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Non-coding RNAs

Non coding RNAs (“RNA genes”) are transcripts that exert their
function as RNA whithout being translated to protein.

◮ “Classical” examples:
◮ Protein expression: transfer RNA, ribosomal RNA
◮ Pre-mRNA splicing: spliceosomal RNAs
◮ tRNA maturation: Ribonuclease P
◮ Protein export: Signal recognition particle RNA

◮ New abundant classes of small non-coding RNAs:
microRNAs, snoRNAs

◮ Many other examples are currently emerging in all organisms
studied.
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2. There are fewer protein coding genes than expected



3. Highly conserved non-coding DNA awaits functional annotation.
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Non-coding RNAs ?
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4. The transcriptional map of the human genome is much more
complex than expected.



Computational identification of non-coding RNAs

◮ Based on a priori knowledge: find members of known families
◮ Sequence similiarity alone: BLASTN
◮ Sequence and additional motif information: specialized

programs for e.g. tRNA or snoRNAs

◮ De novo prediction: find new genes and families
◮ Unlike protein coding genes (ORFs, codon bias,. . . ) ncRNAs

lack strong statistical signals in primary sequence
◮ The function of many ncRNA depend on a defined secondary

structure

Can secondary structure predictions be used for ncRNA

detection?



Significance of predicted RNA secondary structures:

z-score statistics

◮ Has a natural occuring RNA sequence a lower MFE than
random sequences of the same size and base composition?

1. Calculate native MFE m.
2. Calculate mean µ and standard deviation σ of MFEs of a

large number of shuffled random sequences.
3. Express significance in standard deviations from the mean

as z-score

z =
m − µ

σ

◮ Negative z-scores indicate that the native RNA is more stable
than the random RNAs.



z-scores for 579 tRNAs
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◮ Only 2% below a z-score threshold of −4.

◮ Native sequences are not clearly separated from the random
bulk.



Consensus folding using RNAalifold

◮ RNAalifold uses the same algorithms and energy parameters
as RNAfold

◮ Energy contributions of the single sequences are averaged

◮ Covariance information (e.g. compensatory mutations) is
incorporated in the energy model.

◮ It calculates a consensus MFE consisting of an energy term
and a covariance term:



z-scores of consensus MFEs for tRNA alignments
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◮ Alifoldz: Additional information from aligned sequences
shifts MFE predictions towards significant levels.



The structure conservation index

◮ The SCI is an efficient and convenient measure for secondary
structure conservation.



Efficient calculation of stability z-scores

◮ The significance of a predicted
MFE structure can be expressed as
z-score which is normalized w.r.t.
sequence length and base
composition.

◮ Traditionally, z-scores are sampled
by time-consuming random
shuffling.

◮ The shuffling can be replaced by a
Support Vector Machine regression
calculation which is of the same
accuracy.
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SVM classification based on both scores

◮ Both scores separate native ncRNAs from controls in two
dimensions.
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SVM classification based on both scores

◮ Both scores separate native ncRNAs from controls in two
dimensions.

◮ A support vector machine is used for classification.

◮ RNAz: more accurate and faster than any other available programs.



Screening the human genome

UCSC sequence data/alignments

UCSC genome annotation
 - known Genes (e.g. RefSeq)
 - gene structure (CDS,UTR, intron/exon)
 - predicted Genes (e.g. Genescan)
 - expression data (e.g. ESTs)

RNA annotation
 - Rfam
 - NONCODE
 - RNAdb
 - miRNA registry, 
 - UTRdb

RNAz results

Relational Database

Computing Cluster

Database query
 - SQL
 - Perl Module
 - Web-Interface UCSC Genome Browser

◮ Large scale
comparative screen of
mammals/vertebrates

◮ ≈ 5% of the best
conserved non-coding
regions

◮ → 438,788
alignments covering
82.64 MB (2.88% of
the genome)



Statistics of detected structures



Novel structural RNAs of known classes:
mirRNAs and H/ACA snoRNAs



Novel structures of unknown function
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Other applications: Cyanobacterial ncRNAs

◮ I. Axmann, P. Kensche et al. (Genome Biol. 6:R73, 2005)
identified and characterized 7 novel ncRNAs in cyanobacteria
using Alifoldz.



Other applications: Benchmarking alignment

programs on structural RNAs

◮ The SCI can be used to assess the quality of an alignment of
a structural RNA (P. Gardner, A. Wilm & S. Washietl Nucleic

Acids Res. 33:2433, 2005).



Other applications

◮ RNAz screen of urochordate genomes (K. Missal, D. Rose,
P.F. Stadler Bioinformatics 21: Suppl 2,ii77-ii78, 2005)

◮ RNAz screen of nematode genomes (K. Missal et al. J. Exp.

Zoolog. B, in press).

◮ Prediction of putative miRNA precursors in the miRNAMap
(Hsu et al., submitted)



Summary and Conclusions

◮ De novo ncRNA prediction is notoriously difficult.

◮ Single sequence methods are of limited statistical significance.

◮ Comparative approaches dramatically improve accuracy.

◮ RNAz is an accurate and efficient approach for predicting
ncRNAs.

◮ RNAz used for the first comprehensive annotation of conserved
RNA secondary structures in the human genome.

◮ The data provides a strong basis for further computational
and experimental studies.

◮ The programs and methods presented here were successfully
used in a variety of other applications.
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