
GGL Tutorial: Molecular Groups

Christoph Flamm1,∗ and Martin Mann2

1 Institute for Theoretical Chemistry, Vienna University

2 Bioinformatics Group, University of Freiburg

http://www.tbi.univie.ac.at/software/GGL/

Version April 29, 2015

Built for GGL version 4.1.1

∗Send comments to xtof@tbi.univie.ac.at or mmann@informatik.uni-freiburg.de

Contents

2

1 Molecular groups

This chapter explains how to define molecular groups in term of the Graph
Modeling Language (GML) and how to use them. Therein, molecular groups
are defined by an undirected graph where each node represents a single atom
and edges correspond to bonds of a given valence. Within the GGL, we assume
node and edge labels to be conform with the SMILES notation.

1.1 Introduction to the specification language GML

Within the GGL, graphs and graph rewrite rules are specified in a language
called GML (Graph Modeling Language). Essentially, GML is composed of
hierarchical key–value pairs. Keys are usually strings (some identifiers) and
values specify the value of the corresponding key. Values are either single
values (numbers, strings, etc) or lists of key–value pairs. Lists must always
be enclosed in opening ’[’ and closing ’]’ brackets in GML. Nesting of lists to
arbitrary depth is allowed in GML. The general structure of a GML specification
looks as follows:

key1 [

key2 value2

key3 [

key4 value4

key5 value5

]

key6 value6

]

In the above code snippet keys 1 and 3 have both a list as value (hence the
brackets). Keys 2, 4–6 are key–value pairs where the corresponding values
are single values such as numbers or strings.

1.2 BNF of GML

Following is the grammar specification of GML in Boyes Normal Form (BNF).

1

gml ::= keyvalues

keyvalues ::= keyvalue (keyvalue)*

keyvalue ::= key value

key ::= [’a’-’z’’A’-’Z’][’a’-’z’’A’-’Z’’0’-’9’]

value ::= real | integer | string | list | operator

real ::= sign? digit ’.’ digit+ mantissa?

integer ::= sign? digit+

operator ::= ’<’ | ’=’ | ’>’ | ’!’

string ::= ’"’ instring ’"’

list ::= ’[’ keyvalues ’]’

sign ::= ’+’ | ’-’

digit ::= [’0’-’9’]

mantissa ::= (’E’ | ’e’) sign? digit+

instring ::= ASCII-{’&’, ’"’} | ’&’ [’a’-’z’’A’-’Z’] ’;’

The GML-parser in GGL can parse any well formed GML file that conforms to
the above BNF grammar specification. However the parser interprets only
a subset of “known” key–value pairs (see according section) all other well-
formed key–value pairs are silently ignored (Note: a source of errors is
misspelling of known keys since the parsing is case-sensitive).

1.3 Keys for rule specification

The following table lists the relevant keys for molecular group specification
in alphabetic order. For lists the optional enclosed keys are given in brackets.

key type keys in list comment

compIDs list id the proxy node identifier that
links the group to a molecule
(Note: only one proxy node id
allowed)

description string – the textual ID of the group

edge list source, target, label define a bond.

id int – defines a numerical identifier
for a vertex.

label string – defines a textual label for a
vertex or an edge.

2

key type keys in list comment

node list id, label define an atom vertex

molcomp list description, node, com-
pIDs, (energy), (priority),
(constrainXXX)

defines a molecule component

source int – define the source-vertex of an
edge

target int – define the target-vertex of an
edge

1.4 Visualization

The GML definition of molecular components can become quite large and hard
to read. To ease their creation and to allow for a simple evaluation, the GGL

sports the visualization script molcomp2svg.pl within its Perl module.
Given a molecular component in GML notation, the script produces a

graphical depiction in Scalable Vector Graphics (SVG) format. Therein,
compID nodes are highlighted in red. An example is given in Fig. ??c).

The molcomp2svg.pl script uses the OpenBabel package to create the 2D
depictions of the molecules and thus requires its presence.

2 Molecular groups within SMILES

One field of application for the definition and use of molecular groups is the
specification of molecules that differ only in a few atoms or bonds. In such
cases, it can be convinient to specify only the dissimilar parts of the molecules
and to use group placeholders for the equal parts. That way, the similarity
becomes easy to see and the SMILES easier to read.

As an example, we use the molecules NADH and NAD+ depicted in
Fig. ?? sporting 66 and 65 atoms, respectively. The difference basically com-
prises only an additional proton within NADH and a charge change within
the lower ring while the rest of the molecules are identically. Note, these two
changes alter the ring from non-aromatic (NADH) to aromatic (NAD+).

Minimal SMILES encodings of the molecules (highlighting the differing
ring in red) are

3

H2N

O

H

H

N
O O P

OH

O

O

PHO

O

O

O

OH

OH
NN

H2N

N

N

OH

HO

H2N

O

+
N

O O P

OH

O

O

PHO

O

O

O

OH

OH
NN

H2N

N

N

OH

HO

Figure 1: The molecules NADH (left) and NAD+ (right).

NC(=O)C1[CH2]C=CN(C=1)C2OC(COP(O)(=O)O..
..P(O)(=O)OCC3OC(C(O)C3O)n4cnc5c(N)ncnc54)C(O)C2O

for NADH and

NC(=O)c1ccc[n+](c1)C2OC(COP(O)(=O)O..

..P(O)(=O)OCC3OC(C(O)C3O)n4cnc5c(N)ncnc54)C(O)C2O

for NAD+.
In contrast, when using group declarations for the identical parts, namely

the CONH2 group and the ribo-adenosine, the SMILES shrinks to

[{CONH2}]C1[CH2]C=CN(C=1)[{Ribo-ADP}]

for NADH and

[{CONH2}]c1ccc[n+](c1)[{Ribo-ADP}]

for NAD+, both depicted in Fig. ??a) and b).
In the following, we give the GML encoding of the {CONH2} group. An

according depiction, using the molcomp2svg.pl visualization script, is given
in Fig. ??c).

4

molcomp [

description "{CONH2}"

compIDs [id 0]

node [id 0 label "C"]

node [id 1 label "O"]

node [id 2 label "N"]

node [id 3 label "H"]

node [id 4 label "H"]

edge [source 0 target 1 label "="]

edge [source 0 target 2 label "-"]

edge [source 2 target 3 label "-"]

edge [source 2 target 4 label "-"]

]

Note, both the {CONH2} as well as the {Ribo-ADP} group are molecule
components that are interfacing via a single node with the remaining molecule.
This enables the representation within SMILES as a complex pseudo atom in
bracket notation namely [{CONH2}] or [{Ribo-ADP}], resp., as done within
the shorted SMILES strings presented above. This node is specified using
the compIDs entry within the GML definition. Therefore, a molecular group
to be used within molecule representations is only allowed to sport exactly
one compID entry naming the proxy node of the component. During the
SMILES parsing, the complex pseudo atom is replaced with the proxy node
of the according group and the remaining group atoms and bonds are added
to the molecule.

3 Molecular groups within graph rewrite rules

The specification of (bio)chemical reactions often requires the representation
of large (unchanged) parts of molecules in order to make the rule as specific
as the chemical reaction. A classic example is the involvement of helper
molecules like ATP, NADH, etc. that are only slightly changed but have to
be represented completely to avoid the application of the rule using similar
molecules.

To this end, the GGL supports the specification of molecular groups as
pseudo-atoms within chemical rule definitions. They allow for a much easier
and compact rule definition and avoid potential typos and mistakes.

As an example consider the lactat-dehyrogenase from the citrat-cycle
given by NAD+ + lactate → NADH + pyruvate. NADH is a large molecule
comprising 66 atoms. Thus, a complete specification would require the def-
inition of all NADH atoms and bonds together with the according parts

5

of lactate and pyruvate incorporating 76 atoms in total. Furthermore, this
would be the case for all other NADH-dependent reactions as well.

Using group identifiers, the definition of the lactat-dehydrogenase be-
comes much more compact as exemplified in Fig. ??. With only 23 atoms,
the whole reaction is described. Note, the rule specification uses two group
descriptors. Each is replaced during the rule GML parsing with according
molecule components/subgraphs, i.e. {CONH2} is replaced with a CONH2

group (see Fig. ??) and {Ribo-ADP} with a ribose and attached adenosine.
Note: group identifier are only allowed within context or for label changes

within both left/right at once. The reason is: each group shows as interface
exactly one proxy node that will replace the specified pseudo atom labeled
with the group ID. Thus, a rule can only change bonds with the proxy node!
The rest of the group is statically added to the rule context. It is possible
to specify label changes of the proxy node atom but these are restricted to
charge changes as exemplified below. An explicit change of the proxy node
label (e.g. make it aromatic “C” → “c”) is not possible!

rule [

example of charge change of a groups proxy node

the rest of the group is added to the rule’s context

left [

node [id 0 label "{GROUP}+"]

..

]

..

right [

node [id 0 label "{GROUP}"]

..

]

]

6

a)

C 6

C 1

N 5

C 3
C 2

{Ribo-ADP} 7

{CONH2} 0

C 4

b)

c 6

c 1

n+ 5

c 3
c 2

{Ribo-ADP} 7

{CONH2} 0

c 4

c) {CONH2}

H4

O1

H3

C0

N2

Figure 2: The molecules NADH (a) and NAD+ (b) described using group
identifiers. Note, only for C3 within NADH explicit proton information is
given; all other carbons have one not depicted adjacent proton. (c) Depiction
of the {CONH2} group using the script molcomp2svg.pl. Note, the proxy node
is highlighted in red.

7

-

-

-

- -

-

=

-
- -

-
-

-

::

:

: :

:

-

-

-

H11

O21

H7

H26

c2

O-22

c1

n+0

H30

C23

{Ribo-ADP}13

H29

C25

H27

H28

c3

H12 C20

{CONH2}8

c4

O24

H10

c5

-

-

-

- -

-

=

- -

-

-=

-

- =

-

-

=H11

O21

H7

H26

C2

O-22

C1

N0

H+30

C23

{Ribo-ADP}13

H29

C25 H27

H28

C3

H12

C20

{CONH2}8

C4

O24

H10

C5

Figure 3: Lactat-dehydrogenase : NAD+ + lactate → NADH + pyruvate.
The picture exemplifies the use of group identifiers to compact the rule speci-
fication. The colors indicate if specified as context (black), left (red), or right
(green). Note, such a representation reduces the rule specification from 76
to only 23 atoms.

8

