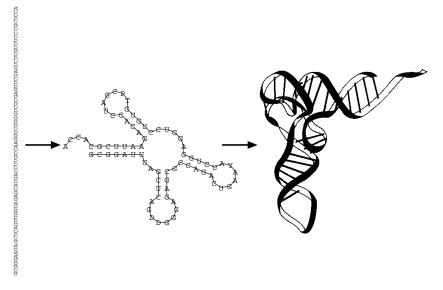
Sequence-Structure Relations of Single RNA Molecules and Cofolded RNA Complexes

Ulrike Mückstein

Institute for Theoretical Chemistry University of Vienna

Vienna, 2005

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●


Outline

Motivation Folding RNA Overview

Results RNA sequence to structure mapping Co-folding two RNA molecules

Discussion

RNA primary, secondary and tertiary structure

Outline

Motivation Folding RNA Overview

Results RNA sequence to structure mapping Co-folding two RNA molecules

Discussion

Relation between RNA sequences and their secondary structures

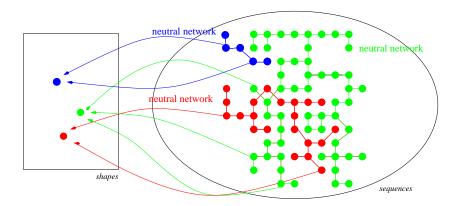
RNA sequence to structure mapping

 Evolutionary dynamics of an RNA population in a flow reactor

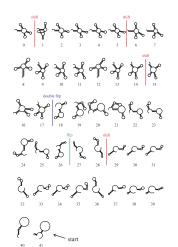
RNA-RNA interaction by co-folding two RNA molecules

Relation between RNA sequences and their secondary structures

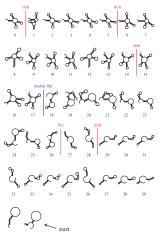
- RNA sequence to structure mapping
- Evolutionary dynamics of an RNA population in a flow reactor


RNA-RNA interaction by co-folding two RNA molecules

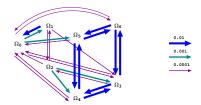
◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●


Relation between RNA sequences and their secondary structures

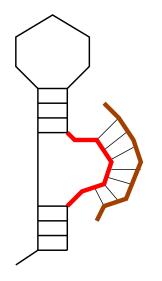
- RNA sequence to structure mapping
- Evolutionary dynamics of an RNA population in a flow reactor
- RNA-RNA interaction by co-folding two RNA molecules


RNA sequence to structure mapping

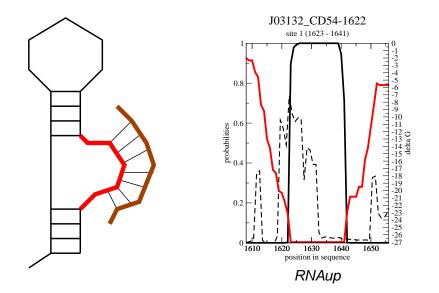
Evolutionary dynamics in a flow reactor



Evolutionary dynamics in a flow reactor


40 41

kind of tansition continous	discontinous	distance
a l a		Ω_0^{ham}
<mark>{{</mark> ,((((((())))).((((()))))	(((((())))).)).)).	Ω1 2
<mark>{{</mark> ,((((((())))).((((())))))	(((((())))))))))))))	Ω ₂ 2
.	(((((()))))	Ω ₃ 2
.	(((((())))). <mark>.</mark>)))))	Ω4 2
.		Ω5 2
.		Ω ₆ 2


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● のへで

Co-folding two RNA molecules

◆ロ〉 ◆御〉 ◆臣〉 ◆臣〉 「臣」 のへで

Co-folding two RNA molecules

Outline

Motivation Folding RNA Overview

Results RNA sequence to structure mapping Co-folding two RNA molecules

Discussion

More sequences than structures

- Few common and many rare structures
- Common structures form extended neutral networks

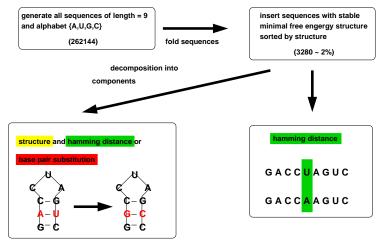
Shape space covering

- More sequences than structures
- Few common and many rare structures
- Common structures form extended neutral networks

Shape space covering

- More sequences than structures
- Few common and many rare structures
- Common structures form extended neutral networks

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●


- More sequences than structures
- Few common and many rare structures
- Common structures form extended neutral networks

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

Shape space covering

Exhaustive folding and enumeration of the sequence spaces $\mathcal{I}_{AUGC}^{(\ell=9)}$ and $\mathcal{I}_{AUGC}^{(\ell=10)}$

PostgreSQL Database

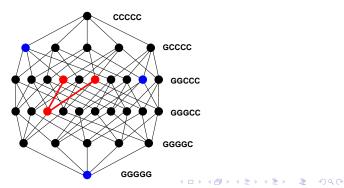
Stored Procedures

Vigl Graph Library

Vienna RNA package

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

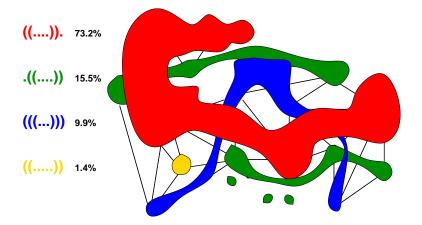
More sequences than structures


 $\begin{array}{ll} 3^\ell \text{ structures} < 4^\ell \text{ sequences} \\ (\left(\left(\left(\ \ldots \ \right) \ \right) \ \right) & \quad \text{GCGAUGCGC} \end{array}$

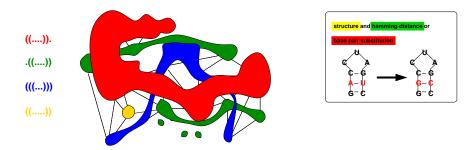

- stable mfe structure 3239 ~ 2.3%
- 4 different structures

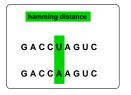
• $\mathcal{I}_{AUGC}^{(\ell=10)}$

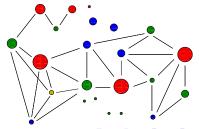
- stable mfe structure 40345 ~ 3.8%
- 9 different structures



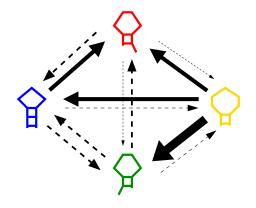
Few common and many rare structures


▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@


Common structures form extended neutral networks


◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

Shape space covering


((....)). .((....)) (((....)))

・ロト・日本・山田・ 山田・ 山口・

Shape space topology induced by the sequence-structure map

Discussion

 study topology of RNA sequence to structure mapping by exhaustive folding and enumeration of sequence spaces

 extended neutral networks allow a population of RNA molecules to explore sequence space by neutral drift

 asymmetric accessibility relations support evolutionary innovation

Discussion

- study topology of RNA sequence to structure mapping by exhaustive folding and enumeration of sequence spaces
- extended neutral networks allow a population of RNA molecules to explore sequence space by neutral drift

 asymmetric accessibility relations support evolutionary innovation

Discussion

- study topology of RNA sequence to structure mapping by exhaustive folding and enumeration of sequence spaces
- extended neutral networks allow a population of RNA molecules to explore sequence space by neutral drift
- asymmetric accessibility relations support evolutionary innovation

(日) (日) (日) (日) (日) (日) (日)

functional RNAs work by interacting with other RNAs

- Camille Stephan-Otto Attolini et al. studied the cofolding map of interacting RNA sequences:
 - the cofolding map admits large neutral networks and long neutral paths similar to the folding map of single RNA molecules

functional RNAs work by interacting with other RNAs

- Camille Stephan-Otto Attolini et al. studied the cofolding map of interacting RNA sequences:
 - the cofolding map admits large neutral networks and long neutral paths similar to the folding map of single RNA molecules

functional RNAs work by interacting with other RNAs

- Camille Stephan-Otto Attolini et al. studied the cofolding map of interacting RNA sequences:
 - the cofolding map admits large neutral networks and long neutral paths similar to the folding map of single RNA molecules

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

functional RNAs work by interacting with other RNAs

- Camille Stephan-Otto Attolini et al. studied the cofolding map of interacting RNA sequences:
 - the cofolding map admits large neutral networks and long neutral paths similar to the folding map of single RNA molecules

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Outline

Motivation Folding RNA Overview

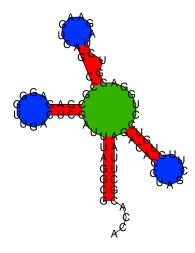
Results

RNA sequence to structure mapping Co-folding two RNA molecules

Discussion

◆□ > ◆□ > ◆ □ > ● □ >

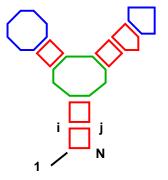
Outline


Motivation Folding RNA Overview

Results RNA sequence to structure mapping Co-folding two RNA molecules

Discussion

◆□ > ◆□ > ◆三 > ◆三 > ◆□ > ◆○ ◇ ◇ ◇


RNA Secondary Structure

- Hairpin Loops
- Interior Loops
- Multiloops
- Exterior Loop

(日)

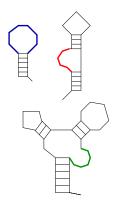
Loop decomposition of RNA Secondary Structure

►
$$F(S) = \sum_{L \in S} F_L$$
.

Basic Algorithms

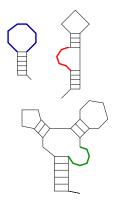
 McCaskill: Dynamic programming algorithm for calculation of the full equilibrium partition function Z for RNA secondary structure in O(N³)

Vienna RNA Package

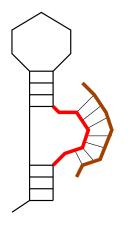

Basic Algorithms

 McCaskill: Dynamic programming algorithm for calculation of the full equilibrium partition function Z for RNA secondary structure in O(N³)

Vienna RNA Package


Complete ensemble of secondary structures

Probability of an unstructured region



Complete ensemble of secondary structures

Probability of an unstructured region

Probability of interaction in unstructured regions

Information provided by our algorithm

structural context of a binding site

► *P_u*[*i*, *j*] region [*i*, *j*] contains no secondary structure

location of possible binding sites P*[i, j] probability of a regional interaction

energetics of RNA-RNA interaction
 △G = △G_u + △G_h

Information provided by our algorithm

structural context of a binding site

► *P_u*[*i*, *j*] region [*i*, *j*] contains no secondary structure

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

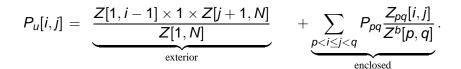
location of possible binding sites
 *P**[*i*, *j*] probability of a regional interaction

energetics of RNA-RNA interaction
 △G = △G_u + △G_b

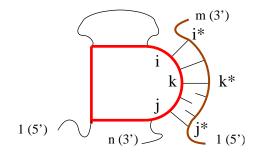
Information provided by our algorithm

structural context of a binding site

▶ P_u[i, j] region [i, j] contains no secondary structure


・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- location of possible binding sites
 - P*[i, j] probability of a regional interaction


- energetics of RNA-RNA interaction
 - $\blacktriangleright \Delta G = \Delta G_u + \Delta G_h$

$P_u[i, j]$ region [i, j] contains no secondary structure

Z^{i} Interaction of region [i, j] with region $[i^{*}, j^{*}]$

$$Z^{I}[i,j,i^{*},j^{*}] = \sum_{\substack{i < k < j \\ i^{*} > k^{*} > j^{*}}} Z^{I}[i,k,i^{*},k^{*}] e^{-\frac{1}{kT}I(k,k^{*};j,j^{*})}.$$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@

probability and optimal free energy of an interaction

conditional probability given that two molecules bind at all

$$\mathcal{P}^{*}[i,j] = \frac{Z^{*}[i,j]}{\sum_{k < l} Z^{*}[k,l]}. \qquad Z^{*}[i,j] = P_{u}[i,j] \sum_{i^{*} > j^{*}} Z^{l}[i,j,i^{*},j^{*}].$$

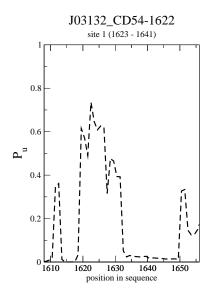
optimal free energy of a regional interaction

 $\Delta G_i = \min_{k \leq i \leq l} \{ \Delta G[k, l] \}. \qquad \Delta G[i, j] = (-kT) \ln Z^*[i, j].$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

probability and optimal free energy of an interaction

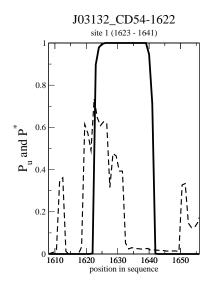
conditional probability given that two molecules bind at all


$$\mathcal{P}^{*}[i,j] = \frac{Z^{*}[i,j]}{\sum_{k < l} Z^{*}[k,l]}. \qquad Z^{*}[i,j] = \mathcal{P}_{u}[i,j] \sum_{i^{*} > j^{*}} Z^{l}[i,j,i^{*},j^{*}].$$

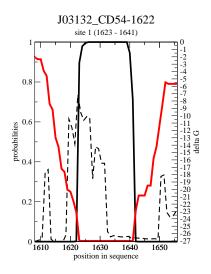
optimal free energy of a regional interaction

$$\Delta G_i = \min_{k \leq i \leq l} \{ \Delta G[k, l] \}. \qquad \Delta G[i, j] = (-kT) \ln Z^*[i, j].$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

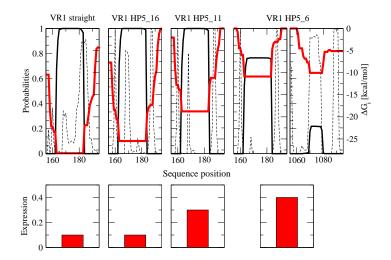

Interaction of CD54 mRNA with siRNA si1622

Vickers et. al. J.Biol.Chem., 278(9):7108-118,2003


◆ロ▶ ◆母▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Interaction of CD54 mRNA with siRNA si1622

Vickers et. al. J.Biol.Chem., 278(9):7108-118,2003


Interaction of CD54 mRNA with siRNA si1622

Vickers et. al. J.Biol.Chem., 278(9):7108-118,2003

◆□ → ◆□ → ◆□ → ◆□ →

Local RNA target structure influences siRNA efficacy

Schubert et.al. J.Mol.Biol.,348(4):883-93,2005

Realistic description of interaction between small RNAs and their targets

- Structural context of a possible binding site
- Location of possible binding sites
- Energetics of RNA-RNA interaction
- ▶ Time complexity is $O(N^3)$, memory requirement $O(N^2)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

- Realistic description of interaction between small RNAs and their targets
- Structural context of a possible binding site
- Location of possible binding sites
- Energetics of RNA-RNA interaction
- ▶ Time complexity is $O(N^3)$, memory requirement $O(N^2)$

- Realistic description of interaction between small RNAs and their targets
- Structural context of a possible binding site
- Location of possible binding sites
- Energetics of RNA-RNA interaction
- ▶ Time complexity is $O(N^3)$, memory requirement $O(N^2)$

(日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

- Realistic description of interaction between small RNAs and their targets
- Structural context of a possible binding site
- Location of possible binding sites
- Energetics of RNA-RNA interaction
- ▶ Time complexity is $O(N^3)$, memory requirement $O(N^2)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

- Realistic description of interaction between small RNAs and their targets
- Structural context of a possible binding site
- Location of possible binding sites
- Energetics of RNA-RNA interaction
- Time complexity is $O(N^3)$, memory requirement $O(N^2)$

Thanks to

Peter Schuster Peter Stadler Ivo Hofacker Christoph Flamm Stephan Bernhart Hakim Tafer Andrea Tanzer Camille Attolini

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●