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ABSTRACT

We present an implementation of McCaskill’s algorithm for computing the base pair prob-
abilities of an RNA molecule for massively parallel message passing architectures. The pro-
gram can be used to routinely fold RNA sequences of more than 10,000 nucleotides. Appli-
cations to complete viral genomes are discussed.
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1. INTRODUCTION

RNA molecules serve not only as carriers of information, but also as functionally active units.
The three-dimensional shape of RNA molecules plays a crucial role in the process of protein synthesis

and may exhibit a large variety of catalytic activities. While the prediction of three-dimensional structures
from sequence data is infeasible at present, the prediction of secondary structure is a tractable task even
for very large molecules.

RNA secondary structures provide a useful, though coarse grained, description of RNA molecules as
exempli� ed by their frequent use in the literature. A variety of (closely related) dynamic programming
algorithms (e.g., Waterman and Smith, 1978; Zuker and Stiegler, 1981; Zuker and Sankoff, 1984; Hofacker
et al., 1994) based on graph enumeration are available. These algorithms usually produce only the ground
state structure or a limited ensemble of structures close to the ground state (Zuker, 1989).

A more elegant solution was suggested by McCaskill (1990). He proposed an algorithm to compute
the partition function of the thermodynamic ensemble and the matrix of base pairing probabilities Phl

of an RNA molecule. The large size of, say, HIV genomes (n º 9200 nucleotides) implies that there
is a huge number of low energy states. For example, the frequency of the minimum energy structure in
the ensemble at thermodynamic equilibrium is in general smaller than 10 ¡ 23 for RNAs of the size of an
HIV viral genome. Hence one would need a huge number of different structures to adequately describe
the ensemble. While such an approach is feasible for RNAs with up to some 100 nucleotides (Wuchty
et al., 1999), the direct generation and analysis of the necessary amount of structure information for long
sequences exceeds by far the capabilities of even the most modern computer systems. The pair probability
matrix (Phl ) computed by McCaskill’s algorithms is a much more suitable representation of such large
structure ensembles. Thus McCaskill’s approach provides a computationally feasible alternative, which is
comparable to the requirements of the simple minimum free energy folding algorithm in terms of the
required computational resources.
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Secondary structure predictions of large RNA molecules with several thousand nucleotides are usually
performed by folding fairly small subsequences. This procedure has two signi� cant disadvantages, however:
(i) by de� nition one cannot detect long-range interactions that span more than the size of the sequence
window, and (ii) the results depend crucially on the window’s exact location. This is because subsequences
fold independently of the rest of the sequence only if they form isolated components by themselves, i.e., if
there are no base pairs to the outside of the sequence window. The only way of identifying the component
boundaries is, however, to fold the sequence in its entirety.

RNA folding algorithms are quite demanding both in terms of memory and CPU time. For a sequence of
length n, CPU time scales as O(n3) and memory requirements are O(n2). While this is not a problem for
small RNA molecules, such as tRNAs, the requirements exceed the resources of most computers for large
RNA molecules such as viral genomes. In most cases, memory, rather than computational speed, becomes
the fundamental resource bottleneck. The use of modern parallel computers thus becomes unavoidable
once the memory requirements exceed, say, 1GByte.

RNA minimum energy folding has been implemented for a variety of parallel computer architectures: We
have implemented a version for Ipsc-based hardware, such as the Hypercube and the Delta (Hofacker
et al., 1994, 1996a); Zuker’s suboptimal folding algorithm (Zuker, 1989) was ported to a MasPar MP-2
(Shapiro et al., 1995), and an approximate folding procedure that also yields suboptimal structures has
been described for a CM-5 (Nakaya et al., 1995). In this contribution we discuss an implementation of
McCaskill’s partition function folding algorithm for message passing architectures. Our program, which is
available upon request, is written in C and uses the MPI message passing interface. It should therefore be
easily portable to most currently available parallel computers.

In the following section we brie� y recall the de� nition of RNA secondary structures and the standard en-
ergy model. A brief description of the partition function algorithm is provided in Section 3. After a detailed
description of the message passing logic (Section 4) we review the performance of our implementation.
We close with a few examples of applications in Section 6, then a brief discussion.

2. RNA SECONDARY STRUCTURES

Most RNA molecules are single stranded in vivo. The molecule folds back onto itself to form double
helical regions stabilized by Watson-Crick G-C and A-U base pairs or the slightly less stable G-U pairs.
Base stacking and base pairing are hence the major driving forces of structure formation in RNA. Other,
usually weaker, intermolecular forces and the interaction with aqueous solvent shape its spatial structure.
As opposed to the protein case, the secondary structure of RNA sequences is well de� ned, provides the
major set of distance constraints that guide the formation of tertiary structure, and covers the dominant
energy contribution to the 3D structure. Furthermore, secondary structures are conserved in evolutionary
phylogeny (Gutell, 1993) and therefore represent a qualitatively important description of the molecules.

De� nition 1 (Waterman and Smith, 1978). A secondary structure consists of a set of vertices V 5
f1, 2, ..., i, ..., N g and a set of edges S 5 fi j, 1 µ i , j µ N g ful� lling

(1) For 1 µ i , n, i (i 1 1) 2 S.
(2) For each i there is at most one h 65 i ¡ 1, i 1 1 such that i h 2 S.
(3) If i j 2 S and h l 2 S and i , h , j , then i , l , j .

The � rst condition simply states that RNA is a linear polymer, the second condition restricts each base
to at most a single pairing partner, and the third forbids pseudo-knots1 and knots. While pseudoknots
are important structural elements in many RNA molecules (Westhof and Jaeger, 1992), they are excluded
from many studies mostly for a technical reason (Waterman and Smith, 1978): The folding problem for
RNA can be solved ef� ciently by dynamic programming (Waterman and Smith, 1978; Zuker and Sankoff,
1984) in their absence. In many cases pseudoknots can be “added” to a predicted secondary structure graph
during a postprocessing step.

1Special conformations where a base inside a loop base pairs outside the loop.
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FIG. 1. Secondary structures decompose into � ve distinct loop types, which form the basis of the additive energy
model. One distinguishes three loop energy functions: H (i, j ) for hairpin loops, I(i, j, h, l) for the three types of
loops that are enclosed by base pairs i j and h l and the additive model for multi-loops described in the text. Stacked
pairs (h 5 i 1 1, l 5 j ¡ 1) and bulges (either h 5 i 1 1, l 65 j ¡ 1 or l 5 j ¡ 1, h 65 i 1 1) are treated as special cases
of interior loops. The energies depend on the types of closing base pairs indicated by i j and interior base pairs as
well as on the size of the loops.

A base pair h l is called interior to the base pair i j , if i , h , l , j . It is immediately interior if
there is no base pair p q such that i , p , h , l , q , j . For each base pair i j the corresponding
loop is de� ned as consisting of i j itself, the base pairs immediately interior to i j and all unpaired
regions connecting these base pairs. In graph theoretical terms, the loops form the unique minimal cycle
basis of the secondary structure graph (Leydold and Stadler, 1998).

The standard energy model for RNA contains the following types of parameters: (i) Base pair stacking
energies depend explicitly on the types of the four nucleotides i j and (i 1 1) ( j ¡ 1) that stack. For the
purpose of the recursions in Table 1 it is useful to view stacked base pairs as a special type of interior loop,
hence we denote the stacking energies I(i, j, i 1 1, j ¡ 1). (ii) Loop energies depend on the type of the
loop, its size, the closing pairs and the unpaired bases adjacent to them (see Fig. 1). We write H(i, j ) for
hairpin loops and I(i, j, h, l) for interior loops. Multiloops are assumed to have a linear contribution of the
form M 5 MC 1 MI degree 1 MB unpaired; in addition, the so-called dangling end energies are taken
into account which refer to mismatches next to the base pairs that delimit the loop. The implementation
of the folding algorithms used in this contribution assumes the energy parameters summarized by (Walter
et al., 1994) except that coaxial stacking of helices is neglected. (Coaxial stacking is, strictly speaking,
not part of the secondary structure graph as de� ned above.) The energy model is thus identical to Zucker’s
mfold 2.3 (Zuker, 1996).

3. MCCASKILL’S ALGORITHM

McCaskill’s partition function algorithm naturally decomposes into two parts, namely the computation of
the partition function and the subsequent computation of the pairing probabilities. We will refer to the two
parts as folding and backtracking, respectively. The logic of the folding part is essentially the same as for
minimum energy folding (Zuker and Sankoff, 1984) while the backtracking part is much more elaborate.
The recursions of McCaskill’s algorithm are summarized in Table 1. An ef� cient implementation for serial
machines is part of the Vienna RNA Package2 (Hofacker et al., 1994). In the remainder of this section,
we brie� y review this algorithm.

The partition function of the complete RNA molecule can be derived from the partition functions of
all its subsequences. For the subsequence from i to j , we have to distinguish whether i j forms a base
pair or not. We write Q B

i j for the partition function of the substring subject to the constraint that i j is
paired and Q i j for the unconstrained partition function. Consequently, the partition function of the entire
molecule is Q 5 Q 1n .

If i to j are paired, this pair can close either a hairpin loop, an interior loop delimited by i j and h l, or a
multicomponent loop. The three terms in Table 1 correspond to these possibilities. Multiloops can be dealt
with ef� ciently due to a linear ansatz for their energies contributions. This allows for a decomposition into
three terms: one for unpaired substructures, one for substructures consisting of a single component, and

2http://www.tbi.univie.ac.at/~ivo/RNA

http://www.tbi.univie.ac.at/%7Eivo/RNA
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Table 1. Recursion for Computing the Partition Function1

Folding Backtracking

QB
i j 5 e ¡ H (i j )=kT

1
j ¡ m ¡ 2X

h 5 i 1 1
uµumax

j ¡ 1X

l5 h 1 m 1 1

Q B
hl e ¡ [I(i, j,h ,l)]=kT

1
j ¡ m ¡ 2X

h 5 i 1 1

Q M
i 1 1,h ¡ 1Q M 1

h , j ¡ 1 e ¡ M C =kT

Q M 1
i j 5

jX

l5 i 1 m 1 1

QB
i l e ¡ [ M I 1 M B ( j ¡ l)]=kT

Q M
i j 5

j ¡ m ¡ 1X

h5 i 1 m 1 1

Q M
i,h ¡ 1 QM 1

h j

1
j ¡ m ¡ 1X

h 5 i

QM 1
h j e ¡ M B (h ¡ i )=kT

QA
i j 5

jX

l5 i 1 m 1 1

Q B
i l

Q i j 5 1 1 Q A
i j 1

j ¡ m ¡ 1X

h5 i 1 1

Q i,h ¡ 1Q A
hj

P c
hl 5

Q 1,h ¡ 1QB
hlQ l 1 1,n

Q 1n

P i
hl 5

h ¡ 1X

i 5 1
u , umax

nX

j 5 l 1 1

Pi j
Q B

hl

QB
i j

e ¡ I(i, j,h , l)=kT

P m
hl 5 Q B

hl e
¡ [( M C 1 M I )=kT ]

£
h ¡ 1X

i 5 1

¡
P M 1

i l QM
i 1 1,h ¡ 1 1 P M

il Q M
i 1 1,h ¡ 1

1 P M
il e ¡ [(h ¡ i ¡ 1) M B =kT ]¢

P M
il 5

nX

j 5 l1 2

Pi j

QB
i j

Q M
l1 1, j ¡ 1

P M 1
i l 5

nX

j 5 l1 1

Pi j

Q B
i j

e ¡ [( j ¡ l ¡ 1) M B =kT ]

Phl 5 P c
hl 1 P i

hl 1 P m
hl

1The parameter m is the minimum size of a hairpin loop, usually m 5 3.

a multicomponent reminder. The auxiliary variables Q M and Q M 1 are necessary for handling multiloop
contributions. Introducing Q A and restricting the size of interior loops to u µ umax reduces the CPU
requirements from O(n4) to O (n3). Most programs set umax 5 30. The restriction on the size of interior
loops does not have a serious effect in practice, since long interior loops are energetically unfavorable and
therefore very rare. For further details we refer to McCaskill’s (1990) original paper.

In the backtracking part of the algorithm, the pairing probabilities Pi j are obtained by comparing the
partition functions Q B

i j and Q i j with and without an enforced pair i j . While the partition function for
longer subsequences is computed from shorter ones during the folding part, the backtracking recursion
proceeds in the reverse direction. The probability Phl of the pair h l is the sum of three independent
terms: (i) it closes a component with probability P c

hl , (ii) it is an interior base pair of an interior loop,
bulge, or stack with probability P i

hl , or (iii) it is immediately interior to a multiloop with probability P m
hl .

Again, two auxiliary arrays are needed to handle the multiloop contribution in cubic time. The complete
recursion is summarized in Table 1.

For long (sub)sequences the partition functions Q i j become very large since they are the products of a
large number of exponential functions. In order to reduce the numerical problems we rescale the partition
function of a subsequence of length ` by a factor Q̃ `=n , where Q̃ is an a priory estimate for the partition
function. A suf� ciently accurate estimate can be obtained from the ground state energy Emin:

ln Q̃ º ¡ 1.04 £ Emin=kT (1)

We use the message passing implementation of the minimum energy folding algorithm, which is described
by (Hofacker et al., 1996a,b) to compute Emin.
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4. MESSAGE PASSING

Since the folding and the backtracking part are independent of each other, it seems logical to paral-
lelize them independently. The folding part can be parallelized in a way that is very similar to our ear-
lier message-passing implementation of the minimum energy folding algorithm (Hofacker et al., 1994,
1996a). However, some of the intermediate results (partial partition functions Q i j and Q B

i j ) are re-
quired again during the backtracking stage. Storing these values in such a way that the backtracking
recursion can ef� ciently be distributed among a large number of processors is the main dif� culty of
our task.

Folding

The crucial observation is that the computation of all those matrix entries that lie on the same subdiagonal
(i, i 1 d) are independent of each other. Furthermore, they depend only on those entries that are located
closer to the main diagonal. The computation therefore proceeds from the diagonal of the matrices Q i j ,
Q B

i j , etc. towards the corner (1, n). In order to compute the entries (i, i 1 d), all previously computed

data from row i of the arrays Q , Q B , and Q M and from column (i 1 d) of Q M 1 and Q A are necessary.
Furthermore, we need a triangular part of the Q B array up to depth umax for the interior loop contributions.
For each processor, these triangles add up the trapezoidal area indicated in Figure 2a.

We divide each subdiagonal as evenly as possible between the available N processors. Set w 5 b(n ¡
d)=N c and r 5 n ¡ d mod N . Then the � rst r processors calculate w 1 1 matrix entries; the remaining
N ¡ r processors compute only w entries. After completing a subdiagonal, each processor has to send
either the rightmost row or the leftmost column of its memory to its right or left neighbor, respectively; see
Figure 3 (upper part). This arrangement, which is the same as for the minimum energy folding (Hofacker
et al., 1996b), is quite ef� cient since each processor sends and receives only n messages with O(n) bytes
during the entire folding computation.
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Folding Backtracking
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FIG. 2. Logical memory required by a single processor during folding (a) and backtracking (b), resp., of the entries
of sub-diagonal d . Folding. The work is divided among the processors in sectors by evenly dividing each sub-diagonal
d. The matrices Q , Q M , and Q B are stored in form of rows, the auxiliary arrays of QM 1 and Q A as columns. Each
processor calculates the entries of its part of sub-diagonal d (dashed line). The shaded region representing Q B does
not extend to the diagonal, because we have restricted the maximal size of interior loops. After the calculation of one
sub-diagonal d the rows of the Q B and QM matrices are stored permanently (dashed lines), the memory allocated to
the other arrays is recycled. Backtracking proceeds from the longest subsequences to shorter ones. Each processor
computes a horizontal slice of the triangle matrices in order to reduce the number of messages. The computation
of P i

hl requires entries of P from the shaded region, while newly calculated values of P are then stored in rows

(horizontal stripes). The shaded rows and columns of Q M (shaded, towards upper left and lower right) are needed for
multi-loop contribution P m . The auxiliary arrays P M and P M 1 (vertical stripes) are stored as columns; only those
columns intersecting the current sub-diagonal are necessary.
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FIG. 3. Message passing requirements. Top: Folding. Each processor has to send an/or receive at most rows or
columns of data to its neighbors when the calculation proceeds from diagonal d to d 1 1. We have to distinguish three
cases: (a) The required rows to calculate the sub-diagonal entry for d and d 1 1 are the same, while columns have been
shifted. We have to send the left-most column to processor 1 and receive the left-most column of processor 3. (b) The
required columns stay the same for d and d 1 1. The right-most row is not needed anymore and is sent to processor 3,
while processor 2 receives the right-most row of processor 1. (c) In this case the left-most row is the same, we have to
send the left-most column to processor 1, while the right-most row is not needed anymore and is sent to processor 3.
Below: backtracking. The required rows to compute a sub-diagonal entry from d to d 1 1 are always the same, while
the columns are shifting. We have to send the right-most column of the processor k to processor k 1 1. Additionally
we need rows of data, calculated during the folding procedure.

In contrast to minimum free energy folding, we need to store the entire arrays Q B and Q M for the
backtracking part, where this information will be needed at different processors. Whenever the last entry
of a row in Q B and Q M has been calculated, the data are stored for backtracking. A row i will be stored
on node bi N =nc, so that the same number of rows is kept on each processor. This causes an additional
n message passing operations during the folding procedure.

Backtracking

The backtracking part starts in the corner (1, n) and proceeds towards the main diagonal. Again, the
entries within each subdiagonal are independent from each other. To compute a base pair probability Pi j ,
we need Q B and Q M data that were calculated during the folding part as well as P , P M and P M 1 data
that were calculated earlier during backtracking. A detailed description of data required by each processor
is given in Figure 2b.

To simplify memory access, we do not divide the subdiagonals evenly between all processors. Instead,
each processor computes a horizontal slice of the triangle matrices as shown in Figure 2b. The � rst n=N
subdiagonals are therefore computed by a single processor at the beginning of the backtracking part. The
poor load balancing during the initial steps is not crucial, however, since at the beginning all rows and
columns are short and the computational effort is small. Towards the end of the backtracking procedure,
when all rows and columns are long, the work is distributed ideally among the available nodes. Although
the overall load balancing is somewhat worse than in the folding part, this arrangement minimizes the
communication overhead, see Figure 3 (lower part).
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5. PERFORMANCE

Memory Requirements

Table 2 summarizes the memory requirements of the message passing implementation. In order to ensure
a reasonably ef� cient computation, it is necessary to store some of the intermediate data more than once.
The trapezoidal arrays are necessary for computing interior loop contributions. Their height is determined
by the constant umax, i.e., the maximum length of interior loops for which we search rigorously. Their total
size is numax 1 N u2

max and hence is negligible in comparison to the triangular arrays. The matrices P c ,
P i , and P m need not be stored explicitly. In addition, the matrix Q can be reused to store to the newly
computed entries of P since in each subdiagonal we need the Q -values that are located closer to the main
diagonal (shorter subsequences) and P -values closer to the upper right corner.

Memory usage is thus dominated by the backtracking part of the algorithm. On each processor we need
approximately

M 5
1
N

±
3n2 1 numax

²
1 7n (2)

real numbers. A number of arrays of length n, such as the last column of the matrix Q , are stored on
each processor in order to facilitate memory access. In addition, a few integer � elds of length n are used
to manage memory and message passing.

For sequences longer that some 3000 nucleotides, it is necessary in general to use double-precision reals.
Hence, we need some 2.5GBytes to fold an HIV sequence with our implementation.

CPU Requirements

The present implementation is suitable for routinely folding large genomic virus RNAs with a chain
length of sometimes more than 10,000 nucleotides, see Table 3 for performance data.

The exact number of instructions required for computing the partition function is sequence dependent. We
tested the performance of our parallel program on several RNA virus genomes, such as Qb bacteriophage,
n 5 4220, polio viruses, n º 7500, and HIV viruses, n º 10, 000. In the following we will use t to denote
the time required to perform the folding in real time on the Delta, while T 5 tN refers to the CPU time
consumed on all processors.

The total computational effort is represented quite well by

T ¤ º an3 1 bu2
max n2 (3)

Table 2. Memory Requirements1

Matrix Row-wise Column-wise Trapezoidal

Folding
Q B Qb Qb

Q M Qm
Q M 1 Qmm

Q A Qq
Q Q

Backtracking
Qm Qm
Qb

P Pr Pr
P M Prml

P M 1 Prmlt

1The folding part requires 5 triangular matrices, while we need 6 such
matrices for the backtracking part because the values of QM are required
in both row and column form.
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FIG. 4. Ef� ciency of parallelization versus number N of processors on the Intel Delta.

where an3 comes from the calculation of multiloops and bu2
max n2 is determined by the calculation of

interior loops. From several test runs on the Qb sequence with different values of umax , we obtain
a 5 900ns and b 5 1200ns. The CPU requirements vary very little with the sequence composition. In order
to measure the pure CPU requirements of the folding algorithm (as opposed to I/O and message passing
overhead) we have extrapolated folding times for different numbers N of processors to a hypothetical
single-node CPU requirement T ¤. The ef� ciency of the parallelization is then given by

E (N ) :5 T ¤=(N t ) (4)

The data in Figure 4 show that we achieve ef� ciencies of more than 50% when the smallest number of
nodes satisfying our memory requirements is used. The computation of the minimum energy for estimating
Q̃ , Eq. (1) take less than 20% of the total execution time. Folding and backtracking each need about 40%
of the total time.

Recently cost-effective workstation clusters have become widely available. We use a Beowulf architec-
ture consisting of 9 two-processor PCs (Pentium II, 450Mhz) with 512MByte each, connected by 100Mbit
Fast Ethernet, running Linux and LAM 6.1. This setup is suf� cient for the routine computation of base
pairing probability matrices from complete RNA virus genomes. Typical execution times are compiled in
Table 3. For comparison, folding the HIV LAI sequence, n 5 9229, took about 77min using 320 processors
on the Intel Delta and 2h on 16 Pentium II 450MHz. The serial code took 42h on a DEC alpha and
64h on Cray YMP for the same sequence.

Despite the relatively slow network connection in the Beowulf workstation cluster, we � nd ef� ciencies
above 50% on 16 nodes already for the chain length n 5 4000. The ef� ciencies increase somewhat for
larger n. Executing the parallel code on a single CPU shows that the overhead from the parallelization
is about 20% to 25%. This is mainly because some parts of the algorithm can be implemented more
ef� ciently in the serial version, where the memory organization is not constrained by requirements of easy
message passing.

Table 3. Wall Clock Times

Hardware Sequence n N t (min)

Pentium II 450 Mhz (serial) Qb 4220 1 84.0
Beowulf Pentium II 450 Mhz Qb 4220 16 14.5

HIV LAI 9229 16 123.6
Pestivirus 12573 17 315.2

Intel Delta HIV LAI 9229 320 77.0
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6. APPLICATIONS

HIV-1 is a highly complex retrovirus with a single-stranded RNA genome that is densely packed with
information coding for proteins and for structural elements that regulate the viral life cycle. One of the
best known regulatory elements is the Rev response element (RRE) which acts as a binding site for the
Rev protein. The RRE structure is located within the env gene (Figure 5). Binding of the Rev protein to
the RRE promotes the transport of unspliced HIV transcripts to the cytoplasm (Malim et al., 1989).
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FIG. 5. The RRE region of HIV-1L AI . Top. In a dot plot a base pair appears as black box at position i j with
an area that is proportional to the pairing probability. The upper right triangle contains the data from an earlier
computation (Huynen et al., 1996) on a CRAY YMP using different energy parameters, the lower left part is from the
current study. The data sets agree quite well. Below we show three possible structures of the RRE region (Hofacker
et al., 1996b). The left-most structure has been inferred from phylogenetic comparisons (Konings, 1992), the middle
and right structure are the mfe structure obtained with the old and new parameters, respectively. All three structures
have very similar energies and all appear in the pairing matrix. The nomenclature of the stems conforms (Dayton
et al., 1992).
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The base pair probability matrix of the HIV-1 sequence HIVLAI was determined in an earlier study
using the serial program RNAfold 1.02 on a CRAY-M90 , i.e., a large memory con� guration of the CRAY
YMP (Huynen et al., 1996). In this work, a simpli� ed energy model neglecting the dangling end energies
was used. We have repeated this calculation using our message-passing implementation with an up-to-
date energy parameter set. A comparison of the structure prediction for the RRE region with the earlier
computation on the CRAY is shown in Figure 5.

The RRE region forms a well-de� ned structure on the outside of a large bulk of secondary structure.
The stem loop structure I, which separates the hairpins of the RRE from the rest of the RNA molecule,
consists of 32 base pairs that do not show any signi� cant structural alternatives. The consensus structure
for the RRE region consists of � ve hairpins in a multiple-branched conformation closed by a single stem
structure (Konings, 1992). An alternative structure of only four hairpins, in which the hairpins III and IV
of the consensus model merge to form one hairpin, has been proposed by Mann et al. (1994). Note that
this alternative structure matches the minimum energy structure obtained with the old energy parameters.

Extensive computer analysis has shown that the alignment of the RRE at the level of the sequence does
not coincide with the alignment at the level of the secondary structure (Konings, 1992). This has two
important implications: 1) methods that predict secondary structure of RNA on the basis of covariation of
positions within the sequence (Gutell, 1993) cannot provide unambiguous answers for this region, and 2)
the RRE has intrinsic structural versatility and hence it is indispensable to consider ensembles of structures
rather than only the single minimum energy structure.

The ef� ciency of our implementation allows us to routinely fold complete RNA virus genomes, thereby
providing the data for a recently developed method for elucidating conserved secondary structures in
moderate size samples of related RNA sequences (Hofacker et al., 1998; Hofacker and Stadler, 1999).
This approach is based on a combination of thermodynamic structure prediction and comparative sequence
analysis. The program pfrali uses multiple sequence alignment � les and base pairing probability matrices
computed with our parallel implementation of McCaskill’s algorithm as input and extracts promising
structural features without user intervention. We have successfully applied this technique to a variety of
large RNA viral genomes, including HIV-1, Hepatitis C virus, Flaviviruses (Mandl et al., 1998). In all
cases, we were able to � nd the structural elements that were previously described in the literature plus a
small number of additional promising candidates. An example is shown in Figure 6. The region is located
200 nucleotides upstream of the end of the gag gene; to our knowledge no function has yet been assigned
to this element.
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FIG. 6. A conserved structural feature in the HIV-1 genomic RNA detected by the program pfrali. The “mountain
plot” on the l.h.s. is a convenient representation of the predicted structure: each base pair i j is represented by a slab
extending from i to j with a height proportional to the mean probability of the pair. Base pairs with compensatory
mutations are shown in darker colors, pairs marked by sparse and dense white stripes have one or two noncompatible
sequences, respectively. In the secondary structure plot on the r.h.s. base pairs with compensatory mutations are
indicated by circles, pairs with noncompatible sequences are shown in gray. Note that only those pairs that are
consistently predicted are included, most sequences will form additional pairs in this region.
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7. DISCUSSION

We have developed an implementation of McCaskill’s partition function algorithm for massively parallel
computer architectures that allows the prediction of the base pair probability matrices of complete RNA
virus genomes. The current implementation adheres to the MPI message passing standard and should there-
fore be easily portable to most presently available parallel computers. The program was used successfully
on an Intel Delta supercomputer with 512 nodes, an IBM SP2, and workstation clusters, demonstrating
that distributed memory architectures are well-suited to the problem of folding the largest RNA sequences
available. The optimal partition sizes are those for which the total available memory on each node is
utilized.

The necessity for folding long RNA molecules as a single piece instead of composing the fold from a
short subsequence arises from the inherent nonlocality of RNA folding. There are long range interactions,
as exempli� ed by the “panhandles” linking the 3’ and 5’ ends of bunyavirus genome segments (Paradigon
et al., 1982). In addition, it is well known that the fold of a subsequence depends strongly on its size and
exact location.

While long RNA molecules probably fold sequentially in nature, there are rearrangements between es-
tablished and new helices during the folding process. Although there have been a number of different
approaches to kinetic and/or sequential folding, there is no consensus in the � eld, and so far these ap-
proaches have not proved to be signi� cantly superior to thermodynamic folding, which yields at least a
controlled approximation of the real structure. It highlights possible global interactions that may or may
not be accessible along kinetic folding pathways. As a consequence, thermodynamic predictions of base
pairing probabilities are an ideal starting point for comparative approaches.
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