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A new fast and easy to implement algorithm for exhaustive ring perception is presented. This algorithm is
based upon a progressive reduction (collapsing) of the path graph associated with the molecular graph studied.
The path graph is an image of the molecular graph in which each vertex corresponds to a vertex of the
molecular graph and each edgea-b describes an existing path betweena andb in the molecular graph.
During the reduction, nodes of the path graph are removed, and the information related to cycle occurrence
is concentrated in the label of new edges between the remaining vertices. Each loop formed in the path
graph during this collapsing process corresponds to a cycle in the molecular graph. Once the path graph
has totally collapsed, all the rings in the molecular graph have been perceived.

INTRODUCTION

Ring perception has become a common feature in chemical
computer systems. Evaluating the number and the kind of
cycles in a chemical structure graph is required for many
basic operations like

• structure classification
• compound naming
• aromaticity perception
• structure display optimization
• transforms descriptions

Although many algorithms have been developed to achieve
ring perception in molecular graphs as described by G. M.
Downs et al.,1 cycle detection is still subject to further
research.2-3 Most algorithms aim to recognize only a subset
of relevant cycles (e.g., chemically relevant rings) and fewer
aim to perceive all the cycles in a graph. In both cases there
are several methods to reach the goal. Some algorithms
perceive directly the desired set of cycles; others derive it
from a set of basic cycles (by composition) or from the set
of all cycles (by selection). The most common sets of rings
perceived in chemistry are known as SSSR (Smallest Set of
Smallest Rings),3-5 ESSR (Extended Set of Smallest Rings),6

ESER (Essential Set of Essential Rings),7 SER (Set of
Elementary Rings).2 The perception of all cycles in a graph
is time consuming and most algorithms try to bypass this
step if possible. However, for applications that require the
perception of every cycle (e.g., display optimization,8

computer generated chemical nomenclatures,9 ESER percep-
tion based upon the set of all rings7) it can be more efficient
to perceive all the cycles in one step rather than to derive
them from a previous set of basic cycles. Several algorithms
of the latter type have already been published and are still
applied in computer chemistry.8,10-11 In this paper we present
a new algorithm, fast and easy to implement.

THEORY

The first step in our approach is to convert the molecular
graph (M-Graph ) into a path graph (P-Graph). This is done

as follows: to each vertex in theM-Graph corresponds a
vertex in theP-Graph that has the same label (this paper
uses terminologies recommended by Downs et al.1). For
each edge in theM-Graph there is an edge between the
same vertices in theP-Graph. The label of an edgea-b in
the P-Graph describes a possible path froma to b in the
M-Graph and is defined by the set of edges in theM-Graph
that are involved in the path. The initial label of the
P-Graph edges thus corresponds to the associatedM-Graph
edges (Figure 1).
The second step consists of reducing theP-Graph. The

basic idea of this task is that a walka-x-b in theM-Graph
can be described in theP-Graph by a single edge between
a and blabeled [a-x-b] (the notation [a-...-b] means a path
from a to b). Accordingly, the vertexx can be removed from
the initialP-Graph without losing any topological informa-
tion (Figure 2).
Actually, to remove the vertexx, we need to delete the

two edgesa-x andx-b and to create a new edgea-b. The
label ofa-b is simply the concatenation of the labels ofa-x
andx-b.
To clarify the following, we introduce the notationpxy,

that defines an edge between verticesx andy in theP-Graph
(i.e., describes a path fromx to y in theM-Graph) . The
reducing process can now be described with a single and
general rule:
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Figure 1. Molecular and path graph.

Figure 2. Path graph reduction.
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To remove a vertexx:(1) create for each couple of edges
pxy, pxzan edgepyz) pxy x pxzwherex is a concatena-
tion operator; (2) remove the vertexx and all the edges
involving x. Figure 3 shows an example of reduction.

This rule enables us to reduce the number of vertices in
theP-Graph without losing anyconnectiVity information.
However, in order to detect only the cyclic elements of a
graph, we discard edges that do not represent real paths (a
path is a walk in which all vertices and edges are distinct).
The previous rule can be refined so that only the couples of
edgespxy, x*y, pxz, x*z, wherepxy X pxz ) {x} is true, lead to
a new edgepyz (X is an operator that extracts the set of
common vertices between its operands). LetE andV be the
set of edges and vertices in theP-Graph. The corresponding
pseudo-code can be written as follows

This simpleREMOVE function is used to perceive all the
cycles in aM-Graph . TheP-Graph can be totally reduced,
removing one by one each vertex. This results into a general
collapsing. During this process, the number of vertices
decreases, and the number of edges may locally either
increase or decrease depending upon the topology of the
structure and the order in which vertices are removed. When
a new edge between a vertex and itself (loop) is formed in
the P-Graph, it corresponds to a cycle in theM-Graph .
Indeed, the formation of a loop is equivalent to the closure
of a path and thus the occurrence of a cycle. The label of
the loop describes the detected cycle (Figure 4). When the
P-graph is totally reduced (V) L, E ) L), all the cycles
have been detected.
The full algorithm for cycle perception follows exactly

the two steps described above. First the molecular graph is
converted in a path graph (here defined by V and E). Then
a main loop takes care of removing one by one all the vertices
of theP-Graph. The CONVERT ( ) function simply builds
the sets V and E from the givenM-Graph . TheREMOVE ()
function is the same as above except that a special test has

been included for loop detection. If a loop is found, the
corresponding label (path) is added to the set of perceived
rings (RINGS).

REFINEMENT

The performance of the algorithm strongly depends upon
the order in which vertices are removed from theP-Graph.
Since it is better to begin to discard paths that might not
lead to a cycle, we can assume that the appendage vertices
can be directly removed (Figure 5). A more general rule

Figure 3. General reduction methodology.
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would be to keep the connectivity of the remaining nodes in
the P-Graph as low as possible; this would ensure a
minimum number of cases wherepxy X pxz * {x} is true in
the algorithm described previously. A good selection
criterion is therefore the connectivity of the vertices.
Removing the vertices according to an increasing value of
connectivity is probably the most efficient way to reduce
theP-Graph. It is possible to select at each step the next
vertex to be removed according to the new connectivity index
induced by the previous step or to compute, for the initial
P-Graph vertices, an extended connectivity index (based
upon a Morgan like algorithm12) in order to sort the vertices
and to guess a priori a good sequence. For the rest of this
paper we used the first method.

Figure 5 shows a complete example of cycle perception.
Note that there is always a reduced state of theP-Graph
that corresponds to the Homeomorphically Reduced Graph
(HRG) state, described by A. T. Balaban et al.11 In the
Collapsing P-Graph algorithm, theHRG is simply an
intermediate state in a more general process.

COMPLEXITY

A general study of the algorithm presented in this paper
would not be very meaningful for the limited subset of
chemical graphs. Instead we propose beneath a statistical
analysis of its performances.

Nevertheless, because the use of this algorithm is not
restricted to chemical graphs, we demonstrate here its limit
complexities; only the best and worst cases are studied. In
both cases the complexity is independent from the order in
which vertices are removed. The efforts required to perform
the cycle perception are measured in terms of basic opera-
tions. The definition of a basic operation is as follows:

A basic operation occurs each time the content of the loop
“ for each couple of paths (pxy, x*y, pxz, x*z) ∈ E2 ”) is
performed.

Since the algorithm is strongly loop oriented, this definition
gives a reliable measure of therelative complexity involved
without taking into account any specific computer system
or algorithm implementation.

The definitions for the complexity evaluation are as
follows:

B ) total number of basic operations required

Note thatbN is always equal to 0 since the only possible
neighbor for the last node is itself (loop), thus for any edge
x-y, x ) y and no basic operation will be performed whenk
) N. R ) total number of cycles detected

Best Case.The simplest instance of cycle perception is
a graph with exactly one cycle of sizeN. In this case the
connectivity of each vertex is constant and equal to 2 during
the whole reducing process. For each vertex (except the last
one) only one basic operation is required, the result is thus
obvious:

Worst Case. The most complex instance of a cycle
perception (with no loop in the initial graph) is a clique,
i.e., a graph where each vertex is connected to all other
vertices as in Figure 6.

In the case of a clique,RandB can be evaluated in several
steps.

lk. In order to walk from a vertexx to a vertexy using
only one edge of theP-Graph, it is possible to use the initial

Figure 4. A loop centered on vertex “a” and corresponding to the
cycle [a-b-c-a] appears if vertices “b” and “c” are removed.

N) total number of vertices in theM-Graph

k) number of vertices removed

nk ) number of vertices in theP-Graph*

lk ) number of edges between two vertices*

Vk ) number of distinct neighbors of a vertex*

ak ) number of edges starting from a vertex*

rk ) number of cycles detected*

bk ) number of basic operations performed*

* : after kVertices haVe been remoVed

B) ∑
k)1

N-1

bk

R) ∑
k)1

N-1

rk

B) N- 1 R) 1

nk : nk ) n0 - k

Wk : Vk ) nk - 1

ak : ak ) Vk × lk
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x-y edge (labeled [x-y]) or one of the edges describing an
x-(combination of the remoVed Vertices)-y path. For

example, ifk ) 3 anda, b, c are the removed vertices, the
different paths fromx to y are

Figure 5. Example of perception using the collapsingP-Graph algorithm.
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where i is number of intermediate vertices. This can be
written as

Cn
p ) combination ofp elements out ofn equivalent to

An
p ) arrangement ofp elements out ofn or in a more

general way as

rk. Determiningrk is achieved in the same way as forlk,
but in this case we are looking for paths fromx to x. The
first possible path betweenx andx (loop in P-graph) occurs
for k ) 2 (3 membered cycle). Furthermore the direction
of those paths is not relevant. We can thus write

bk. In order to remove thekth vertex, we have to consider
all the couples of edges starting from this vertex (see
algorithm). For each couple there is one basic operation
required. Thus

Table 1 shows theR andB values for cliques of sizeN )
3-8. The results indicate that the number of basic operations
required for the cycle perception in the case of a clique
increases dramatically with the size of the clique. However
this situation is extreme (the number of perceived cycles

becomes very large) and occurs only with small sized cliques
for molecular structure graphs.

RESULTS

Vertex Selection. The importance of the removing order
of the vertices is studied. Table 2 shows the number of basic
operationsB required to perform a cycle perception on the
graph of Figure 7. Each column corresponds to a different
removing sequence. The first column (π0) gives the number
of basic operations required in case of an increasing
connectivity selection mode (orderπ0 ) b, e, f, a, i, j, k, l,
o, p, q, c, h, m, d, n, g). The next columns (π1-17) correspond
to successive cyclic permutations of the first sequence (π1

) e, f, a, i, j,...g, b;π2 ) f, a, i, j, k,...,g, b, e; etc.). The
molecular graph contains 17 vertices, 20 edges, and 10
condensed cycles.
The results show that a minimum number of basic

operations is required when the vertices are removed
according to an increasing value of connectivity. It is
interesting to see how critical this ordering is. Indeed a factor
up to 10 between the maximal (forπ11, starting with all
vertices of connectivity index) 3) and minimal (forπ0,
starting with all vertices of connectivity index) 2) value of
B appears in this example.
Statistics. We undertook a statistical study on more than

34 000 cyclic structures randomly extracted from the Fine
Chemical Directory (FCD) database. Figure 8 shows the

i ) 0 [x-y]

i ) 1 [x-a-y], [x-b-y], [x-c-y]

i ) 2 [x-a-b-y], [x-b-a-y], [x-a-c-y], [x-c-a-y],
[x-b-c-y], [x-c-b-y]

i ) 3 [x-a-b-c-y], [x-a-c-b-y], [x-b-a-c-y],
[x-c-a-b-y], [x-c-b-a-y], [x-b-c-a-y]

l3 ) C3
0× 0! + C3

1× 1! + C3
2× 2! + C3

3× 3!

l3 ) A3
0 + A3

1 + A3
2 + A3

3

lk ) ∑
i)0

k

Ak
i

r0 ) r1 ) 0

rk )
1

2
∑
i)2

k

Ak
i

R) ∑
k)1

N-11

2
∑
i)2

k

Ak
i

bk ) ak-1× (ak-1 - 1)

bk ) [νk-1× lk-1] × ([νk-1× lk-1] - 1)

bk ) [νk-1×∑
i)0

k-1

Ak-1
i ] × ([νk-1×∑

i)0

k-1

Ak-1
i ] - 1)

B) ∑
k)1

N-1

[(N- k) ×∑
i)0

k-1

Ak-1
i ] × ([(N- k) ×∑

i)0

k-1

Ak-1
i ] - 1)

Figure 6. Example of clique,N ) 8.

Table 1. Number of CyclesR and Pseudo-ComplexityB for
Cliques withN ) 3-8

N R B N R B

3 1 2 6 197 2719
4 7 19 7 1172 61047
5 37 186 8 8018 2136588

Table 2. Number of Basic OperationsB Required According to the
Permutationπ of a Test Sequence

π π0 π1 π2 π3 π4 π5 π6 π7 π8

B 36 72 81 90 99 115 135 205 225

π π9 π10 π11 π12 π13 π14 π15 π16

B 365 374 383 284 87 50 80 85

Figure 7. M-Graph corresponding to the results in Table 2.

1150 J. Chem. Inf. Comput. Sci., Vol. 36, No. 6, 1996 HANSER ET AL.



frequencyF of structures containing a given numberR of
rings. This frequency decreases rapidly with the number of
rings. In fact, 99% of the molecular graphs contain less than
15 rings as shown in Figure 9.
The numberB of basic operations required for the ring

perception according to the numberRof rings in a structure
is shown in Figure 10. According to these data we can
conclude that for 99% of the structures, less than 110 basic
operations are necessary. This amount can be transposed
in very short perception times using any efficient imple-
mentation of the proposed algorithm.

DISCUSSION

The perception of all cycles in a graph is a time consuming
task. It is important to optimize the speed of corresponding
algorithms especially for systems applying cycle perception
to a large number of graphs (e.g., Computer Assisted
Synthesis). The algorithm presented in this paper has been
designed to allow a speed effective implementation using
sets as a main data structure. Although the results of the
statistical analysis seem very interesting while dealing with
mean values, it is important to note that the speed of a
peculiar perception highly depends upon the type of structure
studied, namely the “density” and relative position of the
cycles (not only the number). Graphs involving a lot of
condensed cycles may lead to vertices with a high con-
nectivity index during the collapsing process and thus to
lower performance. However, even for the complex structure
shown in Figure 11, the number of basic operations required

remains fairly small (B ) 4519) regarding the number of
cycles perceived (R ) 248).

TheCollapsing P-Graph algorithm is very general and
can be applied to any graph. Furthermore, there is no
connexity requirement, each fragment in a nonconnex graph
will be handled independently.

Originally designed for ring perception in molecular
graphs, the same algorithm can also be used to enumerate
all the paths between two vertices of a graph. Indeed these
paths will be generated during the collapsing process when
all but these two vertices have been removed. Each
remaining edge corresponds to an existing path. Although
this is probably not the most efficient way to enumerate paths
between two vertices, it shows the potential of thecollapsing
graphmethodology and allows us to consider new applica-
tions.

IMPLEMENTATION

The algorithm requires standard data structures; dynamic
lists (for the edges of theP-Graph) and binary sets (for the
labels of the edges) were used in our case. The exact
implementation is not discussed here since the aim of this
paper is to focus on the algorithm. Nevertheless it is
important to note that main steps, in the algorithm, rely on
set operations (intersections, unions,...) and thus support
efficient implementations. The CPU times given in Table
3 correspond to some examples of this paper. The tests ran
on a Hewlett-Packard 735 workstation, and the cycle
perception code was written in C. The results indicate a
fast perception though the data structures used can still be
optimized to enhance performances.

Figure 8. DistributionF of the structures according to their number
of ringsR.

Figure 9. Distribution T in percent of the structures cumulated
according to their number of ringsR.

Figure 10. Number of basic operationsB required for ring
perception as function of the number of ringsR in a structure.

Figure 11. A complex graph containing 248 cycles.

Table 3. CPU Times for Some Examples

example R B CPU (s)

Figure 5 3 11 0.0011
Figure 7 10 36 0.0014
Figure 11 248 4519 0.093
Figure 6 8018 2136588 1.5
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CONCLUSION

TheCollapsing P-Graphalgorithm is a new approach to
exhaustive cycle perception. The principle of this method
is simple and can be implemented in a very efficient way.
This algorithm is not specific to chemistry and can be applied
to any graph. The concept ofcollapsing graphis a general
and powerful tool that can be applied to other purposes such
as path enumeration.
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