion, it is not necessary to avoid the generation of redundant alignment. The

results of the partition function, on the other hand, can be seriously distorted

if redundant or non canonical alignments are not excluded. In our work we

used a variation of the Needleman-Wunsch algorithm with affine gap penal-

ties, that is designed to avoid redundancy. Figure 9 shows three alignments

that are semantically equivalent but represented differently. The three align-

ments differ only in the relative order of adjacent gaps. The third alignment,

which contains two deletions flanked by two insertions in the upper sequence

is mal-formed and should not be generated at all. The first and the second

alignment are equivalent, permutations of the location of adjacent gaps are
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not counted as distinct, and one has to decide which one of this two equal

representations should be used. The variation of the Needleman-Wunsch al-

gorithm, that is used in our work, employs an asymmetric recursion scheme

to avoid this kind of ambiguity (see Equation (5) and Figure 7): If two or

more gaps are adjacent to each other, the gaps in the sequence indexed with

i are always located in front of the gaps in the other sequence (the one in-

dexed with j), therefore only one of these two possible representations of the

alignment is generated.

The calculation of the partition function was done analogous to Miyazawa

[49], using our variation of the Needleman-Wunsch algorithm: A partition

function for the scoring scheme of equation (7) can be derived by changing

the maximum operations in equation (5) to summations:

ZM
i,j =

(
ZM

i−1,j−1 + ZE
i−1,j−1 + ZF

i−1,j−1

)
eβs(ai,bi)

ZE
i,j = ZM

i,j−1e
βgo + ZE

i,j−1e
βgext

ZF
i,j =

(
ZM

i−1,j + ZE
i−1,j

)
eβgo + ZF

i−1,je
βgext (17)

Zi,j = ZM
i,j + ZE

i,j + ZF
i,j (18)

where ZM
i,j is the partition function over all alignments of the partial sequences

from a1 . . . ai and b1 . . . bj, in which ai is aligned with bj. ZE
i,j is the partition

function over all alignments between these two sequence fragments in which

residue bj is aligned to a gap (all alignments where a gap is introduced in

sequence a) and ZF
i,j contains the partition function over all alignments which

end with a gap in sequence b (ai is aligned to a gap). The partition function

over all alignments up to position ai and bj is therefore Zi,j = ZM
i,j +ZE

i,j +ZF
i,j.

The boundary conditions are: ZM
0,0 = 1, ZM

i,0 and ZM
0,j are not defined. ZE

0,0 =

1, ZE
0,1 = eβgo and ZE

0,j>1 = e(βgo+(j−1)gext). ZE
i,0 is not defined. ZF

0,0 = 1,

ZF
1,0 = eβgo and ZF

i>1,0 = e(βgo+(i−1)gext). ZF
0,j is not defined.

For the calculation of the Zrev values, the same recursion is used. We start

the calculation with the index i set to m and the index j set to n and finish
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when i and j are 0. The boundary conditions are: ZM
m,n = 1 , ZE

m,n = 1,

ZE
0,n−1 = eβgo and ZE

0,j<n−1 = e(βgo+(n−j)gext). ZF
m,n = 1, ZF

m−1,0 = eβgo and

ZF
i<m−1,0 = e(βgo+(m−i)gext).

2.9 Stochastic Backtracking

The results of the partition function can be used to generate optimal and

suboptimal alignments by stochastic backtracking. Stochastic backtracking

is a process that generates randomly selected alignments, with a distribu-

tion that corresponds to the probability of each individual alignment. The

stochastic backtracking thus provides a fairly distributed ensemble of possible

alignments.The probability of an alignment is given by:

Prob(A) =
eβS(A)

Z

where S(A) is the score of the alignment and β is a composite factor that

contains the inverse of a matrix dependent constant times the inverse of the

variable factor (see Equation (11)). In the formalism of the thermodynamic

partition function S(A) is analogous to a negative energy and β is the analog

of 1
kT

.

For every position (i, j) of an alignment the probability for matching resi-

dues ai and bj, for introducing a gap in sequence a and for introducing a

gap in sequence b can be calculated. The stochastic backtracking starts at

final positions, (m, n), of the Z matrices. We start the stochastic backtrack-

ing by determining the probabilities of the three possible alignment states:

The probability of matching am and bn, p(match), is the partition function

over all alignments between sequences a and b that end in a match, ZM
m,n,

divided by the partition function over all possible alignments between these

two sequences, Zm,n = ZM
m,n + ZE

m,n + ZF
m,n:

p(match) =
ZM

m,n

Zm,n
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The probability, for introducing a gap in sequence a, p(gap in a), and the

probability for introducing a gap in sequence b, p(gap in b) are calculated

in the same way. The probability to insert a gap in sequence a is given by

the partition function over all alignments that end with a gap in sequence

a, ZE
m,n, divided by the partition function over all possible alignments. And

the probability to introduce a gap in sequence b is calculated by dividing

the partition function over all alignments that end with a gap in sequence b,

ZF
m,n, by the partition function over all alignments.

p(gap in a) =
ZE

m,n

Zm,n

p(gap in b) =
ZF

m,n

Zm,n

To select one of the three possible states of the alignment, a random number

between 0 and 1 is generated. Residue am is matched to residue bn if the ran-

dom number is < p(match), a gap is introduced in sequence a, if the random

number is < (p(match) + p(gap in a)), else a gap is inserted in sequence b.

In the following steps of the stochastic backtracking, the probability of each

state is dependent on the previous choice. If the residues were matched, the

state probabilities are given by:

p(match) =
ZM

i−1,j−1 eβs(ai,bj)

Zi,j

p(gap in a) =
ZE

i−1,j−1 eβs(ai,bj)

Zi,j

p(gap in b) =
ZF

i−1,j−1 eβs(ai,bj)

Zi,j

where Zi,j = (ZM
i−1,j−1 + ZE

i−1,j−1 + ZF
i−1,j−1)e

βs(ai,bj). If the previous state of

the alignment was a gap in sequence a, there are only two possibilities to
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extend the alignment, either return to the match state or to add another gap

in sequence a. The probability to introduce a gap in sequence b, p(gap in b)

is zero, because the algorithm is designed to arrange gaps in order gaps in a

⇒ gaps in b.

p(match) =
ZM

i,j−1 eβgo

ZE
i,j

p(gap in a) =
ZE

i,j−1 eβgext

ZE
i,j

where ZE
i,j = ZM

i,j−1e
βgo + ZE

i,j−1e
βgext is the sum over all alignments up to

position (i, j) that end with a gap in sequence a.

In the case that the previous state of the alignment was a gap in sequence b,

three possible states to continue the alignment are available: return to the

match state, switch to a gap in sequence a, or continue the alignment with

another gap in sequence b.

p(match) =
ZM

i−1,j eβgo

ZF
i,j

p(gap in a) =
ZE

i−1,j eβgo

ZF
i,j

p(gap in b) =
ZF

i,j−1 eβgext

ZF
i,j

where ZF
i,j = (ZM

i−1,j + ZE
i−1,j)e

βgo + ZF
i−1,je

βgext is the sum of all possible

alignments up to position (i, j) that end with a gap in sequence b.

At each step of the backtracking process the selection of the next alignment

states is done stochastically. Repeated application of this procedure yields

an equilibrium sample of alignments.
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3 Program

3.1 Introduction

The variations of a dynamic programming algorithm for global pairwise align-

ments ( 2.4.2) and for the partition function ( 2.8) were used to implement a

program in C. The program was named probA for probability alignments and

provides several distinct features. probA can be used to calculate a global

pairwise alignment, to determine the PAM distance (see page 12) and/or the

pairwise identity (see below) between two sequences, for computation of the

partition function, the match probabilities and for stochastic backtracking.

3.2 Global Pairwise Alignment

propA starts by calculating an initial alignment of the input sequences. The

typ of the input polymer can be specified by the user, using the command

line options -DNA or -prot to identify nucleic acid or protein sequences,

respectively. If the type of the input polymer is not specified probA auto-

matically calls the function check polymer, which decides whether the input

polymers are nucleic acid or protein sequences. Function check polymer is

taken from ClustalW [62, 31]. The decision is based on counting all occur-

rences of the characters {A,U,T,G,C} in the input polymers. If ≥ 85% of

all characters of the longer input sequence are {A,U,T,G,C} the polymer

is treated as nucleic acid, else as protein.

This initial alignment is used to determine the PAM distance and/or the

pairwise identity of the input sequences. The calculation of the PAM dis-

tance is done similar as in ClustalW [62, 31]. To determine the pairwise

identity between two sequences the number of matches is divided by the

sum of mismatches and matches (gaps are ignored). The observed distance

is (1 - observed identity) and has values between between 0.0 (for identical

sequences) and 1.0 (for totally different sequences). One problem of the es-

timation of distances arises from the fact that during divergence sequences
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become saturated with mutations. Various positions along the sequences can

be subjected to substitutions more than once. The calculated distances will

therefore underestimate the actual divergence time. To correct for multiple

substitutions we used the formula of Motoo Kimura [40]:

c = − ln(1− d− d2

5
) (19)

where c is is corrected distance and d is the observed distance. This formula

gives the mean number of estimated substitutions per site and, in contrast to

the observed distance, can be greater than 1 (i.e. more than one substitution

per site, on average). To express the corrected distance in PAM units, the

corrected distance is multiplied by 100. PAM units measure the mean number

of substitutions per 100 residues. Dayhoff et al. derived a table relating

observed distances to predicted PAM distances. Kimura’s formula is just a

”curve fitting” approximation to this table. It is very accurate in the range

0.0 > d > 0.75 but becomes increasingly inaccurate at d > 0.75 and fails

completely at around d = 0.85. Observed distances > 0.75 are determined

using Dayhoff’s table. The determined PAM distance or the percentage

identity is used to select a scoring matrix appropriate for the evolutionary

distance of the input sequences.

3.3 Scoring the Alignment

Each alignment of two sequences is assigned a score. The score is based

on the number of matches and mismatches for aligned elements and on the

number of gaps used. Maximization of this score is then used to select the

optimal alignment. However, it is well known that the optimal alignment of a

given pair of sequences can depend strongly on the scoring parameters used.

With increasing evolutionary distance maximum similarity alignments tend

to become sensitive to the choice of the scoring parameters and therefore less

reliable.
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3.3.1 Substitution Matrices for Protein Sequences

Methods for alignments of protein sequences typically measure similarity by

using a substitution matrix with scores for all possible exchanges of one

amino acid with any other (see 2.2.2). The sensitivity of most protein se-

quence alignments depends strongly on the quality of the scoring matrix and

the penalties used for insertions and deletions. probA therefore provides

three different sets of scoring matrices, the Dayhoff’s PAM matrix series,

the BLOSUM series and the Gonnet series of scoring matrices. Each log-odds

matrix in a series is defined for a specific evolutionary distance measured

in PAM units in the case of PAM and Gonnet matrices and as percentage

identity in the case of BLOSUM matrices.

Dayhoff et al. collected mutational data from 72 sequence families consisting

of more than 1300 related protein sequences (distance < 15 PAM units, this

is equivalent to a percentage identity > 85%) to calculate the probability

of amino acid exchanges. Alignments between that closely related sequence

pairs are indisputable. Hence the elements of the mutation data matrix can

be tabulated directly without needing to worry about ’successive accepted

mutations at one site’ [10].

To convert this data from closely related sequence pairs into a matrix that

describes mutations between protein pairs 250 PAM units divergent, a pro-

cess of matrix powering is used. A matrix for protein pairs m PAM units

distant is converted to one applying to proteins separated by n PAM units

by raising the matrix to the n
m

th power.

In the Dayhoff model the scoring matrices were derived from a small set of

proteins that were very similar in sequence, furthermore substitution matri-

ces for distantly related proteins were derived by successive matrix powering

from a scoring matrix for closely related protein sequences. Several authors

pointed out that Dayhoff’s substitution matrices are therefore unsuitable for

alignments of more distantly related sequences and provided methods to cal-

culate substitution matrices more suitable for this purpose [29, 21, 8].

Henikoff and Henikoff [29] derived substitution matrices from more than 2000
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blocks of aligned sequence segments characterizing more than 500 families of

related protein sequences. Local alignments were represented as ungapped

blocks with each row a different protein segment and each column an aligned

residue position. To reduce multiple contributions to amino acid pair fre-

quencies from the most closely related members of a family, sequences were

clustered within blocks and each cluster was weighted as a single sequence

in counting pairs [30]. This was done by specifying a clustering percentage

in which sequence segments identical for at least that percentage of amino

acids were grouped together. For example, if the percentage is set at 80%

sequence segments identical at ≥ 80% of their aligned positions are clustered

and their contributions are averaged in calculating pair frequencies. A con-

sequence of clustering is that the contribution of closely related segments to

the frequency table is reduced. Varying the clustering percentage in this way

leads to a family of matrices. The matrix derived from a database of blocks

in which sequence segments that are identical at ≥ 80% of aligned residues

are clustered is referred to as BLOSUM 80, and so forth.

Gonnet et al. [21] determined empirical probabilities of mutations between

amino acid by matching an entire protein sequence database with 8,344.353

amino acid residues using a Needleman Wunsch algorithm. Each sequence

was compared against the entire database, such that 1.7x106 subsequence

matches resulted for significant alignments. The key to matching an entire

database in a reasonable time was the reorganization of the sequence data

by indexing on a patricia tree [22] preceding the application of the Needle-

man Wunsch algorithm. In an indexed database, pairs of identical sequences

are found instantaneously because they lie together on the tree. Similar se-

quences lie near each other on the tree. After exhaustive matching of the

database and several rounds of refinement the remaining matches, each op-

timally aligned, were used to calculate new mutation data matrices and a

model for scoring gaps.

For each of the matrix series introduced above a set of scoring matrices for

different distances is provided by probA (see Table 1). probA provides the
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Table 1: Scoring Matrices in probA

matrix series PAM distance a / percentage identity b

Gonnet series 40 80 120 160 250 300 350 a

PAM series 20 60 120 350 a

BLOSUM series 80 62 50 30 b

a PAM distance is used for the PAM and the Gonnet series
b percentage identity is used for the BLOSUM series

options to either select one of the matrix series or to pick out a single sub-

stitution matrix. To select one of the matrix series use the command line

option -score matrix [name] with the first three letters specifying the ma-

trix series of choice as the argument (e.g. -score matrix gon; specifies the

Gonnet matrix series). The default matrix series is the Gonnet series. In

case a matrix series was selected probA computes an initial alignment us-

ing the substitution matrix gonnet init. [21]. The matrix gonnet init. was

compiled for protein pairs separated by a PAM distance between 6.4 and 100

and extrapolated by exponential fitting to a PAM distance of 116.5. It was

selected for the initial alignment because it performed best in a comparison

of different amino acid exchange matrices done by Vogt et al. [68]. The ini-

tial alignment is then used to estimate the PAM distance (or the percentage

identity) of the input sequences. The estimated PAM distance (or percent-

age identity) is then used to select the scoring matrix for this evolutionary

distance. To select one specific matrix directly, use the command line op-

tions -score matrix [name] to specify the matrix series and -pam [value]

to particularize the PAM distance (or the percentage identity)(e.g. the com-

bination -score matrix gon -pam 80 ; specifies the Gonnet 80 matrix).
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3.3.2 Gap penalties for Protein Scoring Matrices

The sensitivity of protein sequence alignments depends not only on the qual-

ity of the scoring matrix used, but is also strongly dependent on gap penalties.

Gap penalties have to be optimized for the evolutionary distance of each ma-

trix to achieve maximal performance. Vogt et al. [68] used a set of amino

acid sequences matched by superposition of known protein tertiary topolo-

gies to test the alignment accuracy of different matrix-penalty combinations.

Vogt et al. observed that the behavior of a Needleman Wunsch algorithm

changed drastically if the utilized scoring matrices contains only positive val-

ues or positive and negative values. The effect of a changed matrix offset

can be neutralized by changing the gap extension penalty if terminal gaps

are penalized similar to gaps in the interior of the alignment. If terminal

gaps are not penalized the performance of a Needleman Wunsch algorithm

depends on the matrix offset. In our program the user can specify if ter-

minal gaps are penalized similar to gaps in the interior of the alignment or

not (see 3.3.3). We therefore provide substitution matrix variants with only

positive values as well as the original matrices with positive and negative

values. Matrices containing positive and negative scores were made positive

by subtracting the smallest value in the matrix from all elements. Table 2

lists the gap penalties used for all available scoring matrices.

3.3.3 Terminal Gaps

In most dynamic programming applications, gap opening and gap extension

penalties are applied equally at every position in the sequence, regardless of

the location of the gap, except for terminal gaps which are usually allowed

at no cost. Terminal gaps with no or low cost are particularly useful if two

sequences of very different lengths are aligned. In this case the usage of

terminal gaps with a neural or low score prevents that the alignment starts

or ends with one or only a few aligned residues separated from the rest of the

aligned residues by one extended gap. probA scores terminal gaps different

from gaps in the interior of the alignment. By default the score for terminal
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Table 2: Substitution matrices and gap penalties

+ \ – matrix all + matrix
score matrix

open ext. open ext.

Gonnet a init. 14.00 b 0.20 b 6.00 b 0.80 b

Gonnet c 40 25.730 d 1.396 d

80 23.492 d 1.396 d

120 22.183 d 1.396 d

160 21.255 d 1.396 d

250 19.814 d 1.396 d

300 19.225 d 1.396 d

350 18.727 d 1.396 d

PAM c 20 7.00 b 1.00 b 12.50 b 3.25 b

60 7.00 b 1.00 b 14.00 b 1.50 b

120 6.00 b 1.40 b 12.50 b 1.00 b

350 9.00 b 2.40 b 12.50 b 0.40 b

BLOSUM c 80 7.00 b 1.50 b 15.50 b 0.04 b

62 7.50 b 0.90 b 10.00 b 0.60 b

50 9.50 b 1.20 b 9.50 b 0.60 b

30 10.00 b 1.50 b 9.00 b 1.00 b

aMatrix Gonnet int. was published by Gonnet et al. [21]
bvalues for the gap penalties were taken from Vogt et al. [68]
cAll other matrices were copied from ClustalW [62, 31]
dGap penalties were calculated using Darwin [20]. Darwin
is a partially interpreted language tailored for bioinformatics
research. For the Gonnet matrix series no gap penalties for
all + matrices are available.
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gaps is zero. To change the cost of terminal gaps set the argument for the

command line option -endgaps [value] to the selected value. If you want to

score terminal gaps similar to gaps in the interior of the alignment use the

command line option -noEg.

3.3.4 Scoring Nucleic Acid Alignments

To score nucleic acid alignments an unitary matrix is applied, scoring 1 for

a match and zero for a mismatch. A gap open penalty of −3 and a gap

extension penalty of −1 is used.

3.4 Match Probabilities

probA calculates the partition function over all alignments of the two input

sequences. The partition function is then used to calculate the match prob-

ability of each match i, j between the two sequences (see 2.6, Equation 16).

The match probabilities are depicted as a dot plot. Figure 1 shows a dot

plot of the alignment between cytochrome c from skipjack tuna, Euthynnus

pelamis, (CCBN1) and Rhodospirillum rubrum cytochrome c2 (CCQF2R1).

In the dot plot regions of high sequence similarity are illustrated by large

black dots along or parallel to the diagonal of the dot plot. The size of

each dot is governed by the match probability of the match it represents. In

regions with lower sequence similarity many possibilities to align the input

sequences exists. In this case all possible matches are depicted as small dots,

which decrease in size with an increasing number of possibilities to align the

sequence fragments in this region.

In our work we introduced a variable factor T governing the relative weight

of alignment paths with different scores (see Equation 11, page 33). The

value of T can be controlled using the command line option -T [value]. The

default value for T is 1. At T → 0 optimal are generated preferentially. In-

creasing the value of T decreases the weight given to the optimal alignment.

1Codes are taken from the PIR protein sequence database [6].
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In the limit of T →∞ random alignments with a uniform probability distri-

bution are generated. The effect of the variation of T on match probabilities

is depicted in Figures 10 - 15, page 50. Figures 10 - 15 show the alignment

of cytochrome c from skipjack tuna (CCBN1) to Rhodospirillum rubrum cy-

tochrome c2 (CCQF2R1). For the alignment scoring matrix Gonnet 120 was

used. The value of T is given as caption of the figures. At low T values

reliable matches have the highest probabilities. Increasing the value of T

results in an increase of the probabilities of less reliable matches, whereas

the weights given to very probable matches decrease. In the limit of T →∞
match weights are equally distributed.

3.5 Stochastic Backtracking

The results of the partition function are used for stochastic backtracking. The

stochastic backtracking calculates a fairly distributed ensemble of possible

alignments (see 2.9, page 38). By default the stochastic backtracking returns

one stochastic alignment. To increase the number of alignments returned

use the command line option -N [number ]. probA returns each stochastic

alignment encoded as a string of digits to STDOUT. The representation

of alignments used by probA is different from the commonly used alignment

representation. Generally an alignment is represented as two strings of letters

written above each other. Similar or evolutionary related letters are written

in one column, this is refered to as a match or mismatch, respectively. If

letters of one string have been deleted in the other or if extra letters were

inserted in one of the strings a gap symbol ( - ) is used to indicate the missing

letters. An alignment is therefore explicitly described if the order of the two

sequences and, for every position of the alignments, the state of this position

is known. The states, which can be assigned to individual positions in an

alignment, are straightforward: let 1 code for a match, 2 for a mismatch, 3

for a missing letter (gap) in the lower string and 4 for a gap in the upper

string. An example of the output of probA is given in Figure 16.
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Figure 10: T = 0.008
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Figure 11: T = 0.3
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Figure 12: T = 0.5
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Figure 13: T = 0.7
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Figure 14: T = 1
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Figure 15: T = 10
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#optimal alignment

#

#long CPSGCTNF-KCA

#short CPTG--NYKKCA

#

# 112133124111

#

#parameters

#T = 1.00

#scoring matrix: gonnet_40;

#gap penalties open:-25.73, extend:-1.396000;

#endgap penalty: 0.00

#

#score of the optimal alignment = 38.04

#entropy of the stochastic ensemble = -36.46

#

#number of stochastic alignments = 1

#upper sequence

#long CPSGCTNFKCA

#lower sequence

#short CPTGNYKKCA

#

#S(A) Prob(A)

38.04 1.80e+11 112133121411

Exit 1

Figure 16: Example of the output of probA. The output begins with the optimal alignment

represented in the common way and as a string of digits: 1 match; 2 mismatch; 3 gap

in the lower sequence; 4 gap in the upper sequence. Next the parameters used for the

alignment are shown, follwowed by the score of the optimal alignment and the entropy

of the stochastic ensemble. After the number of the stochastic alignments the order of

the sequences in the stochastic alignments, which are represented as a strings of digits, is

given. For each stochastic alignment, the first value is the score of the alignment, S(A),

the second the probability of this alignemnt, Prob(A).
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4 Results

4.1 Entropy of Ensembles of Stochastic Alignments

Stochastic backtracking provides an ensemble of stochastic alignments dis-

tributed according to the probability of each alignment. In order to quantify

the diversity of alignments within the stochastic ensemble the entropy of the

ensemble was calculated. The entropy of a stochastic ensemble corresponds

to the difference between the score of the optimal alignment S(Aopt) and the

product of kT logZ:

∆Sensemble = S(Aopt)− kT lnZ

In our work we used a similarity scoring scheme to compare sequences. Recall

that good alignment scores are therefore positive, i.e. scores correspond to

negative energies. Thus the entropy of an ensemble of stochastic alignments

has always a negative value.

To compare the entropies of stochastic alignment ensembles random se-

quences of different lengths were generated and the mean entropy for each

length was calculated. This was done for protein as well as nucleic acid se-

quences. The entropy of a stochastic ensemble is dependent on the length

of the compared sequences as well as on their % identity. For each type of

polymer we calculated the mean entropies for stochastic ensembles of two

identical sequences and of two randomly generated sequences. The mean

% identity for random nucleic acid sequences is 41.1%, random protein se-

quences have a mean % identity of 13.3%. The results of this calculations

are depicted in Figure 17, which shows that identical sequences have low

entropy values. The optimal alignment dominates the stochastic ensemble,

only a small number of suboptimal alignments is generated. Sequences with

lower % identity values have noticeably higher entropy values. In this case

the optimal alignment accounts for only a small fraction of the stochastic en-

semble, the large majority of alignments are different suboptimal alignments.
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To test whether the results of alignments of random sequences can be trans-

ferred to biological sequences, the entropy of pairs of functionally similar

biological sequences of different length was calculated. The red downwards

pointing triangles in Figure 17 denote the entropy of stochastic ensembles of

different alignments of tRNA sequences. The % identity of this sequences

varies between between 68% and 43%. The entropy values fluctuate around

the curve calculated from the alignments of random sequences. The devi-

ations from the curve of random sequences are caused by the different %

identities of the tRNA sequences and also by the length differences between

the tRNA sequences. The random sequences were all of the same length, dif-

ferences in sequence length increases the entropy of the stochastic ensemble.

The results for alignments of 5S RNA are indicated by red squares. Most of

the alignments have a % identity between 40% to 50% and their entropies os-

zillate around the random sequence curve. The outlier value with an entropy

of −3.9 (in the plot the sign of the entropy values was reverted) correspond

to an alignment of sequences with 60% identity. The red stars point at the

alignments of RNase P genes. The mean % identity of this sequences is 46%,

the values are within the range of the values for random sequences. The same

is true for the entropies of the partial TFIIA,E,D genes which are indicated

by red upwards pointing triangles. The 16S rRNAs, which are referred to

by red circles, have high identities (between 60% to 90%), this is reflected in

low entropy values for these stochastic ensembles. The data from biological

sequences are in good agreement with the results from stochastic ensembles

of random sequences.

4.2 Generation of a 3D structure alignment

As an application of the algorithm the alignment between leghaemoglobin

from yellow lupin [27], Lupinus luteus, (1GDJ2) and chain A of human de-

oxyhaemoglobin [13] (2HHB A2) was analysed. For this analysis 1 million

2protein codes are those in Protein Data Bank (PDB), http://www.rcsb.org/pdb/
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Figure 17: Entropy of an ensemble of stochastic alignments. The blue lines correspond

to the mean entropies of protein sequences. The upper blue curve shows the entropies

for alignments of two random protein sequences. The lower blue curve for alignments

of two identical sequences. The red curves are for nucleic acids. Again the upper curve

shows the values for two random sequences, the lower for identical sequences. The red

symbols indicate entropies for alignments of different biological sequences. As stated in

the text entropy values for similarity alignments have negative score. In order to obtain a

graph that corresponds to thermodynamic conventions the sign of the entropy values was

reversed.
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stochastic alignments between 1GDJ and 2HHB A were generated. To de-

termine the reliability of the alignments, they were compared to an align-

ment based on the three-dimensional (3D) structures of these molecules. The

global 3D alignment of two proteins has been characterized as NP hard [43].

Methods to find 3D alignments use approximations to make the problem

computationally tractable. There is no exact solution to the protein struc-

ture alignment problem, but only the best solution for the heuristics used in

the calculation. Therefore different heuristics were applied for the generation

of the 3D structure alignment to reduce the influence of the various heuristic

methods. The underlying assumption was that a region that is identically

aligned by various methods is, in fact, reliably aligned.

1GDJ and 2HHB A are dissimilar in sequence, the pairwise identity is 14 %,

but rather similar in structure (see Figure 18). The quality of the crystal

structures of 1GDJ and 2HHB A were examined using the WHAT CHECK

program [34], then three-dimensional (3D) structure alignments of the two

proteins were calculated.

For the calculation of pairwise 3D structure alignments of the two proteins we

employed different Web-accessible structure alignment programs to extract

reliably aligned regions. The different structure alignment programs apply

distinct methods to align 3D structures. The subsequent paragraphs contain

a short description of the structure alignment methods used, in order to give

an overview of employed heuristics.

The Combinatorial Extension (CE) [57] method uses similarity in local ge-

ometry of Cα positions to generate structure alignments. Global features,

such as overall topology, are not employed. Structure alignments utilizing

CE are available via the Web at http://cl.sdsc.edu/ce.html. The CE

algorithm calculates protein structure alignments by incremental combina-

torial extension (CE) of the optimal path defined by aligned fragment pairs

(AFPs). Each AFP confers geometric similarity between two fragments of Cα

positions. Combinations of AFPs that represent possible continuous align-

ment paths are selectively extended or discarded leading to a single optimal
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Figure 18: 3D structure superposition of 1GDJ and 2HHB A generated by vmd [35]. 1GDJ

is colored blue, 2HHB A is colored red.
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alignment.

TOP and COMPARER both utilize topological features for the computation

of 3D structure alignments: TOP [45, 44] is a protein topological comparison

program which detects structure similarities between two proteins. It super-

imposes two protein structures automatically without any previous knowl-

edge of sequence alignment. TOP identifies the residues that share similar po-

sitions of both main-chain and side-chain atoms. Two protein structures can

be compared via the Web at http://bioinfo1.mbfys.lu.se/TOP/webtop.html.

COMPARER [53] defines general topological equivalence in protein struc-

tures by a procedure involving comparison of properties and relationships

through simulated annealing and dynamic programming. For protein struc-

ture superposition the DiCE structure alignment program (unpublished) is

used. COMPARER on-line from Robert Steward is available on the Web at

http://www-cryst.bioc.cam.ac.uk/~robert/cpgs/COMPARER

SARF2 and MATRAS employ secondary structure information to generate

structure alignments: SARF2 [1] detects 3D similarities of the backbone frag-

ments considering only the protein’s secondary structure elements (SSEs), no

topological restrictions are used. The SARF2 algorithm consists of four steps:

In the first step Cα-traces are used to assign secondary structure elements

(SSEs). The fragment of the Cα-trace is assigned a particular secondary

structure if it superimposes with a small enough rmsd to one of the proto-

types of the α-helix and the β-strand along the protein backbone [64]. In the

next step distance and angle constrains are used to filter out superimposable

pairs of SSEs. Then the largest ensemble of the compatible pairs of SSEs is

searched. The last step comprises extension and refinement of the matches

by an iterative procedure. Structure alignments using SARF2 are available

on the Web at http://www-lmmb.ncifcrf.gov/~nicka/run2.html.

MATRAS by Kawabata and Nishikawa [39] proposes a novel theory to eval-

uate protein structure similarity, which is based on the Markov transition

model of evolution. The similarity score between structures i and j is de-

fined as log(P (j → i)/P (i)), where P (j → i) is the probability that structure
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j changes to structure i during the evolutionary process, and P (i) is the prob-

ability that structure i appears by chance. MATRAS was developed using

these scores. It employs a hierarchical alignment algorithm, in which a rough

alignment is first obtained by SSEs, and is then improved with more detailed

functions. Pairwise 3D alignment using MATRAS is available on the Web at

http://bongo.lab.nig.ac.jp/~takawaba/Matras pair.html.

The 3D structure alignments computed by the different on-line programs

displayed 3 regions which were aligned without ambiguity. A region was

accepted as reliably aligned if at least four of the five structure alignment

programs used, identified this region as aligned and non of the programs

disagreed with the alignment of this region. The reliably aligned regions

are position 3 to 44 in 1GDJ with position 2 to 43 in 2HHB A, position 90

to 98 in 1GDJ with position 80 to 88 in 2HHB A and position 101 to 150

in 1GDJ with position 92 to 140 in 2HHB A. Figure 19 shows the different

structure alignments and the reliably aligned regions extracted using the

procedure described earlier. In the structure alignments regions that are non-

ambiguously aligned are colored yellow. In the consensus reliably aligned

region are indicated in red. About 65% of the position of the consensus

were reliably aligned. In the regions that are not colored in Figure 19 no

consistent alignment exists, these regions were not considered. The reliably

aligned regions in the consensus of Figure 19 were used as a standard measure

of reliability in the examination of an ensemble of stochastic alignments.



4
R

e
s
u
l
t
s

5
9

CE ------QAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSFLKGTSEVPQNN-PELQAHAGKVFKLVYEAAIQLE

------DKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYF--PHFDLSHGSAQVKGHGKKVADALTNAVAHV----

TOP 6.7 --LTE-QAALVKSSWEEFN-----HTHRFFILVLE-APAAK----------------------HAGK-------------

--LSP-DKTNVKAAWGKVG-----YGAEALERMFL-FPTTK----------------------KVAD-------------

SARF2 --LTESQAALVKSSWEEFNANI-KHTHRFFILVLEIAPAAKDLF----KGTSEVP--NPELQAHAGKVFKLVYE------

--LSPADKTNVKAAWGKVGAHA-EYGAEALERMFLSFPTTKTYF----FDLSHGS--K-GHGKKVADALTNAVA------

MATRAS -ALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSFLKGTSE-VPQNNPELQAHAGKVFKLVYEAAIQLE

-VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFD-----LSHGSAQVKGHGKKVADALTNAVAHV-

COMPARER GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSFLKGTSE-VPQNNPELQAHAGKVFKLVYEAAIQLE

-VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFD-----LSHGSAQVKGHGKKVADALTNAVAHVD

consensus GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSKLKGTSEVPQNN-PELQAHAGKVFKLVYEAAIQLE

-VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYF--PHFDLSHGSAQVKGHGKKVADALTNAVAHV----

CE VTGVVVTDATLKNLGSVHV-SKGVADAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMD---

----DDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR---

TOP 6.7 ------------NLG--------VADAHFPVVKEAILKTIKEVVG-KWSEELNSAWTIAYDELAIVIKKEM----

------------ALS--------VDPVNFKLLSHCLLVTLAAHLP-EFTPAVHASLDKFLASVSTVLTSKY----

SARF2 ----------LKNLGSVHV-SKGVADAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMD---

----------LSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR---

MATRAS VTGVVVTDATLKNLGSVHVS-KGVADAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMD---

--DDMPNA--LSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR---

COMPARER VTGVVVTDATLKNLGSVHVSK-GVADAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMDDAA

D-----MPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR---

consensus VTGVVVTDATLKNLGSVHV-SKGVADAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMDDAA

----DDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR---

Figure 19: Reliably aligned region were extracted from 5 pairwise structure alignments computed with different on-line 3D structure alignment

programs. For each pairwise alignment the upper sequence is 1GDJ, the lower 2HHB A. The structure alignment program used is indicated in the

first column. The second column displays the structure alignments, reliably aligned regions are indicated in yellow. The lowest pairwise alignment

of each block indicates the consensus alignment, reliably aligned residues are colored red. The alignment in the regions were no consistent alignment

between the different structure alignment programs exists is like in the structure alignment generated with CE.
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4.3 Evaluation of the stochastic alignment space

To evaluate the stochastic alignment space an ensemble of 1 million stochas-

tic alignments between sequences 1GDJ and 2HHB A was generated. For

the computation of the stochastic alignments scoring matrix Gonnet 300 was

used. The variable T (see equation 11) was set to 1. The penalty for opening

a gap was 19.225, the gap extension penalty 1.396 (see table 2, page 47).

Terminal gaps were treated differently from gaps inside the alignment. For

terminal gaps a score of zero was applied.

To get an overview of the stochastic alignment space the frequency of each

alignment was determined. Of the 1 million stochastic alignments generated

2.48% have a score that lies within 1kT of the score of the optimal align-

ment. The frequency of different stochastic alignments is shown in Figure 20.

The number of identical alignments generated by stochastic backtracking in-

creases noticeably with increasing score of the alignment. However relatively

high numbers (more than 50) of identical alignments are only generated if

the score of the alignment is in the range of 1kT from the optimal alignment.

The frequency of identical alignment decreases exponentially with decreas-

ing score. Around a score of 40 the maximal number of identical alignments

generated drops to about 20. Below a score of 30 each alignment is only gen-

erated once or twice and below a score of 0 each alignment is generate only

once. The insert in Figure 20 shows that many different alignments with the

same score are found. This alignments have different frequencies as well as

varying % identities to the structure alignment.

The match probability distribution that governs the selection of the stochas-

tic alignments was analysed to determine the correlation between the prob-

ability of a match and the appearance of this match in the structure align-

ment. The dot plot was generated using the alignment conditions described

above. Figure 21 shows the dot plot of the match probabilities for the com-

parison between lupin leghaemoglobin, 1GDJ, and chain A of human de-

oxyhaemoglobin, 2HHB A. The dot plot displays three region of high match

probabilities. The region of high match probabilities at the N-terminus of
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Figure 20: Frequencies of stochastic alignments with scores in the range of 30 < score ≤
Sopt are shown. Below a score of 30 each alignment is generated maximal 3 times, most

alignments are only found once or twice. Alignments with scores < 0 were generally

generated only once. In the insert alignments with scores between 40 and 41 are shown.

Each square in the insert represents one alignment. It is clearly visible that many different

alignments with the same score are generated. These alignments vary not only in respect

to their frequency, they also have different degrees of similarity to the structure alignment.
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both sequences, starting in the upper left corner of the dot plot and pro-

ceeding to about position 45 of both sequences, as well as the region of high

match probabilities at the C-terminus, starting with a match of position 102

of 1GDJ and position 93 of 2HHB A and proceeding to the C-terminal end

of sequence 2HHB A at the lower right corner of the dot plot, are in good

agreement with the structure alignment. In the middle of the dot plot a third

region of high match probabilities emerges. In this region more alternatives

to the matches with high match probabilities exists. The different structure

alignments in Figure 19 show no consistent solution in this region. The par-

tial agreement between the structure alignment and the dot plot of match

probabilities demonstrates that regions of high match probabilities can iden-

tify reliably aligned regions. It is however important to take into account

the number and probabilities of alternative matches in the vicinity of each

match.

The results of the dot plot of match probabilities were compared to a null

model, which assumes that the two sequences are unrelated. To generate

the null model, the sequence of residues in 1GDJ and 2HHB A were shuf-

fled to produce randomized sequences with the same overall composition as

the original sequence. The randomized sequences were used to compute a

match probability dot plot and 1 million stochastic alignments. The dot plot

of the match probabilities after shuffling 1GDJ and 2HHB A is depicted in

Figure 22. In Figure 22 no regions of high match probabilities exists. For

each position of one of the two sequences a multitude of possible matches to

different positions of the other sequence can be found. The comparison of

the match probability dot plot of the null model to the dot plot of probabili-

ties of all possible matches between 1GDJ and 2HHB A emphasizes the fact,

that match probability dot plots reveal conserved features between related

sequences.

Next we examined how the stochastic alignments are distributed in respect

to the % identity with the structure alignment. Figure 23 shows that the

vast majority of the stochastic alignments exhibit more than 60% identity to
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Figure 21: Dot plot of the match probabilities for the comparison between lupin

leghaemoglobin, 1GDJ, and chain A of human deoxyhaemoglobin, 2HHB A.
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Figure 22: Dot plot of the match probabilities after shuffling 1GDJ and 2HHB A.
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Figure 23: Distribution of stochastic alignment with different % identities to the structure

alignment. The red line indicates the position of the optimal alignment.
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the structure alignment. The distribution of the number of alignment with a

certain % identity to the structure alignment shows a sharp peak at 41.58 %

identity, corresponding the percentage of all reliably aligned residues of the

first reliably aligned fragment in Figure 19. The small peak at 50.5 % identity

to the structure alignment is in accordance with the sum of the percentages

of the first and the small second reliably aligned region. The sharp peak at

91.09% is commensurate to the sum of the percentages of the first and the

third reliably aligned region. The peaks in Figure 23 therefore correspond

to alignments that contain some of the reliable fragments of the structure

alignment. The reason for the higher number of alignments with % identities

to the structure alignment of 41.58%, 50.5% and 91.09% is easily visible in

Figure 24. Figure 24 shows that the reliably aligned fragments of the struc-

ture alignment have a significantly higher match probability than regions in

which no consistent structure alignment exists. The probability to generate

an alignments which contains whole fragments of the structure alignment is

therefore higher than the probability to include only some matches of one

of the reliably aligned region. Figure 24 depicts also the match probability

distribution in the optimal alignment. The optimal alignment exhibits only

87.13% identity to the structure alignment. The reason for the low identity

of the optimal alignment to our standard of truth is also visible in Figure 24.

Region of very high match probability exist at both termini of the sequences,

this regions are included in the optimal as well as in the structure alignment.

The fragment in the middle of each sequence, however, is not that easy to

align. The structure consensus contains only one match with a match prob-

ability > 0.4 in this region. The optimal alignment, however, includes a lot

of residues with a match probability > 0.4 in the alignment of this sequence

fragments. Figure 23 demonstrates the important contribution of suboptimal

alignments to the evolutionary correct solution to the alignment problem. In

the case of the alignment between 1GDJ and 2HHB A the optimal alignment

contains all residues with high match probabilities that are in agreement with

the construction of an alignment - but fails in retrieving the correct solution.
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A great number of near optimal and suboptimal alignments exists that bear a

greater resemblance to the structure alignment. However in the absence of a

standard of truth no mean exists to judge with ones of the many suboptimal

alignments provide a better solution than the optimal one.

To study the correlation between the % identity to the structure alignment

and the alignment store, the joint probability of getting an alignment with a

certain score and a certain % identity to the structure alignment was calcu-

lated. Figure 25 show that for low alignment scores and low % identities to

the structure alignment a direct correlation between the alignment score and

the % identity with the structure alignment exits. For a % identity higher

than 85%, however, this correlation does not exist any more. The optimal

alignment has a % identity of 87% and this fact causes the disappearece of

a correlation between the score of an alignment and the % identity to the

structure alignment. The highest scoring alignment with an identity to the

structure alignment has a score of 50.35, which is very similar to the score

of the optimal alignment, 52.97. However, alignments with a % identity of

100% can also score below 0. This demonstrates that the alignment score is

no absolute measure of the biological correctness of an alignment and that

a direct correlation between the score of an alignment and the evolutionary

correct solution does not exists.
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struct. aln. GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSKLKGTSEVPQNN-PELQAHAGKVFKLVYEAAIQLE

-VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYF--PHFDLSHGSAQVKGHGKKVADALTNAVAHV----

opt. aln. GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSFLKGTSEVPQNNPELQAHAGKVFKLVYEAAIQLEV

-VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF----DLSHGSAQVKGHGKKVADALTNAVAHVDD

struct. aln. VTGVVVTDATLKNLGSVHV-SKGVADAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMDDAA

----DDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR---

opt. aln. TGVVVTDATLKNLGSVHVSKGVAD--AHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMDDAA

MPNALSALSDLHAHKLRVDP------VNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR---

 0.9        0.8         0.7        0.6        0.5        0.4 1.0

Figure 24: Match probabilities in the 3D structure alignments and in the optimal alignment are indicated by different colors.

The color code for match probabilities are shown below the alignments. Reliably aligned regions of the structure alignment

are indicated by a black line above the alignment.
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alignment
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5 Conclusion and Outlook

Most alignment programs try to find the evolutionary correct solution of

the alignment problem by providing one optimal alignment. Alignment al-

gorithms, however, produce an “optimal alignment” also when applied to

sequences that are not related at all. It is therefore important to find a mea-

sure of the accuracy of an alignment. Statistical models of evolution or the

simulation of random mutation of a pair of initially related sequences were

employed to evaluate the accuracy of optimal alignments. This methods pro-

vide an overall measure of alignment accuracy but they do not provide any

information about regional differences of alignment quality. The probability

of substitutions and the overall mutation rate varies in different regions of

biological sequences. In our work we provide detailed information on what

parts of an alignment are reliably aligned and what part display a high degree

of ambiguity.

For the evaluation of the regional difference in the reliability of pairwise

alignments several methods have been used. In one approach the informa-

tion contained in near optimal and suboptimal alignments is used to detect

reliably aligned regions [55, 51]. One example of this method was provided

by Vingron and Argos [66]. They constructed suboptimal alignments by

computing the optimal alignment trough every possible match between two

sequences. Aligned sequences fragments were considered “stable” (reliably

aligned) if they appeared in the optimal as well as in near optimal align-

ments.

This approach for the construction of suboptimal alignment generates only

a limited sample of suboptimal alignments. Thus one can easily miss subop-

timal solutions that contribute significant to the evolutionary correct align-

ment.

An approach that takes into consideration the full set of suboptimal align-

ments is the calculation of the partition function of all alignments of two se-

quences. A modification of the dynamic programming algorithm commonly

used to calculate optimal alignments can be applied to calculate the partition



5 Conclusion and Outlook 71

function of all solutions of a search space. Miyazawa [49] was the first one

who used the partition function to compute the probability of each possible

match between two sequences.

In our work we developed an improved variation of a dynamic programming

algorithm for the calculation of the partition function: Dynamic program-

ming algorithms show an inherent ambiguity that is caused by the non-

uniqueness of an optimal solution and the particular recursion scheme by

which the search space is evaluated [18]. The ambiguity that arises from the

recursion scheme results in the generation of duplicate and non-canonical

solutions. If redundant or non canonical alignments are not excluded the

results of the partition function can be misleading. We used a variation of

a dynamic programming algorithms that employs an asymmetric recursion

scheme to avoid duplicate and non-canonical solutions. This is done by deter-

mining a fixed sequence of gaps if gaps in one sequence are adjacent to gaps

in the other one (see page 37). Furthermore we used the match probabilities

to implemented a stochastic backtracking. Stochastic backtracking provides

an ensemble of possible alignments with a distribution corresponding to the

probability of each individual alignment.

To evaluate the performance of our program we calculated the entropy of the

stochastic ensemble. The entropy of the stochastic ensemble is a measure

of the diversity of the alignments generated by stochastic backtracking. For

closely related sequences one expects to obtain a stochastic ensemble that is

dominated by the optimal alignment between the two sequences. The diver-

sity of the stochastic ensemble as well as its entropy should be low. If two

sequences are very different many possibilities to align them exist resulting in

a high entropy of the stochastic ensemble. We computed the mean entropy

of alignments of two random as well as two identical sequences for different

sequence lengths (see Figure 17) and found the expected correlation between

the entropy of the stochastic ensemble and sequence homology. Furthermore

we showed that this relationship between sequences similarity and entropy is

also true for biological sequences (see Figure 17).
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To get on overview of the stochastic alignment space we analysed the align-

ment between leghaemoglobin from yellow lupin, Lupinus luteus, (1GDJ) and

chain A of human deoxyhaemoglobin (2HHB A). The pairwise identity be-

tween 1GDJ and 2HHB A is low but they share a high structural similarity.

For this analysis one million stochastic alignments were compared to a 3D

structure alignment. The structure alignment was constructed by extracting

reliably aligned regions from five different structure alignments generated by

various Web-accessible alignment programs (see page 56ff).

The ensemble of stochastic alignments between lupin leghaemoglobin and

chain A of human deoxyhaemoglobin is dominated by suboptimal alignments

with a score well below the score of the optimal alignment. Only 2.48% of

all alignments have a score within 1kT of the optimal alignments. The fre-

quency of identical stochastic alignments increases exponentially with the

score of the alignment. The vast majority of stochastic alignments has more

than 60% identity to the structural alignment (see Figure 23). The optimal

alignment, however, has only an identity of 87% to the structural alignment.

The stochastic ensemble contains many alignment with 100% identity to the

structure alignment, the highest scoring 100% identical alignment has a score

of 50.35, that is close to the score of the optimal alignment (Sopt = 52.97),

the lowest scoring alignment with 100% identity to the structure alignment

has a score of −131.31. The number of alignments with different % identi-

ties to the structure alignment shows a notable increase at % identities that

correspond to alignments which contain some of the the reliable aligned re-

gions of the structure alignment. The preferential generation of alignments

that contain reliable aligned parts of the structure alignments is a result of

the higher match probabilities in this regions. This is clearly visible in Fig-

ure 24 which shows the match probability distribution in the 3D structure

and the optimal alignment. Nearly all matches in the reliably aligned frag-

ments of the 3D structure alignment have a match probability > 0.4, whereas

the regions of the structure alignment for which no reliable alignment exists

contain only one match with a probability > 0.4. Regarding the apparent
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correlation between higher match probabilities and regional alignment reli-

ability in the structure alignment it is tempting to use match probability

as a measure of regional reliability. However this obvious correlation be-

tween match probability and reliability vanishes at closer inspection of the

optimal alignment. The optimal alignment, which has an identity of 87%

to the structure alignments, contains many matches with probabilities be-

tween 0.4 to 0.7 that are not included in the structure alignment. Most of

this matches reside in regions for which no consensus exits in the structure

alignment. However a run of matches with probabilities between 0.5 to 0.6

overlaps with a run of matches of lower probability that are included in the

structure alignment. Our example indicates that contiguous series of matches

with match probabilities > 0.7 are good candidates for reliable aligned re-

gions. To determine the correlation between match probabilities < 0.7 and

the reliability of aligned fragments containing matches in this probability

range further studies are necessary.

We also examined the correlation between the score of an alignment and its

% identity to the structure alignemt (see Figure 25). In our example no cor-

relation between alignment score and % identity to the structure alignment

was found. The scores for alignments with 100% identity to the structure

alignment varied between 50.35 and −131.32.

In our work indicates a correlation between regions of high match probability

and reliably aligned regions. A correlation between match probability and

alignment quality was also found by Miyazawa [49], who used a match prob-

ability threshold of > 0.5 for the prediction of reliable aligned regions. This

threshold did not work for the example we calculated. However the scoring

system, in particular the scores for gaps, are different in Miyazawa’s work,

which could cause different match probability values. To study the extent

of correlations between reliable aligned regions and match probability more

examples alignments of sequences of known structure are necessary. It would

also be interesting to examine if there is any correlation between regions

of high match probability and functionally conserved elements. Furthermore
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our program can be expanded to the calculation of multiple alignments. Mul-

tiple alignments of different suboptimal alignments of the same two sequences

as well as multiple alignments of related sequences can help to determine re-

liably aligned regions.
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