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A New Algorithm for Exhaustive Ring Perception in a Molecular Graph
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A new fast and easy to implement algorithm for exhaustive ring perception is presented. This algorithm is
based upon a progressive reduction (collapsing) of the path graph associated with the molecular graph studied.
The path graph is an image of the molecular graph in which each vertex corresponds to a vertex of the
molecular graph and each edgé describes an existing path betweamandb in the molecular graph.

During the reduction, nodes of the path graph are removed, and the information related to cycle occurrence
is concentrated in the label of new edges between the remaining vertices. Each loop formed in the path
graph during this collapsing process corresponds to a cycle in the molecular graph. Once the path graph
has totally collapsed, all the rings in the molecular graph have been perceived.

INTRODUCTION a a

Ring perception has become a common feature in chemical [a-b]
computer systems. Evaluating the number and the kind of
cycles in a chemical structure graph is required for many b b
basic operations like / \ [b-c]/ \b-d]

« structure classification c d c d

e compound naming [c-d]

« aromaticity perception M-Graph P-Graph

e structure display optimization .

° transforms descnp“ons Flgure 1. Molecular and path graph.

Although many algorithms have been developed to achieve [a-x] [x-b] [a-x-b]
ring perception in molecular graphs as described by G. M. a X b < a
Downs et all cycle detection is still subject to further Initial P-Graph Reduced P-Graph

researcii~2 Most algorithms qim to recognize_ only a subset Figure 2. Path graph reduction.

of relevant cycles (e.g., chemically relevant rings) and fewer

aim to perceive all the cycles in a graph. In both cases _thereas follows: to each vertex in thé-Graph corresponds a
are several methods to reach the goal. Some algorithms,grtey in theP-Graph that has the same label (this paper
perceive directly ﬁhe desired set of cy_c_les; others derive it |,geg terminologies recommended by Downs é).alFor
from a set of basic cy_cles (by composition) or from the_ set each edge in thé/-Graph there is an edge between the
of all gycle_s (by se!ectmn). The most common sets of riNgs ¢ame vertices in the-Graph. The label of an edga-b in
perceived in chemistry are known as SSSR (Smalles_,t Set ofipe P-Graph describes a possible path fraato b in the
Smallest R|ngs§_,‘5 ESSR (Extende_d Set.of Smallest Rings), M-Graph and is defined by the set of edges in MeGraph
ESER (Essential Set of Essential RINGSRER (Set of  hat are involved in the path. The initial label of the

Elementary Ringsj. The perception of all cycles in a graph P-Graph edges thus corresponds to the associste@raph
is time consuming and most algorithms try to bypass this edges (Figure 1).

step if possible. However, for applications that require the  tha second step consists of reducing Br&raph. The
perception of every cycle (e.g., display optimizatfon, | sic idea of this task is that a wadkx-bin the M-Graph
computer generated chemical nomenclat8eSER percep- can be described in tHe-Graph by a single edge between
tion based upon the set of all rinfy# can be more efficient a and blabeled [a-x-b] (the notation [a-...-b] means a path
to perceive all the cycles in one step rather than to derive g0 4 1o b). Accordingly, the vertexcan be removed from

them from a previous set of basic cycles. _Several algorithm.sthe initial P-Graph without losing any topological informa-
of the latter type have already been published and are still ;) (Figure 2).

applied in computer chemistfy?** In this paper we present Actually, to remove the vertex, we need to delete the

a new algorithm, fast and easy to implement. two edgesa-x andx-b and to create a new edgeb. The
THEORY Iaar?(;e)l(_obfa-b is simply the concatenation of the labelsaak
The first step in our approach is to convert the molecular ~ To clarify the following, we introduce the notatiguy,
graph M-Graph) into a path graphR-Graph). Thisis done  that defines an edge between vertigesdy in the P-Graph
T E-mail. Thiery.Hanser@Imiasé u-strasbg i (i.e., describes a path fromto y in the M-Graph). The
¢E:mZ:|Q phliﬁpg.e. Jzusfﬁet@|,:f}zsé%s_sﬁzsggf'r' reducing process can now be described with a single and
® Abstract published ifAdvance ACS Abstractédugust 15, 1996. general rule:
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been included for loop detection. If a loop is found, the

a a corresponding label (path) is added to the set of perceived
</ \2 rings RINGS).
Pax <> ®Q ®
)
p,,/x\ QY & RINGS (M-GRAPH)
b Pa S b ¢ RINGS ¢
',' ‘.‘ K Pbx @ch "‘
Figure 3. General reduction methodology. CONVERT(M-GRAPH, V, E)
To remove a vertex:(1) create for each couple of edges while v # &

Pxys Pxz @N €dgepy; = Py © px. Whered is a concatena-
tion operator; (2) remove the verteand all the edges
involving x. Figure 3 shows an example of reduction. REMOVE (x, V, E, RINGS)

choose x in v

This rule enables us to reduce the number of vertices in
the P-Graph without losing anyconnectiity information.

. : CONVERT (M-GRAPH, V, E)
However, in order to detect only the cyclic elements of a

graph, we discard edges that do not represent real paths (a VD E— D

path is a walk in which all vertices and edges are distinct).

The previous rule can be refined so that only the couples of for each vertex x in M-GRAPH
edgesdyy, xy, Pxz, xz Wherepy, ® py, = {X} is true, lead to

a new edgep,, (® is an operator that extracts the set of Ve vu {x}

common vertices between its operands). £ahdv be the
set of edges and vertices in tReGraph. The corresponding
pseudo-code can be written as follows

for each edge (x-y) in M-GRAPH

Py < (xy)
REMOVE (x, V, E) E<EU (p,)
for each couple of paths (p,, ., P....) € E
if p,® p.. = {x} then REMOVE (x, V, E, RINGS)
P p.®p. for each couple of paths (p,,.., P....) € E*
E<EU(p,) it p, ® p,.= {x} then

for each path p, € E P P®p.

E<E-{p,} E<EV{p,}

Ve v-(x}) for each path p, € E

This simpleremovE function is used to perceive all the if x =y then RINGS « RINGS U {p, }
cycles in aM-Graph. TheP-Graph can be totally reduced,
removing one by one each vertex. This results into a general
collapsing. During this process, the number of vertices
decreases, and the number of edges may locally either Ve v {x}

increase or decrease depending upon the topology of the

structure and the order in which vertices are removed. When

a new edge between a vertex and itself (loop) is formed in Special notations:

the P-Graph, it corresponds to a cycle in thd-Graph. .

Indeed, the formation of a loop is equivalent to the closure P» ® P : common vertices to the paths p, and p,
of a path and thus the occurrence of a cycle. The label of

the loop describes the detected cycle (Figure 4). When the P, ® p.. : concatenation of paths p,, and p,,

E<E-({p,}

P-graph is totally reduced (V= &, E = &), all the cycles (joined at vertex x)
have been detected.
The full algorithm for cycle perception follows exactly REEINEMENT

the two steps described above. First the molecular graph is

converted in a path graph (here defined by V and E). Then The performance of the algorithm strongly depends upon
a main loop takes care of removing one by one all the verticesthe order in which vertices are removed from B&raph.

of the P-Graph. The converT () function simply builds Since it is better to begin to discard paths that might not
the sets V and E from the givéM-Graph. TheRrReMOVE () lead to a cycle, we can assume that the appendage vertices
function is the same as above except that a special test hagan be directly removed (Figure 5). A more general rule
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The definitions for the complexity evaluation are as

/ a\ follows:

c b . .
M-Graph N = total number of vertices in the-Graph

k = number of vertices removed

a a a n, = number of vertices in thB-Graph*
VASE Y/
¢ S b l, = number of edges between two vertices*
[c-b] b [a-b-c-a]
_ - . .
Initial P-Graph Reduced P-Graph v, = number of distinct neighbors of a vertex

Figure 4. A loop centered on vertex “a” and corresponding to the a, = number of edges starting from a vertex*
cycle [a-b-c-a] appears if vertices “b” and “c” are removed.
r. = number of cycles detected*
would be to keep the connectivity of the remaining nodes in
the P-Graph as low as possible; this would ensure a b, = number of basic operations performed*
minimum number of cases whepg, ® py, = {X} is true in
the algorithm described previously. A good selection *: after kvertices hae been remaed
criterion is therefore the connectivity of the vertices.
Removing the vertices according to an increasing value of B = total number of basic operations required
connectivity is probably the most efficient way to reduce
the P-Graph. It is possible to select at each step the next N-1
vertex to be removed according to the new connectivity index B= Zjbk
induced by the previous step or to compute, for the initial k=
P-Graph vertices, an extended connectivity index (based
upon a Morgan like algorith#) in order to sort the vertices ~ Note thatby is always equal to 0 since the only possible

and to guess a priori a good sequence. For the rest of thisheighbor for the last node is itself (loop), thus for any edge
paper we used the first method. X-y, X =y and no basic operation will be performed when

= N. R = total number of cycles detected
Figure 5 shows a complete example of cycle perception.

Note that there is always a reduced state of Bh&raph N-1

that corresponds to the Homeomorphically Reduced Graph R= erk

(HRG) state, described by A. T. Balaban et!al.In the k=

Collapsing P-Graph algorithm, the HRG is simply an

intermediate state in a more general process. Best Case. The simplest instance of cycle perception is
a graph with exactly one cycle of sia¢ In this case the
connectivity of each vertex is constant and equal to 2 during

COMPLEXITY the whole reducing process. For each vertex (except the last

one) only one basic operation is required, the result is thus

A general study of the algorithm presented in this paper OPVious:

would not be very meaningful for the limited subset of
chemical graphs. Instead we propose beneath a statistical B=N-1 R=1
analysis of its performances.

Worst Case. The most complex instance of a cycle
perception (with no loop in the initial graph) is a clique,
i.e., a graph where each vertex is connected to all other
vertices as in Figure 6.

Nevertheless, because the use of this algorithm is not
restricted to chemical graphs, we demonstrate here its limit
complexities; only the best and worst cases are studied. In
both cases the complexity is independent from the order in ] _
which vertices are removed. The efforts required to perform N the case of a cliqué? andB can be evaluated in several
the cycle perception are measured in terms of basic opera-StePs-

tions. The definition of a basic operation is as follows:
n.: n=n—KkK
A basic operation occurs each time the content of the loop
“for each couple of pathspf, xy, Pxz, xz) € E?") is % y=n—1
performed.

: = I
Since the algorithm is strongly loop oriented, this definition B BT UK

gives a reliable measure of thelative complexity involved
without taking into account any specific computer system I. In order to walk from a vertex to a vertexy using
or algorithm implementation. only one edge of th®-Graph, it is possible to use the initial
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[o-n]\ \mj]/[] ’ -e lRING<-{[e-f—g-e]}
]-1
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)
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=
an
,.

o-p1 /* (=1 NN wo = (lefgel)
o } (I-m] '[h-ll [e-g\ /[g-f.l -h l
[o-n]\ o m m-j]/ i g
[n-m j Ll [m-n-o-p-1-k-h-i-j-m]
C%
k l [m-n-0-p-l-m] [m-j-i-h-k-1-m]
[h d]
[h-k-1] [e- f] RING <-{[m-n-o0-p-1-m]}
[o- P/ [Pl\]l [d% -m | RNG<-{[m-j-i-h-k-1-m]}
‘ [1-m] ‘[h-x] [e-g\ /[g—f] RING <-{[m-n-0-p-1-k-h-i-j-m]}
[0-n] [m -il g
[n- m] /,] RING = {[e-f-g-€], [m-n-0-p-1-m], [m-j-i-h-k-1-m],

[m-n-o-p-l-k-h-i-j-m] }

Figure 5. Example of perception using the collapsiRegGraph algorithm.

x-y edge (labeledxy]) or one of the edges describing an example, ifk = 3 anda, b, c are the removed vertices, the
X-(combination of the remed vertices)-y path. For different paths fronx to y are
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i =0 [xy]
i =1 [x-a-y], [x-b-y], [x-Cc-}]

i = 2 [x-a-b-y], [x-b-a-y], [x-a-c-y], [x-c-a-y],
[x-b-c-y], [x-c-b-y]
i = 3 [x-a-b-c-y}, [x-a-c-b-y, [x-b-a-c-y,
[x-c-a-b-y], [x-c-b-a-}}, [x-b-c-a-y}

wherei is number of intermediate vertices. This can be
written as

l;=C3x 04+ C} x 11 + C3 x 21 + C3 x 3!
CP = combination ofp elements out oh equivalent to
l,=A+ AS+ A5+ AS
AP = arrangement op elements out ofh or in a more
general way as
k

Ik:_AL

re. Determiningry is achieved in the same way as figr
but in this case we are looking for paths fromio x. The
first possible path betweenandx (loop in P-graph) occurs
for k = 2 (3 membered cycle). Furthermore the direction
of those paths is not relevant. We can thus write

rh,=r,=0

= :_zliAlk

N—ll k i
R= 2520

bx. In order to remove thkth vertex, we have to consider
all the couples of edges starting from this vertex (see
algorithm). For each couple there is one basic operation
required. Thus

b,=a ;1 x (& —1)

b = Vi1 X Neal X (Vg X D — 1)

k-1

b, = [vy—y x 2 AL—l] x ([vg-q ¥

k=1 )
> Al — 1)
k=1

A x ([(N—K) x

k—1

A{«l] - 1)

N-1
B= N—K
k;[( ) X

Table 1 shows th® and B values for cliques of siz&l =

HANSER ET AL

Figure 6. Example of cliqueN = 8.

Table 1. Number of CyclesR and Pseudo-Complexit for
Cligues withN = 3—8

N R B N R B

3 1 2 6 197 2719
4 7 19 7 1172 61047
5 37 186 8 8018 2136588

Table 2. Number of Basic OperatiorB Required According to the
Permutationr of a Test Sequence

JT JTo JT1 Tt T3 JTa Js5 TTe JT7 Ji8
B 36 72 81 90 99 115 135 205 225
T TT9 JT10 11 TT12 TT13 TT14 TT15 TT16
B 365 374 383 284 87 50 80 85
/ l\ _— o
k m
| |
b g n

f d i
\ . / \ j/ 1
Figure 7. M-Graph corresponding to the results in Table 2.

becomes very large) and occurs only with small sized cliques
for molecular structure graphs.

RESULTS

Vertex Selection. The importance of the removing order
of the vertices is studied. Table 2 shows the number of basic
operationsB required to perform a cycle perception on the
graph of Figure 7. Each column corresponds to a different
removing sequence. The first colunm) gives the number
of basic operations required in case of an increasing
connectivity selection mode (ordap = b, e, f, a, i, j, k, |,
0,p,q, ¢ h,m,d, n,g). The nextcolumng{;7) correspond
to successive cyclic permutations of the first sequenge (
=e f,aij..0 bm=1alijk..0 b, e etc). The
molecular graph contains 17 vertices, 20 edges, and 10
condensed cycles.

The results show that a minimum number of basic
operations is required when the vertices are removed
according to an increasing value of connectivity. It is
interesting to see how critical this ordering is. Indeed a factor
up to 10 between the maximal (fory;, starting with all
vertices of connectivity index= 3) and minimal (for,
starting with all vertices of connectivity index 2) value of

3—8. The results indicate that the number of basic operationsB appears in this example.

required for the cycle perception in the case of a clique
increases dramatically with the size of the clique. However
this situation is extreme (the number of perceived cycles

Statistics. We undertook a statistical study on more than
34 000 cyclic structures randomly extracted from the Fine
Chemical Directory (FCD) database. Figure 8 shows the
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2104 — ——————————— 600 vllv]l;-||vvu||vv'vlvule
500 | H .
{
g 1510 ° - ~ :
g 4 400 [~ -
o (=)
El =
8 £
™ " g 30 I~ T
S 110 . 9 '
: i |
5 & 200 [ ! B:f(R) ]
& '
* 5000 - B _
100 * R=14,B=105
o P B SPEE BT ST I AT BT |
0 P SR 10 20 30 40 50
4 8 12 16 20 R (number of rings)

R (Number of rings) Figure 10. Number of basic operation8 required for ring

Figure 8. DistributionF of the structures according to their number perception as function of the number of ringsn a structure.

of ringsR.
— T T T \\g/—\h//

S T= - /\
ET—‘)9%,R_14 d—i—f

100 |~

80

60 T =f(R) E . .
& Figure 11. A complex graph containing 248 cycles.
E 4 F . Table 3. CPU Times for Some Examples
: example R B CPU (s)
©r § ] Figure 5 3 11 0.0011
' Figure 7 10 36 0.0014
Y PP RS P T RS SO | Figure 11 248 4519 0.093
10 20 30 40 50 Figure 6 8018 2136588 15

R (number of ring)

Figure 9. Distribution T in percent of the structures cumulated

according to their number of ringa remains fairly small B = 4519) regarding the number of

cycles perceivedR = 248).

frequencyF of structures containing a given numkerof The Collapsing P-Graph algorithm is very general and
rings. This frequency decreases rapidly with the number of can be applied to any graph. Furthermore, there is no
rings. In fact, 99% of the molecular graphs contain less than connexity requirement, each fragment in a nonconnex graph
15 rings as shown in Figure 9. will be handled independently.

The numberB of basic operations required for the ring  Originally designed for ring perception in molecular
perception according to the numiRof rings in a structure  graphs, the same algorithm can also be used to enumerate
is shown in Figure 10. According to these data we can all the paths between two vertices of a graph. Indeed these
conclude that for 99% of the structures, less than 110 basicpaths will be generated during the collapsing process when
operations are necessary. This amount can be transposeg||| put these two vertices have been removed. Each
in very short perception times using any efficient imple- remaining edge corresponds to an existing path. Although
mentation of the proposed algorithm. this is probably not the most efficient way to enumerate paths

between two vertices, it shows the potential of tb#apsing
DISCUSSION graphmethodology and allows us to consider new applica-
tions.

The perception of all cycles in a graph is a time consuming
task. Itis important to optimize the speed of corresponding IMPLEMENTATION
algorithms especially for systems applying cycle perception
to a large number of graphs (e.g., Computer Assisted The algorithm requires standard data structures; dynamic
Synthesis). The algorithm presented in this paper has beerists (for the edges of the-Graph) and binary sets (for the
designed to allow a speed effective implementation using labels of the edges) were used in our case. The exact
sets as a main data structure. Although the results of theimplementation is not discussed here since the aim of this
statistical analysis seem very interesting while dealing with paper is to focus on the algorithm. Nevertheless it is
mean values, it is important to note that the speed of aimportant to note that main steps, in the algorithm, rely on
peculiar perception highly depends upon the type of structureset operations (intersections, unions,...) and thus support
studied, namely the “density” and relative position of the efficient implementations. The CPU times given in Table
cycles (not only the number). Graphs involving a lot of 3 correspond to some examples of this paper. The tests ran
condensed cycles may lead to vertices with a high con-on a Hewlett-Packard 735 workstation, and the cycle
nectivity index during the collapsing process and thus to perception code was written in C. The results indicate a
lower performance. However, even for the complex structure fast perception though the data structures used can still be
shown in Figure 11, the number of basic operations required optimized to enhance performances.
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