Graph Laplacians and Nodal Domains

Türker Bıyıkoğlu

Graph Laplacians and Nodal Domains – p.1/20

Overview

- what's a nodal domain?
- discrete nodal domain theorem
- (possible) applications of nodal domains
- The number of nodal domains of
 - trees
 - hypercubes
 - cographs

Nodal Domains

x=(-1,4.5,3,-2,0,-1,-3,2,-4,0,2.5,-3)

Graph Laplacians and Nodal Domains – p.3/20

Nodal Domains

x=(-1,4.5,3,-2,0,-1,-3,2,-4,0,2.5,-3)

Graph Laplacians and Nodal Domains – p.4/20

Applications of Eigenvectors and Nodal Domains

- Graph Drawing
- Graph Partitioning
- Graph Coloring
- Cross-correlations of World Financial Indices

Graph Laplacians and Nodal Domains – p.5/20

Generalized Laplacian Matrix

generalized Laplacian matrix L of a graph is symmetric

$$L_{xy} = \begin{cases} \text{arbitrary} & \text{if } x = y \\ 0 & \text{if } x \text{ and } y \text{ are not adjacent} \\ \text{negative} & \text{if } x \text{ and } y \text{ are adjacent} \end{cases}$$

Graph Laplacians and Nodal Domains – p.6/20

Babel Tower of Laplacians

generalized Laplacian is also called: (Discrete) Schrödinger operator

important generalized Laplacian matrices:

- -Adjacency matrix
- Laplacian matrix

Graph Laplacians and Nodal Domains – p.7/20

Discrete Nodal Domain Theory

Eigenvalues of generalized Laplacian in non-decreasing order:

 $\lambda_1 \leq \cdots \leq \lambda_{k-1} < \lambda_k = \lambda_{k+1} = \cdots = \lambda_{k+r-1} < \lambda_{k+r} \leq \cdots \leq \lambda_n$

Discrete nodal domain theory (Davies, Gladwell, Leydold, Stadler 2001)

Each eigenvector of λ_k with multiplicity r has at most k + r - 1 nodal domains.

(Discrete version of Courant's nodal domain theory for Riemannian manifolds)

Graph Laplacians and Nodal Domains – p.8/20

Example

Graph Laplacians and Nodal Domains – p.9/20

Example

Graph Laplacians and Nodal Domains – p.9/20

Tree

Graph Laplacians and Nodal Domains – p.10/20

Max Nodal Domains of a Tree

Input: Tree with *n* vertices, generalized Laplacian matrix of the tree, and eigenbasis of eigenvalue λ .

Output: An eigenvector of λ with maximum number of nodal domains.

Graph Laplacians and Nodal Domains – p.11/20

Max Nodal Domains of a Tree

Input: Tree with *n* vertices, generalized Laplacian matrix of the tree, and eigenbasis of eigenvalue λ .

Output: An eigenvector of λ with maximum number of nodal domains.

We can find such an eigenvector in $O(n^2)$ time.

Graph Laplacians and Nodal Domains – p.11/20

Main Idea

First a special case:

If λ_k has an eigenvector x without vanishing coordinate $\Rightarrow \lambda_k$ is a simple and x has exactly k nodal domains

Graph Laplacians and Nodal Domains – p.12/20

Main Idea

First a special case:

If λ_k has an eigenvector x without vanishing coordinate $\Rightarrow \lambda_k$ is a simple and x has exactly k nodal domains

Second: λ with multiplicity $r \ge 2$, \Rightarrow Eigenbasis e_1, \ldots, e_r has form:

Min Nodal Domains of Tree

What about the minimum number of nodal domains of a tree?

Graph Laplacians and Nodal Domains – p.13/20

Min Nodal Domains of Tree

What about the minimum number of nodal domains of a tree?

Finding an eigenvector of the eigenvalue λ with minimum number of nodal domains is NP-complete.

Graph Laplacians and Nodal Domains – p.13/20

NP-complete

"I can't find an efficient algorithm, I guess I'm just too dumb."

Graph Laplacians and Nodal Domains – p.14/20

NP-complete

"I can't find an efficient algorithm, but neither can all these famous people."

Graph Laplacians and Nodal Domains – p.15/20

Hypercubes (*H_n*)

Graph Laplacians and Nodal Domains – p.16/20

Min Nodal Domains of Hypercubes

The first half of the eigenvalues of the hypercube H_n has an eigenvector with two nodal domains.

Idea: The partition of vertices into two sets A and B of equal size such that each set

induces a connected n/2-regular subgraph

Graph Laplacians and Nodal Domains – p.17/20

Conjecturem

Conjecture:

All eigenvalues (except largest and second largest) of hypercube H_n have an eigenvector with two nodal domains.

Graph Laplacians and Nodal Domains – p.18/20

numerical experiments

some IQ-Test Sequences

Upper bounds on minimum number of nodal domains of second largest eigenvalue:

n	2	3	4	5	6	7	8	9	10	11	12
ND	2	3	4	8	14	24	44	84	160	314	??

Graph Laplacians and Nodal Domains – p.19/20

numerical experiments

some IQ-Test Sequences

Upper bounds on minimum number of nodal domains of second largest eigenvalue:

n	2	3	4	5	6	7	8	9	10	11	12
ND	2	3	4	8	14	24	44	84	160	314	??

Lower bounds on maximum number of nodal domains:

n	2	3	4	5	6	7	8	9	10
$ND_{\lambda=2n-2}$	2	4	8	16	32	64	128	261	??
$ND_{\lambda=2n-4}$	2	2	4	10	18	34	57	72	??

Graph Laplacians and Nodal Domains – p.19/20

For which graphs are the nodal domains easy?

Graph Laplacians and Nodal Domains – p.20/20

For which graphs are the nodal domains easy?

Nodal Domains are easy for Cographs

Graph cograph if it has no induced path P_4

Graph Laplacians and Nodal Domains – p.20/20