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The chemical notation language SMILES is designed for the conversion of an arbitrarily chosen 
description of a chemical structure to one unique notation. This is accomplished in a two-stage 
algorithm, CANGEN. The first stage involves CANonicalization of structure, whereby the 
molecule is treated as a graph with nodes (atoms) and edges (bonds). Each atom is canonically 
ordered and labeled. In the second stage, starting with the lowest labeled atom, a molecular 
graph is GENerated, which is the unique SMILES structure. 

INTRODUCTION 

The SMILES chemical notation language was introduced 
in the first paper of this series.’ Processing chemical infor- 
mation with greater efficiency than conventional methods, it 
represents a new approach to computerized chemical no- 
menclature. SMILES is simple to write because rules and 
hierarchical procedures, which are inherently difficult for the 
chemist, are relegated to computer algorithms. For a given 
chemical structure, arbitrary SMILES notation can take many 
equally valid forms. One must emerge as “unique” to serve 
as the identifier of the structure for database and other com- 
puter applications. 

This is accomplished by a method called CANGEN that 
combines two separate algorithms, CANON and GENES. 
The first stage, CANON, labels a molecular structure with 
canonical labels. The structure is treated as a graph with nodes 
(atoms) and edges (bonds). Each atom is given a numerical 
label on the basis of its topology. In the second stage, GENES 
generates the unique SMILES notation as a tree representation 
of the molecular graph. GENES selects the starting atom and 
makes branching decisions by referring to the canonical labels 
as needed. 

The combined procedure designates a unique SMILES 
notation for each chemical structure regardless of the many 
possible equivalent descriptions of the structure that might be 
input. 

THEORETICAL BACKGROUND 

Generally, graph theory has become important in applica- 
tions to chemical information because it provides the basis for 

*Address correspondence to this author at 809 Karenwald Lane, Schenectady, 
NY 12309. 

codification of nomenclature in chemical computer programs.* 
The classification and ordering of nodes in a graph is here 
applied to chemical structure notation. With an initial set of 
node properties and a given connectivity for a two-dimensional, 
nondirected graph (with N nodes and E edges), each node is 
assigned a rank. In CANGEN this ranking completely dis- 
criminates each node environment with respect to all initial 
mode properties. Aside from node and edge properties, the 
classification algorithm must recognize constitutionally sym- 
metric nodes, i.e., nodes that are topologically equivalent in 
all respects. This step and the generation of unique node order, 
breaking all ties, graph construction, and identification are all 
essential parts of the CANGEN process. 

Combinatorial and extended sums methods are two different 
approaches for characterization of graph nodes and their en- 
vironments. The combinatorial process is suitable for analyses 
of small graphs (simple chemical structures) but becomes too 
cumbersome for more complex ones because of the need to 
characterize each node environment completely. Simple, ex- 
haustive solutions that have orders of max (N,E)!  become 
impractical as N increases beyond 15. Partial characterization 
is therefore often attempted and is adequate for most symmetry 
perception problems. Such algorithms use a general approach 
of breadth-first optimization of a tree.3 Nodes are charac- 
terized successively deeper into the total graph until the 
combined characterization is adequate. This usually reduces 
the base of the algorithmic order of N or E to the number of 
edges in the shortest path between the most distant nodes. 
However, these algorithms do not avoid the problem of fac- 
torial order for the general cases4 

The sums method achieves greater efficiency by limiting the 
use of a combined description of connected nodes while ig- 
noring all path-specific topological information. A sum vector 
S is modified iteratively by summing over the S elements of 
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Table I. Atomic Invariants 
(1 )  number of connections 
(2) number of non-hydrogen bonds 
(3)  atomic number 
(4) sign of charge 
( 5 )  absolute charge 
( 6 )  number of attached hydrogens 

neighboring nodes only one edge away. On iteration, the 
difference in the developed sums of two nodes indicates non- 
equivalence. This sums method is an intrinsically low-order 
process but contains inherent difficulties. The original Morgan 
algorithm5 uses only the local degree (number of nearest 
neighbors) in S and relies on subsequent combinatorial iden- 
tification of other zeroeth order node properties, P (for ex- 
ample, the atomic numbers). It is possible to improve the basic 
sums method by incorporating node properties in a two-di- 
mensional matrix (known as the extended sums method). Even 
so, combinations of nodes must be produced and compared. 

There is an inherent ambiguity in sums with respect to 
addends of rational numbers. Hence, identical extended S 
values do not necessarily assure symmetry of nodes for prop- 
erties P in a general case. This is the reason for eventually 
invoking combinatorial procedures. It will be shown below, 
however, that use of an unambiguous function can eliminate 
the necessity for a subsequent combinatorial procedure. 
Furthermore, when ambiguity is eliminated, all zeroeth order 
node properties may be expressed in a single vector S .  
Tracking individual properties as matrices of “extended sums” 
becomes unnecessary and redundant. 

Node ordering for generation of unique SMILES notation 
is obtained by developing topological symmetry classes in the 
manner of extended sums, but using the product of corre- 
sponding primes in the extension process. The method of using 
an “unambiguous function” will be illustrated below with 
examples of labeling, ranking, and unique ordering of struc- 
tural notations. It guarantees canonicalization over originally 
specified graph theoretical invariant properties. 

CANON: CANONICALIZATION OF MOLECULAR 
GRAPHS USING AN UNAMBIGUOUS FUNCTION 

(a) Initial Graph Invariant Order. Graph theoretical in- 
variants are properties of graphs that are independent of the 
way a graph is ordered. Examples are the atomic invariants 
of Table I. A unique linear combination of these invariants 
represents their initial vector in the CANGEN algorithms. For 
example, the methyl carbon in pentane (CCCCC) is repre- 
sented by invariants 1 (number of connections), 01 (number 
of non-hydrogen valence bonds), 06 (atomic number), 0 (sign 
of charge), 0 (absolute charge), and 3 (number of attached 
hydrogens). The combination of these invariants is given by 
the linear description 10106003 (see also Table 11). This set 
of six variables is sufficient for the purpose of obtaining unique 
notation for simple SMILES, but it is not necessarily a 
“complete” set. No “perfect” set of invariants is known that 
will distinguish all possible graph asymmetries. However, for 
any given set of structures, a set of invariants can be devised 
to provide the necessary discrimination. The list shown in 
Table I is used by CANGEN for the construction of simple 
molecular graphs. Other graph properties may be added as 
needed. When more information is required, for example, in 
the case of isomeric SMILES, invariants are added to denote 
isotopic mass, bond directionality, and local chirality. Con- 
versely, one or more invariants may be eliminated in less 
rigorous operations than CANGEN conversion of SMILES 
notation. 

The set of invariants in Table I have indicated priorities (1 
is first, 6 has last priority). This set conforms to the funda- 
mental assumption, made throughout the CANGEN process, 

Table 11. Invariants for Pentane 
atom type individual invariant combined invariant 

methyl carbon 1, 1, 6 ,  0, 0, 3 101 06003 
methylene carbon 2, 2, 6 ,  0, 0, 2 20206002 

that 1:l mapping represents any set of invariants equally well. 
As an example, Table I1 gives the two invariant sets of the 
methyl and methylene carbons of the pentane molecule, 
ccccc. 

(b) Rank Equivalence. Although the different values in an 
invariant set must be ordered by their priority, there is nothing 
intrinsically meaningful in their specific values. To avoid 
numerical overflow of the computer system, these values are 
replaced by small numbers; the rank of each invariant retains 
the desired properties. The initial invariants for pentane are 

Their ranks are 
10106003-20206002-202060002-20206002- 10106003 

1-2-2-2-1 
giving a new invariant set that is just as usable in the CAN- 
GEN process, and more suitable for machine processing, than 
the original set. 

(c) Simple Extended Connectivity. While there are only two 
types of carbon atoms in pentane (methyl and methylene), 
there are three carbon symmetry classes. Morgan5 and Ber- 
sohn6 view sets of invariants in terms of the sums of the atoms’ 
invariants one-away, two-away, etc. The test of symmetry 
classes is whether or not the “extended connectivity sums” are 
different. For pentane summing the neighbors one away re- 
veals the three symmetry classes: the first ranking, from the 
initial invariant, is 

1-2-2-2-1 
Operation of a given function over all nearest (Le., one-away) 
neighbors yields a set representing extended connectivity. 
Traditionally, addition is used, which in this example leads 
to 

2-3-4-3-2 
which can be replaced with a new rank for another set of 
symmetry classes 

This process can be repeated until the set no longer changes. 
To avoid storing an indeterminate number of such sets, the 
CANGEN method retains the last set of ranks and uses the 
extended connectivity function only to break ties in each it- 
eration. Thus, the previous ranks are used in the iteration 
process to maintain rank stability (each iteration only breaks 
ties). When the rank vector is not changed by an iteration, 
there is no need to continue because once an iteration fails to 
differentiate the equivalence of any node pair, all subsequent 
iterations will also fail.7 The extended connectivity method 
is then complete, and an invariant partitioning is presumed 
to have been developed. 

(a) Extended Connectivity Using an Unambiguous Function. 
One pitfall of the extended sums method, as pointed out above, 
is the inherent ambiguity of the sum of integers, which can 
lead to false symmetry perceptions. At this point earlier 
 method^',^,^ revert to higher order, combinatorial algorithms 
that are very slow. The CANGEN process avoids this problem 
by using an unambiguous function rather than simple addition. 
One possibility is to include functions such as simple products 
and sum of squares in the extended connectivity evaluation. 
If the maximum connectivity is K ,  any set of K linearly in- 
dependent functions will be unambiguous over integral input. 
A simple and elegant function, suggested by Freed,9 is the 
product of corresponding primes. In this method, each rank 

1-2-3-2-1 



GENERATION OF UNIQUE SMILES NOTATION 
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Figure 1. CANON example: OCC(CC)CCC(CN)CN. 

1 

Figure 2. G e n e r a t i o n  of SMILES for cubane :  
c 12c3c4c 1 c5c4c3c25. 

is replaced by its corresponding prime (starting with 2) and 
then replaced by the product of its neighbors. 

To illustrate the method of product of corresponding primes, 
take the case of two three-connected atoms whose neighbors' 
ranks are 1, 4, 4 and 2, 2, 5. The difference would not be 
distinguished by either simple sums (9 for each) or sum of 
squares (33 for each). Taking the product of their corre- 
sponding primes reveals the difference: 2 X 7 X 7 = 98 differs 
from 3 X 3 X 11 = 99. It is easily shown from the prime 
factorization theorem that this procedure will always provide 
an unambiguous result for any set of input ranks. Further- 
more, it can be seen that this function is commutative and that 
every output number can be used (viz., every number is either 
prime or the unambiguous product of other prime factors). 
The only disadvantage is that, for very large molecules, these 
computations may use very large numbers, so 64-bit arithmetic 
is used (rather than 32 bit). 

As an example, the generation of a unique SMILES nota- 
tion for the compound 6-amino-2-ethyl-5-(aminomethyl)- 1- 
hexanol with the molecular structure of Figure 1 will be 
considered. An initial arbitrary SMILES for this structure, 
OCC(CC)CCC(CN)CN, has the original ranking of invari- 
ants 

3-4-5-(4- 1)-4-4-5-(4-2)-4-2 

In this case, the fact that the sum of the atomic numbers of 
the two nitrogens equals the sum of the atomic numbers of 
the oxygen and methyl carbon leads to unresolved, false sym- 
metries if only summed invariants were considered: 

3-6-8-(4-1)-7-7-8-(5-2)-5-2 

In contrast, using the product of corresponding primes on the 
same initial set yields 

3-6-9-(4-1)-7-8- lO(5-2)-5-2 

Details of this procedure are shown in the Appendix. 
(e) Breaking Ties. If there are no constitutionally symmetric 

node classes in the graph, the problem of ordering nodes is not 
difficult. Simple bilateral symmetries, such as in the previous 
example, would not require further analysis for the purpose 
of unique nomenclature generation. Difficulties arise when 
more symmetric graphs, such as that of cubane with the no- 
tation C12C3C4ClC5C4C3C25 (see reference l) ,  are ordered 
(Figure 2). 

The cubane molecule has eight identical carbon atoms. 
Iteration shows that all eight nodes are identical, so the starting 
point must be arbitrary. Once a starting point is chosen, 
however, the remaining seven nodes are no longer identical; 
three atoms are one-away, three atoms are two-away, and one 
atom is three-away. To avoid an arbitrary decision among 
these later (which would lead to a nonunique final notation), 
a complete canonical labeling of all nodes is needed. The 
algorithm proceeds by doubling all ranks and reducing the 
value of the first (lowest valued) atom, which is tied, by one. 
The set is then treated as a new invariant set, and the previous 
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Table 111. CANON Algorithm 
(1) Set atomic vector to initial invariants. Go to step 3. 
(2) Set vector to product of primes corresponding to neighbors' 

(3) Sort vector, maintaining stability over previous ranks. 
(4) Rank atomic vector. 
( 5 )  If not invariant partitioning, go to step 2. 
(6) On first pass, save partitioning as symmetry classes. 
(7) If highest rank is smaller than number of nodes, break ties, go to 

(8) ... else done. 

algorithm for generating an invariant partitioning is repeated. 
For cubane the final ranking (for the above input order) is 

Note that there are several equivalent labelings for a sym- 
metrical graph such as cubane. With respect to the initial 
atom, all of the correct labelings will assign 2,3,4 to one-away 
atoms, 5,6,7 to the two-away atoms, and 8 to the three-away 
atom. The "double-and-tie-break" step does not introduce 
ambiguity into the ordering since only otherwise equivalent 
atoms will be tied at any point. This step is required to assure 
that an ordering which is not equivalent to the correct labeling 
will not be generated (e.g., labeling the three-away atom 
something other than 8). 

(f) CANON Algorithm Summary. Table I11 lists the eight 
steps of the CANON algorithm for the canonicalization of 
chemical structure. For an N-atom structure, this algorithm 
requires, at most, N sorts of N integers, with the tie-breaking 
step (7) introducing a maximum constant factor of 2. 
Therefore, the order of this algorithm is 

ranks. 

step 2. 

1-2-5-3-7-8-6-4 

log2 (N> 
GENES: GENERATION OF UNIQUE SMILES 

With symmetrical classes established, the structure is treated 
as a tree and a SMILES string is generated that corresponds 
to a depth-first search (DFS) of that tree. The only required 
decisions are where to start, Le., at which node of the tree, and 
which branch to follow at each branching point. Finally, the 
unique SMILES string per se is generated. Symbols for 
branch termination and ring closure are included, and a second 
DFS search is performed for polycyclic structures to ensure 
proper ordering of ring closure labels. 

(a) INtiaJ Node Selection. The lowest canonically numbered 
atom is chosen as the starting point of the SMILES notation. 
This atom becomes the root of a tree for a subsequent 
depth-first search. For the example of 6-amino-2-ethyl-5- 
(aminomethyl) 1-hexanol the final ranking has the terminal 
carbon of the ethyl group as the starting point (root) of the 
graph (see above). As a rule, this selection implies that a 
terminal atom is chosen if one exists. This is desirable for 
efficiency, because a pair of parentheses is eliminated, and also 
for aesthetics. 

If the chemical structure consists of separate entities, such 
as ions or ligands, it is considered a disconnected compound, 
denoted by a period as the disconnection symbol. Repeated 
selection of starting atoms, using the same criterion of the 
lowest remaining canonical label, ultimately produces a dis- 
connected SMILES (a forest). 

(b) Branching Decisions. Branching decisions could be as 
simple as the selection of a starting atom because the algorithm 
directs branching toward the lowest labeled atom at the fork 
in the branch. For example, acetone has the combined in- 
variants 

c - c ( = O  )- c 
101 06003-30406000-( 10208000)-10106003 

resulting in the canonical labeling 1-4-(3)-2. Starting with 
the methyl group labeled 1, the direction of branching at the 
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Table IV. Perception of Topological Symmetry Classes 
A 0 C C (C C) C C C (C N) C N 

~ ~~~~~ 

(a) Structure and Initial Invariants 
B 118001 226002 336001 226002 116003 226002 226002 336001 226002 117002 226002 117002 
C 3  4 5 4 I 4 4 5 4 2 4 2 

D 3, 4 4, 8 5, 12 4, 6 1, 4 4, 9 4, 9 5, 12 4, 7 2, 4 4, 7 2, 4 
E 3  6 8 4 1 7 7 8 5 2 5 2 
€ 3, 6 6, 1 1  8, 17  4, 9 1, 4 7, 15 7, 15 8, 17 5, 10 2, 5 5, 10 2, 5 
G 3  6 8 4 1 7 7 8 5 2 5 2 

c 3  4 5 4 1 4 4 5 4 2 4 2 
C‘ 5 7 11 7 2 7 7 11  7 3 7 3 
D 7  55 343 22 7 77 77 343 33 7 33 7 
E 3  6 8 4 1 7 7 8 5 2 5 2 
E‘ 5 13 19 7 2 17 17 19 11  3 11 3 
F 13 95 1547 38 7 323 323 2057 57 11 57 11 
G 3  6 8 4 1 7 7 9 5 2 5 2 
G‘ 5 13 19 7 2 17 17 23 11 3 11 3 
H 13 95 1547 38 I 323 39 1 2057 69 11 69 11 
1 3  6 9 4 1 7 8 10 5 2 5 2 
I’ 5 13 23 7 2 17  19 29 11 3 11 3 
J 13 115 1547 46 7 437 493 2299 87 11 87 11 
K 3  6 9 4 1 7 8 10 5 2 5 2 

(b) Classification by Extended Sums Method 

(c) Classification by Product of Primes Method 

central carbon atom will be toward the second methyl group, 
which has a lower rank than the oxygen of the carbonyl. 
Consequently, the unique SMILES for acetone is CC(C)=O, 
not CC(=O)C. 

In cyclic structures, at  branches with multiple bonds, it 
would be preferable not to select a multiple bond for a 
SMILES ring closure. This is avoided by branching in a ring 
toward the multiple bond rather than toward the single bond. 
The following two rules apply: (1) Branch to a double or triple 
bond in the ring if one exists, or ( 2 )  branch to the lower 
canonically numbered atom. Rule 2 is the same as the one 
that applies to linear structures [cf. CC(C)=O and CCC- 
(CO)CCC(CN)CN above]. 

(c) Two-Pass Method: Treatment of Cyclic and Polycyclic 
Structures. There are several algorithms for SMILES gen- 
eration available that are based on the DFS. A two-pass 
method is chosen because it produces unique SMILES for 
complex polycyclic structures in an intuitively correct manner. 
It starts with a simple DFS, appending nodes (atomic) and 
edge (bond) symbols to the output SMILES as the search 
progresses. Each time a branch is taken, a left parenthesis 
is added to the output string; each time a dead-end is reached, 
a right parenthesis is added. The first pass terminates when 
all nodes have been reached. If the structure is linear, the 
SMILES is complete and unique; there is no need for a second 
pass. For cyclic structures, however, the search will encounter 
a node that has already been visited. At this point the ring 
closure nodes are known (the last node and the already visited 
one) so that the SMILES ring closure indicators (digits) can 
now be appended to the node symbols in preparation for the 
second DFS pass. This second DFS enables the two-pass 
method to cope with the following problems that are specific 
to polycyclic systems:’O (i) searching around a ring where an 
errant left parenthesis may be dangling; (ii) sorting the digits 
on nodes with multiple ring closures; (iii) ordering the digits 
in “opening” order since their assignment is not determined 
by the closing order. 

SUMMARY 
The CANGEN process consists of a two-stage algorithm. 

The first stage involves canonicalization of structure, whereby 
the molecular structure is treated as a graph with nodes 
(atoms) and edges (bonds). All atoms are canonically ranked 
on the basis of a suitable set of invariant node properties and 
are labeled numerically. In the second stage, starting with 

the lowest ranked atom, a tree (molecular graph) is constructed 
that is the unique SMILES notation regardless of which of 
various valid original linear SMILES notations was originally 
specified. The generation of unique SMILES by this process 
provides the key to solving the basic problem of chemical 
nomenclature, namely, that a single chemical compound may 
have many different names. When a unique notation for a 
structure is obtained, chemical nomenclature is amenable to 
many applications for databases where SMILES can be as- 
sociated with any number of synonyms, identifiers, and 
structure keys, such as common names, Collective Index 
names, IUPAC names, and CAS numbers. A unique 
SMILES notation serves extremely well as an identifier for 
a chemical database. This will be illustrated in one of the next 
publications in this series which describes a SMILES-oriented, 
extremely efficient database. 
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APPENDIX: COMPUTATION OF EXTENDED SUMS 
AND PRODUCT OF CORRESPONDING PRIMES FOR 

The methods of extended sums and product of corresponding 
primes are illustrated in Table IV as an application of extended 
connectivity. Starting with the nonunique SMILES OCC- 
(CC)CCC(CN)CN for 6-amino-2-ethyl-5-(aminomethyl)- 1- 
hexanol, a stable set of symmetry classes is developed by using 
each method from a common set of graph theoretical invar- 
iants. 

Table IV shows the CANGEN operation as individual steps 
in sequence and in parallel. Table IVa shows the initial 
structure input (in arbitrary SMILES input order), original 
invariants, and their ranks in line A-C, respectively. 

The inherent ambiguity of extended sums is shown by the 
stable classification developed following iterations, Table IVb, 
where the identity of atoms in classes 7 (central methylenes) 
and 8 (tertiary carbons) are erroneous. In each iteration, ranks 
are generated from (last rank, sum-of-neighbors), with the last 
rank having higher priority. 

The unambiguous function method is shown in Table IVc, 
where the primes corresponding to ranks are shown in rows 
with primed labels, and the products of adjacent primes (which 
are used only to break rank ties) are listed in rows D, F, H, 

6-AMINO-2-ETHYL-5-(AMINOMETHYL)- 1 -HEXANOL 
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and J. Note that the symmetry is now correctly perceived due 
to the 1547 # 2057 tiebreak in row F. 

The symmetry classification in row K is stable (recognized 
by being identical with previous classification in row I). 

As described in the text, CANON continues by breaking 
the lowest tie (symmetry class 2, nitrogens) to produce 12 
distinct labelings. Starting with the lowest labeled atom and 
branching to lower labeled atoms at forks in the structure, the 
unique SMILES, CCC(CO)CCC(CN)CN, is established by 
GENES. 

S C ~ .  1989, 29, 101-105 
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Since Garfield's pioneering work over 25 years ago in the linguistic aspects of systematic chemical 
nomenclature, leading to an algorithm for translating chemical names to formulas, very few reports 
of grammar-based analysis of systematic chemical nomenclatures have appeared in the literature. 
These have applied only to a few specific classes of names. While the major abstracting services 
use automated methods to process chemical nomenclatures, the limited details that have been 
published point to ad hoc approaches based on dictionaries of morphemes. This paper introduces 
a series that covers in detail the various aspects of the application of grammar-based techniques 
to the recognition of IUPAC systematic chemical nomenclature and hence the translation of 
chemical names to structure diagrams. Some necessary elements of language and grammar are 
discussed here in the context of the automatic recognition of chemical nomenclature. 

INTRODUCTION 

There are three broad categories of chemical language by 
which structural information is represented and communicated. 
These are the nomenclatures used to name compounds, for- 
mulas and line notations used as shorthand representations of 
compounds, and structure diagrams used as the primary means 
of communication of structural information and compounds. 
Chemical structures are also represented by connection tables, 
which are used internally by most computer-based transfor- 
mation techniques as a topological description of molecular 
structure. However, connection tables are rarely used for 
communication between people and are not regarded as lan- 
guages. The translation or interconversion of these languages 
by automatic means is an important application of computer 
science to chemical structure representation and processing. 
A review with references to those interconversions that have 
been reported is given by Rush.' 

Computer translation from and to a systematic nomencla- 
ture has received little attention, and a recent book2 has said 
that existing programs are very large and complicated and will 
be successful in this translation in considerably less than 100% 
of cases. This situation is associated with the slowness with 
which systematic nomenclature, as typified by the schemes 
devised by the International Union of Pure and Applied 
Chemistry (IUPAC), is accepted and used, with the continuing 
use of much semisystematic and trivial nomenclature, and with 
the questionable need for fully systematic nomenclature as 
perceived by the chemical i nd~s t ry .~  In the U.K., the Chemical 
Nomenclature Advisory Service of the Laboratory of the 
Government Chemist encourages the use of systematic no- 
menclature following the principles set by IUPAC and is 
prominent in advising European Commision Services on these 
matters. Egan4 and Egan and GodlyS have discussed some 
of the benefits of using IUPAC systematic nomenclature, while 

the issues and problems associated with the use of chemical 
nomenclature are covered in the book edited by Lees and 
Smith.6 

Work supported by the Laboratory of the Government 
Chemist has been in progress in this department for some years 
to investigate the application of grammar-based techniques, 
as developed for compiling computer programming languages, 
to automatic name recognition and translation into structure 
diagrams. In this project attention has been paid to certain 
classes of compounds of industrial importance, including some 
cases of semisystematic and trivial nomenclature. A particular 
feature of the project has been the use of inexpensive and 
readily available computing facilities as exemplified by the 
IBM PC and compatible microcomputers. An outline of the 
project in its early stages has been published.' 

The first step in the translation of chemical nomenclature 
by grammar-based techniques is to develop a grammar that 
formally describes the syntax of the nomenclature. From the 
grammar, a parser can be produced to recognize names that 
satisfy the grammar and to check the semantics, or meaning, 
of the names. Names that are syntactically correct may 
nevertheless be chemical nonsense. Only after satisfying se- 
mantic checking is an intermediate form of a name con- 
structed, the concise connection table.8 Further processing 
leads to representations suited to communication to other 
computer software or to the display of a structure diagram. 

CHEMICAL NOMENCLATURES 

Overview of Nomenclature Styles. An excellent review of 
the development of chemical nomenclature is given by Cahn 
and Dermer.g Following the Geneva Congress of 1892, the 
maintenance of the rules of chemical nomenclature was taken 
on by the International Union of Pure and Applied Chemistry 
(IUPAC), who published revisions to the rules of organic 
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