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Overview

-

# what’s a nodal domain?
# discrete nodal domain theorem
# (possible) applications of nodal domains

#® The number of nodal domains of
s trees
» hypercubes
s cographs
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Nodal Domains
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Nodal Domains
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-

Applications of Eigenvectorsand Nodal Domains

-

o Graph Drawing
# Graph Partitioning

# Graph Coloring
® Cross-correlations of World Financial Indices
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Generalized Laplacian Matrix
- -

generalized Laplacian matrix L of a graph is symmetric

arbitrary if z =1y
Lyy = 0 if =z andy are not adjacent
negative If z and y are adjacent

2 a (8 4 65 0)
—4 0 -1 -5
EXp. L=
2

65 -1 -9 0
\ 0 -5 0o 7 )
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Babel Tower of Laplacians

o N

generalized Laplacian is also called:
(Discrete) Schrddinger operator

Important generalized Laplacian matrices:
# -Adjacency matrix
# Laplacian matrix
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Discrete Nodal Domain Theory

o N

Eigenvalues of generalized Laplacian in non-decreasing
order:

ML 1 <A = Ak 1= = Ak 1 <Apgr S <y

Discrete nodal domain theory
(Davies, Gladwell, Leydold, Stadler 2001)

Each eigenvector of A, with multiplicity » has at most
k + r — 1 nodal domains.

(Discrete version of Courant’s nodal domain theory for

Riemannian manifolds)
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Tree

|
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Max Nodal Domainsof a Tree

o N

Input: Tree with n vertices,
generalized Laplacian matrix of the tree,
and eigenbasis of eigenvalue \.

Output: An eigenvector of A
with maximum number of nodal domains.
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Max Nodal Domainsof a Tree

o N

Input: Tree with n vertices,
generalized Laplacian matrix of the tree,
and eigenbasis of eigenvalue \.

Output: An eigenvector of A
with maximum number of nodal domains.

We can find such an eigenvector in O(n?) time.
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Main | dea

o N

First a special case:
If A, has an eigenvector x without vanishing coordinate
= \; IS a simple and z has exactly k£ nodal domains
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Main | dea
| -

First a special case:
If A, has an eigenvector x without vanishing coordinate
= \; IS a simple and z has exactly k£ nodal domains

Second: X\ with multiplicity r» > 2,
= Eigenbasis e, ..., e, has form:
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Min Nodal Domainsof Tree

o N

What about the minimum number of
nodal domains of a tree?
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Min Nodal Domainsof Tree

o N

What about the minimum number of
nodal domains of a tree?

Finding an eigenvector of the eigenvalue X with

minimum number of nodal domains is NP-complete.
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NP-complete

“‘I can’t find an efficient algorithm, I guess I’m just too dumb.”
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NP-complete

b

“‘I can’t find an efficient algoriihm, but neither can all these famous people.”
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Hypercubes (H,)
H,OK>5 T

H H, H,

n+1 —
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Min Nodal Domains of Hypercubes

o -

The first half of the eigenvalues of the hypercube H,, has an
eigenvector with two nodal domains.

ldea: The partition of vertices into two sets A and B of
equal size such that each set

iInduces a connected n/2-regular subgraph
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Conjecturem

-

Conjecture: T
All eigenvalues (except largest and second largest) of
hypercube H,, have an eigenvector with two nodal domains.
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numerical experiments

-

some 1Q-Test Sequences

Upper bounds on minimum number of nodal domains of
second largest eigenvalue:

n2 3 45 6 [ 8 9 10 11 12
ND |2 3 4 8 14 24 44 84 160 314 77
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numerical experiments

-

Upper bounds on minimum number of nodal domains of

some 1Q-Test Sequences

second largest eigenvalue:

n2 3 45 6 [ 8 9 10 11 12

ND |2 3 4 8 14 24 44 84 160 314 77

Lower bounds on maximum number of nodal domains:

n

2 3 4 5 o6 [ 8 9 10

ND)\:2n—2
NDy—2p_4

2 4 8 1o 32 64 128 261 77
2 2 4 10 18 34 ?7?

Lo
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o N

For which graphs are the nodal domains easy?

o |
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-

For which graphs are the nodal domains easy?
Nodal Domains are easy for Cographs

Graph cograph if it has no induced path Py

1 X

not cograph cograph
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