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Overview

what’s a nodal domain?

discrete nodal domain theorem

(possible) applications of nodal domains

The number of nodal domains of
trees
hypercubes
cographs
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Nodal Domains
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Nodal Domains
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Applications of Eigenvectors and Nodal Domains

Graph Drawing

Graph Partitioning

Graph Coloring

Cross-correlations of World Financial Indices
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Generalized Laplacian Matrix

generalized Laplacian matrix
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Babel Tower of Laplacians

generalized Laplacian is also called:
(Discrete) Schrödinger operator

important generalized Laplacian matrices:

-Adjacency matrix

Laplacian matrix
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Discrete Nodal Domain Theory

Eigenvalues of generalized Laplacian in non-decreasing
order:

� � � � � � � � � � �
� � � � � � � � � � � � � � � � 	 � �
� � � � 	
� � � � � �


Discrete nodal domain theory
(Davies, Gladwell, Leydold, Stadler 2001)

Each eigenvector of

� � with multiplicity 
 has at most

� � 
 �
�

nodal domains.

(Discrete version of Courant’s nodal domain theory for

Riemannian manifolds)
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Example
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Example
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Tree
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Max Nodal Domains of a Tree

Input: Tree with � vertices,
generalized Laplacian matrix of the tree,
and eigenbasis of eigenvalue

�

.

Output: An eigenvector of

�

with maximum number of nodal domains.
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Max Nodal Domains of a Tree

Input: Tree with � vertices,
generalized Laplacian matrix of the tree,
and eigenbasis of eigenvalue

�

.

Output: An eigenvector of

�

with maximum number of nodal domains.

We can find such an eigenvector in

� � �
� �

time.
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Main Idea

First a special case:
If

� � has an eigenvector � without vanishing coordinate

� � � is a simple and � has exactly

�

nodal domains
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Main Idea

First a special case:
If

� � has an eigenvector � without vanishing coordinate

� � � is a simple and � has exactly

�

nodal domains

Second:

�

with multiplicity 
 � �

,

� Eigenbasis � � � � � � �
� � has form:

0

0
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Min Nodal Domains of Tree

What about the minimum number of
nodal domains of a tree?
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Min Nodal Domains of Tree

What about the minimum number of
nodal domains of a tree?

Finding an eigenvector of the eigenvalue
�

with

minimum number of nodal domains is NP-complete.
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NP-complete
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NP-complete
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Hypercubes ( �)
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Min Nodal Domains of Hypercubes

The first half of the eigenvalues of the hypercube
�
� has an

eigenvector with two nodal domains.

Idea: The partition of vertices into two sets

�

and

�

of
equal size such that each set

induces a connected �
� �

-regular subgraph
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Conjecturem

Conjecture:
All eigenvalues (except largest and second largest) of
hypercube

�
� have an eigenvector with two nodal domains.
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numerical experiments

some IQ-Test Sequences

Upper bounds on minimum number of nodal domains of
second largest eigenvalue:

� 2 3 4 5 6 7 8 9 10 11 12

� �

2 3 4 8 14 24 44 84 160 314 ??
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numerical experiments

some IQ-Test Sequences

Upper bounds on minimum number of nodal domains of
second largest eigenvalue:

� 2 3 4 5 6 7 8 9 10 11 12

� �

2 3 4 8 14 24 44 84 160 314 ??

Lower bounds on maximum number of nodal domains:

� 2 3 4 5 6 7 8 9 10

� � � � � � �
� 2 4 8 16 32 64 128 261 ??

� � � � � � �
� 2 2 4 10 18 34 57 72 ??
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For which graphs are the nodal domains easy?
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For which graphs are the nodal domains easy?

Nodal Domains are easy for Cographs

Graph cograph if it has no induced path

�
�

not cograph cograph
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