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Abstract

RNA secondary structures are derived from RNA sequences, which are strings built form the
natural four letter nucleotide alphabet, {AUGC}. These coarse-grained structures, in turn, are
tantamount to constrained strings over a three letter alphabet. Hence, the secondary structures
are discrete objects and the number of sequences always exceeds the number of structures.
The sequences built from two letter alphabets form perfect structures when the nucleotides
can form a base pair, as is the case with {GC} or {AU}, but the relation between the sequences
and structures differs strongly from the four letter alphabet. A comprehensive theory of RNA
structure is presented, which is based on the concepts of sequence space and shape space,
being a space of structures. It sets the stage for modelling processes in ensembles of RNA
molecules like evolutionary optimization or kinetic folding as dynamical phenomena guided
by mappings between the two spaces.

The number of minimum free energy (mfe) structures is always smaller than the number of
sequences, even for two letter alphabets. Folding of RNA molecules into mfe energy structures
constitutes a non-invertible mapping from sequence space onto shape space. The preimage of
a structure in sequence space is defined as its neutral network. Similarly the set of suboptimal
structures is the preimage of a sequence in shape space. This set represents the conformation
space of a given sequence. The evolutionary optimization of structures in populations is a
process taking place in sequence space, whereas kinetic folding occurs in molecular ensembles
that optimize free energy in conformation space. Efficient folding algorithms based on dynamic
programming are available for the prediction of secondary structures for given sequences. The
inverse problem, the computation of sequences for predefined structures, is an important tool
for the design of RNA molecules with tailored properties. Simultaneous folding or cofolding
of two or more RNA molecules can be modelled readily at the secondary structure level
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and allows prediction of the most stable (mfe) conformations of complexes together with
suboptimal states. Cofolding algorithms are important tools for efficient and highly specific
primer design in the polymerase chain reaction (PCR) and help to explain the mechanisms of
small interference RNA (si-RNA) molecules in gene regulation.

The evolutionary optimization of RNA structures is illustrated by the search for a target
structure and mimics aptamer selection in evolutionary biotechnology. It occurs typically in
steps consisting of short adaptive phases interrupted by long epochs of little or no obvious
progress in optimization. During these quasi-stationary epochs the populations are essentially
confined to neutral networks where they search for sequences that allow a continuation of the
adaptive process. Modelling RNA evolution as a simultaneous process in sequence and shape
space provides answers to questions of the optimal population size and mutation rates.

Kinetic folding is a stochastic process in conformation space. Exact solutions are derived
by direct simulation in the form of trajectory sampling or by solving the master equation.
The exact solutions can be approximated straightforwardly by Arrhenius kinetics on barrier
trees, which represent simplified versions of conformational energy landscapes. The existence
of at least one sequence forming any arbitrarily chosen pair of structures is granted by the
intersection theorem. Folding kinetics is the key to understanding and designing multistable
RNA molecules or RNA switches. These RNAs form two or more long lived conformations,
and conformational changes occur either spontaneously or are induced through binding of
small molecules or other biopolymers. RNA switches are found in nature where they act as
elements in genetic and metabolic regulation.

The reliability of RNA secondary structure prediction is limited by the accuracy with which
the empirical parameters can be determined and by principal deficiencies, for example by the
lack of energy contributions resulting from tertiary interactions. In addition, native structures
may be determined by folding kinetics rather than by thermodynamics. We address the first
problem by considering base pair probabilities or base pairing entropies, which are derived
from the partition function of conformations. A high base pair probability corresponding to
a low pairing entropy is taken as an indicator of a high reliability of prediction. Pseudoknots
are discussed as an example of a tertiary interaction that is highly important for RNA function.
Moreover, pseudoknot formation is readily incorporated into structure prediction algorithms.

Some examples of experimental data on RNA secondary structures that are readily
explained using the landscape concept are presented. They deal with (i) properties of RNA
molecules with random sequences, (ii) RNA molecules from restricted alphabets, (iii) existence
of neutral networks, (iv) shape space covering, (v) riboswitches and (vi) evolution of non-
coding RNAs as an example of evolution restricted to neutral networks.



RNA secondary structure 1421

Contents

Page
1. Introduction 1422
2. RNA secondary structures, sequence and shape spaces 1425

2.1. Secondary structures 1425
2.2. Sequence space and shape space 1426
2.3. Counting structures 1428
2.4. Compatibility of sequences and structures 1430
2.5. Computation of mfe structures 1432
2.6. Cofolding of RNA molecules 1435

3. Evolution and design of RNA structures 1436
3.1. Inverse folding 1436
3.2. Neutral networks 1437
3.3. Evolutionary optimization 1442

4. Kinetic folding of RNA 1447
4.1. Conformation space 1448
4.2. Suboptimal structures and partition functions 1449
4.3. Folding kinetics 1451
4.4. RNA molecules with multiple structures 1455

5. Confronting RNA secondary structure prediction with reality 1458
5.1. Reliability of secondary structure prediction 1460
5.2. Pseudoknots and other tertiary interactions 1463

6. Evolutionary and rational design of RNA molecules in vitro 1464
7. Perspectives of the RNA landscape concept 1469

Acknowledgments 1471
References 1471



1422 P Schuster

1. Introduction

Natural ribonucleic acid (RNA) molecules are heteropolymers with a regular backbone built
from four classes of monomers. The backbone is polar in the sense that it has two chemically
different ends. The monomer unit consist of a purine base—A(denine) or G(uanine)—or a
pyrimidine base—U(racil) or C(ytosine)—a ribose unit and a phosphate unit (figure 1). In the
closely related deoxyribonucleic acid (DNA) molecules ribose is replaced by 2′-deoxyribose
and U(racil) by T(hymine). Other purine and pyrimidine bases appear occasionally in nat-
ural nucleic acid molecules too. As shown in figure 1 a string containing the sequence of
nucleotides, commonly called the primary structure, provides all the information for a re-
construction of the chemical formula of an RNA molecule since (i) the ribose-phosphate or
2′-deoxyribose-phosphate backbone is periodic and the same in all RNA or DNA molecules
of the same chain length and (ii) the two different ends of nucleic acids are distinguished by
the convention that the 5′-end coincides with the beginning (left-hand end) and the 3′-end with
the end (right-hand end) of the string.

Nucleic acid structures are commonly classified as foldings of single molecules or
cofoldings of two or more molecules. A duplex formed from complementary strands, the
natural form of DNA, is the simplest and best known cofolded structure. The stability of
the duplex structure is based on the perfect fit of G≡C and A=U (in RNA) or A= T (in
DNA) base pairs into the Watson–Crick double helix structure. Most of the RNA structures
known at atomic resolution are single molecule folds. These structures contain Watson–Crick
type helices formed by pairing complementary regions of the sequence running in opposite
directions (figure 2). The repertoire of acceptable pairings between the natural nucleotide
bases (A, U, G and C) is richer in single molecule folds of RNA than in DNA duplexes:
the G−U base pair is also admitted. The conventional representation of RNA secondary
structures is a planar graph where the nodes are the individual nucleotides and the edges
are the connections between neighbours from the backbone and the base pairs. In general, a
secondary structure can be understood as a listing of base pairs, and this is illustrated by different
representations.

RNA secondary structures are unique among biopolymer structures because they have
a physical meaning as folding intermediates of RNA 3D structures [1, 2] and are accessible
to mathematical analysis since secondary structure formation follows simple combinatorial
rules. The discreteness of secondary structures is an advantage for the analysis of mappings
between sequence and shape space. Methods for the prediction of RNA secondary structures
from known sequences were developed in the 1980s, and it turned out that structures can be
derived by means of dynamic programming at relatively low cost [3–5]. The first algorithm
aiming at energy optimization encapsulated in the search for the structure of minimal free
energy (mfe) followed soon afterwards [6]. Such computations are based on empirical free
energy parameters determined from thermodynamic data of small RNA model compounds.
Since the beginning of RNA secondary structure predictions the parameter sets were regularly
updated as more reliable data on natural and synthesized RNA molecules became available (for
the most frequently used data collections on RNA see [7–9]). Computation of single stranded
DNA folding follows the same principles, and free energy parameters are available for DNA
single strand folding as well as for DNA duplex formation [10, 11].

The inverse problem of RNA folding, the task to finding an RNA sequence that forms
a given RNA secondary structure of mfe, has been solved in the 1990s using an iterative
algorithm [12]: Starting from a random compatible sequence—this is a sequence that has
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Figure 1. Chemical formula of nucleic acids. The molecule is a polymer with a regular ribose-
phosphate (RNA) or 2′-deoxyribose-phosphate (DNA; the OH in the grey box is replaced by
H) backbone. Nucleotide bases (A, U in RNA or T in DNA, G and C) are covalently attached
to the 1′-position of the sugar unit. The molecule has two chemically different ends, 5′ and
3′. The sequence of nucleotides (sketched at the bottom of the figure) determines the molecule
completely. The phosphate group of nucleic acids carries a negative charge at physiological pH, that
is pH ≈ 7.4, and thus close to neutral pH. This charge is compensated by a counterion, commonly
Na⊕. The counterions have a strong influence on nucleic acid structures; in particular, Mg2⊕ is
often indispensable for spatial structures of RNA molecules.

pairable nucleotides1 everywhere the structure demands a base pair- the solution is approached
through coordinated sequence changes that reduce the difference between the current and
the target mfe structure. Inverse folding revealed an important property of RNA structure
landscapes: the mapping from sequences into structures is non-invertible since there are mfe
structures that are formed by many RNA sequences. The main objective of this article is to
derive and review formal concepts of RNA sequence and shape space and to apply them in

1 These are two nucleotides that can form a base pair, in particular one combination out of the set B =
{AU,CG,GC,GU,UA,UG} (see section 2).
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Figure 2. Secondary structures of RNA. The topmost part shows an RNA sequence of n = 33
nucleotides. Its secondary structure of minimal free energy (mfe) is shown in the middle. The
structure contains two classes of nucleotides: (i) unpaired nucleotides and (ii) base pairs. The
base pairs appear in stacks or double helical regions where the two paired strands run in opposite
direction: 5′ → 3′ and 3′ → 5′. The nine base pairs defining the structure above are {3–16, 4–15,
5–14, 6–13, 7–12} in the left-hand stack and {21–33, 22–32, 23–31, 24–30} in the stack on the
right-hand side. Thereby, the numbering of nucleotides follows a convention: No. 1 is assigned to
the nucleotide at the 5′-end and the nucleotide at the 3′end gets no. n. Unpaired bases form various
kinds of loops, hairpin loops in our example, joints connecting two substructures, and free ends.
The sketch below shows an overlay of the sequence onto its mfe conformation. At the bottom of
the figure we show a symbolic representation of the structure by means of three symbols: (i) ‘dot’
stands for a unpaired nucleotide, (ii) ‘left-hand parenthesis’ represents a base, which pairs with a
downstream nucleotide, and (iii) ‘right-hand parenthesis’ completes a base pair by pairing with an
upstream nucleotide. The no pseudoknot restriction (figure 3) guarantees that the mathematical
rule of parentheses assignments is fulfilled in base pairing.

explanations and predictions of the properties of RNA molecules. RNA secondary structures,
together with lattice protein models, are at present the only biological objects for which
conformational landscapes and sequence-structure maps can be computed and analysed in
sufficient detail. The concepts of mappings and landscapes turned out to be useful also for
an understanding of dynamical processes in ensembles of RNA molecules like kinetic folding
and evolutionary optimization.



RNA secondary structure 1425

2. RNA secondary structures, sequence and shape spaces

Two notions are important for the definition of secondary structures: (i) the nucleotide
alphabet A being the set of nucleotides, A = {α1, . . . , ακ} = {A,U,G,U} in natural RNA
molecules, and (ii) the set of accepted base pairs , B = {β1, . . . , β�}, with βk = αiαj and
B = {AU,CG,GC,GU,UA,UG} being the set of allowed base pairs in RNA molecules occurring
in vivo. We denote the size of the alphabet by κ = |A| and the number of accepted base pairs by
� = |B|. As shown, we have κ = 4 and � = 6 for natural RNA molecules. An RNA sequence
is defined as a string of nucleotides chosen from an alphabet: X = (x1x2 . . . xn); xj ∈ A.

2.1. Secondary structures

A conventional RNA secondary structure2 S is a listing of base pairs that can be visualized by
a planar graph. The nodes of the graph are nucleotides of the RNA molecule, i ∈ {1, 2, . . . , n}
numbered consecutively along the chain (figure 3). The edges of the graph represent bonds
between nodes which fall into two classes:
(i) the backbone, {i—(i + 1) ∀ i = 1, . . . , n − 1}, and (ii) the base pairs. The two ends of
the sequence (5′- and 3′-ends) are chemically different. The backbone is completely defined
for known n, and hence a secondary structure is completely determined by a listing of base
pairs, S, where a pair between i and j will be denoted by i–j . For a conventional secondary
structure the base pairs fulfil three conditions:

I. Binary interaction restriction. An individual nucleotide is either involved in one base pair
or it is a single nucleotide forming no base pair.

II. No nearest neighbour pair restriction. Base pairs to nearest neighbours, i–j with j = i−1
or j = i + 1, are excluded.

III. No pseudoknot restriction. Two base pairs i–j and k–l with i < j , i < k and k < l are
only accepted if either i < k < l < j or i < j < k < l is fulfilled—the second base pair
is either enclosed by the first base pair or lies completely outside (figure 3).

Condition I forbids the formation of base triplets or higher interactions between
nucleotides. Conditions II is required for steric reasons because stereochemistry does not
allow pairing geometries between neighbouring nucleotides. As we shall see later on, the
steric constraint is even more stringent in the sense that hairpin loops with fewer than
three single nucleotides do not occur in real structures. Condition III is mainly a technical
constraint, because the explicit consideration of pseudoknots impedes mathematical analysis of
structures substantially and makes actual computations much more time consuming (see [13]
and section 5.2).

The graph representation of secondary structures is fully equivalent to other representations
that we shall not discuss here except two, the adjacency matrix3

A =
{

aij = aji =
{

1 if and only if i, j ∈ � ; i, j = 1, . . . , n

0 otherwise

}
. (1)

and the symbolic notation (figure 2). Throughout this review it will be convenient to identify
a secondary structure by its set of base pairs �. More abstractly, we consider � as an
arbitrary matching on {1, . . . , n}. In other words we shall sometimes relax the conventional

2 ‘Conventional’ means here that the structure is free of pseudoknots (condition III). Some other definitions include
certain or all classes of pseudoknots.
3 Here the backbone is excluded from the adjacency matrix, but it makes no difference when it is considered because
the backbone does not change in superpositions of the structures discussed here.
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Figure 3. Representations of secondary structures and the no pseudoknot restriction. The upper part
shows a simple hairpin loop in the circular representation corresponding to the conventional graph
on the right-hand side: base pairs are represented in the circle by chords that are free of crossings
by condition III. The symbolic notation is shown on the line below. The numbering of individual
nucleotides and the string orientation define the two different ends uniquely: the nucleotide at
the 5′-end always carries the number 1 and is positioned at the left-hand end of the string. The
lower part of the figure shows an H-type pseudoknot (‘H’ stand for ‘hairpin’): pseudoknots violate
condition III and imply crossing of chords. In the symbolic notation pseudoknots require coloured
parentheses in order to guarantee unique assignments.

no-pseudoknot condition III and insist only that each nucleotide takes part in at most one base
pair (condition I).4 Furthermore, let ϒ be the set of unpaired bases, which is the subset of
{1, . . . , n} that is not met by the matching �. Each nucleotide of a sequence X is either a
single nucleotide or it takes part in a base pair and, accordingly, is uniquely assigned to one of
the two sets such that the sequence fulfil: X = {(xj ∈ � Xor xj ∈ ϒ) ∀ j = 1, . . . , n}.

2.2. Sequence space and shape space

The sequence space Q(A)
n is the set of all possible sequences Xk of chain length n over the

alphabet A. Connecting all nearest neighbours yields a simple object in n-dimensional space.

4 Wherever confusion is possible we shall be precise and use ‘S’ for conventional secondary structures and ‘�’ for
the generalization.
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Figure 4. Sequence space of binary sequences of chain length n = 5. The sequence spaces of
binary sequences are hypercubes of dimension n. The sequences are encoded by their decimal
equivalents. All sequences are equivalent in the sense that all points in sequence space are on the
surface and have the same numbers of neighbours.

In the case of binary sequences, A = {A,U} or A = {G,C}, this is a hypercube (figure 4);
for three or four letters, A = {A,U,G}, A = {U,G,C}, and A = {A,U,G,C}, the sequence
space is a straightforward generalization of hypercubes. The Hamming distance between two
sequences Xj and Xk , dH (Xj , Xk), defined as the number of positions in which two aligned5

sequences differ, induces a metric in sequence space. It is commonly used in computer science
and bioinformatics for the comparison of sequences. The Hamming distance is the natural
distance measure for changes in sequences based on single point mutations as elementary
steps or moves.6 All points in sequence space are equivalent, in the sense that they have
precisely the same numbers of neighbours (figure 4).

The shape space Sn is the set of all possible structures formed from sequences of chain
length n, irrespective of whether there exists a sequence that can form the structure. The
cardinality of shape space, i.e. the number of possible structures, will be evaluated by counting
in section 2.3. The choice of a proper notion of distance in shape space is dependent on the
move set for changes in structures. These moves have a meaning in physics when they are
occurring as elementary steps in kinetic folding of RNA molecules. The simplest move set
we shall choose uses base pair closing and base pair opening as the only elementary steps.
Despite its simplicity the set is complete because each structure can be reached from each other
structure by a series of base pair openings and closures. This simple move set corresponds
to the base pair distance, dP (Sj , Sk), which counts the number of base pairs in which the two
structures differ (figure 18).7 Another definition of distance makes use of the symbolic notation
of secondary structures and computes the Hamming distance between the two strings. This
notion of distance corresponds to an extended move set containing base pair closing, base pair

5 Optimal alignment of sequences is not trivial but a common and well understood problem in molecular genetics.
We shall deal here only with the simple problem of end-to-end alignment of sequences with identical chain lengths.
6 Single point mutations are sequence changes at precisely one position.
7 In order to allow straightforward comparisons based on single nucleotide exchanges the number of different base
pairs is multiplied by two.
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Figure 5. Shape space of secondary structures with n = 15. We show the neighbourhood of two
selected structures: (i) the open chain and (ii) the longest stable hairpin. As outlined in section 2.3
the minimal size for a hairpin loop is three nucleotides, and this leads to n(n − 7)/2 + 6 structures
that can be formed from the open chain by closing one base pair. The longest possible stack contains
�(n − 3)/2	 base pairs; each of them can be opened to yield a structure at one move distance, and
hence the numbers of nearest neighbours for the two structures is different.

opening, and base pair shifts. In contrast to sequence space the points in shape space are not
equivalent, as shown by means of an example in figure 5.

2.3. Counting structures

RNA structures are composed of structural elements that are assumed to contribute additively
to the energetic and other extensive properties of the molecules. Examples for the partitioning
of structures are shown in figure 6. Based on the assumption of additivity the molecular
properties derived from the secondary structures’ properties can be computed recursively from
smaller to larger and larger segments (figure 7).

In order to provide a realistic basis for these enumerations the notion of a physically
acceptable structure is introduced. Some classes of secondary structures, which would be
allowed according to the definition, are excluded. Because of steric strain, hairpin loops with
one or two single nucleotides have such high free energies that they are never formed. The
size of hairpin loops is restricted to three or more nucleotides without eliminating relevant
structures (nlp � λ = 3). It is straightforward to calculate, for example, all possible secondary
structures for a given chain length n, s(λ)

n , by means of a recursion [4,14]. For a minimal length
for hairpin loops, nlp � λ, one finds [15, 16]

s
(λ)
m+1 = s(

mλ) +
m−λ∑
j=1

s
(λ)
j−1 · s

(λ)
m−j = s(λ)

m +
m−1∑
j=λ

s
(λ)
j s

(λ)
m−j−1 with s

(λ)
0 = s

(λ)
1 = · · · = s

(λ)
λ = 1. (2)

In table 1 we see a comparison of the numbers of structures calculated for λ = 1 (condition
I: no nearest neighbour pair restriction) and λ = 3 according to the loop strain energies. Less
stringent but nevertheless straightforward is the exclusion of structures with isolated base pairs
as candidates for mfe structures because the major part of the stabilization of RNA structures
results from stacking of base pairs (nst � σ = 2). In order to be able to account for minimal
stack lengths the recursion has to be extended to an enumeration with a restriction in the
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Figure 6. Elements of RNA secondary structures. Three classes of structural elements are
distinguished: (i) stacks (indicated by nucleotides in dark colour), (ii) loops, and (iii) external
elements, namely joints and free ends. Loops fall into several subclasses: Hairpin loops have one
base pair, called the closing pair, in the loop. Bulges and internal loops have two closing pairs,
and loops with three or more closing pairs are called multiloops. The number of closing pairs is
denoted as the degree of the loop.

length of stacks, nst � σ [15]. In this case the most convenient recursion makes use of three
arrays:

s
(λ,σ )
m+1 = 	

(λ,σ)
m+1 + 


(λ,σ)
m−1 ,

	
(λ,σ )
m+1 = s(λ,σ )

m +
m−2∑

k=λ+2σ−2



(λ,σ)
k · s

(λ,σ )
m−k−1, (3)



(λ,σ)
m+1 =

�(m−λ+1)/2	∑
k=σ−1

	
(λ,σ)
m−2k+1,

with s
(λ,σ )
0 = s

(λ,σ )
1 = · · · = s

(λ,σ )
λ+2σ−1 = 1, 


(λ,σ)
0 = 


(λ,σ)
1 = · · · = �

(λ,σ)
λ+2σ−3 = 0, and

	
(λ,σ)
0 = 	

(λ,σ)
1 = · · · = 	

(λ,σ)
λ+2σ−1 = 1. Performing the recursion up to m + 1 = n provides us

with the numbers of secondary structures, s(λ,σ )
n , as presented in tables 1 and 3.

For long RNA sequences the recursions approach asymptotic expressions of the type [15]

s(λ,σ )
n ≈ s

(λ,σ )

lim (n) = Aλ,σ × n−3/2
(
Bλ,σ

)n
for large n. (4)
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Figure 7. The build-up principle of RNA secondary structures. The concept sketched in the figure is
basic to counting structures as well as to the computation of minimal free energy (mfe) structures by
means of dynamic programming. The recursion proceeds from n to n+1 by considering all possible
cases: (i) the added nucleotide (n+1) does not form a base pair and the property under consideration
is the same as for the structure with n nucleotides, [n], plus the contribution for the single nucleotide,
n + 1, or (ii) the added nucleotide does form a base pair with the nucleotide in position j . Then
the structure is partitioned into three parts, one segment [1, j − 1], the base pair (j, n + 1), and
the segment [j + 1, n]. The recursion is completed by consideration of all possible partitions with
j = 1, . . . , n. The necessary condition for the applicability of the recursion is additivity of the
three individual contributions in the calculation of the property under consideration.

Table 1. Comparison of the numbers of RNA sequences and structures as a function of the chain
length n. Given are numbers computed from recursions (2) and (3) for different values of λ and σ

as well as the parameters A and B for the asymptotic expressions. In the two rightmost columns the
values of the recursion are compared with those computed from the asymptotic formula, s(3,2)(n).

Number of sequences Number of structures

n 2n 4n s
(1,1)
n s

(3,1)
n s

(3,2)
n s

(3,2)
lim (n)

10 1024 1.049 × 106 423 65 14 21.92
20 1.049 × 106 1.100 × 1012 2.516 × 106 1.066 × 105 2741 3618
100 1.268 × 1030 1.607 × 1060 6.764 × 1038 6.320 × 1032 8.478 × 1036 8.816 × 1036

200 1.607 × 1060 2.582 × 10120 1.518 × 1080 2.072 × 1068 1.233 × 1050 1.270 × 1050

lim
n→∞ A = 1.1044 A = 0.7131 A = 1.4848

B = 2.618 B = 2.289 B = 1.849

Thus, all recursions increase exponentially with chain length n. Some values of A and B

are given in table 1. For the physically meaningful case, λ = 3 and σ = 2, the asymptotic
expression becomes s

(3,2)

lim (n) = 1.4848×n−3/2(1.84892)n. As shown in table 1 the asymptotic
values are somewhat larger than the values from the recursion. For n = 200 the error is
around 3%.

The general conclusions to be drawn from table 1 are (i) the two free energy based
restrictions applied to the secondary structures reduce their numbers drastically, whereby the
effect of the minimal stack length σ = 2 is somewhat more effective than the minimal hairpin,
loop length λ = 3, and (ii) for the four letter alphabet, A = {A,U,G,C}, we have always
more sequences than structures, whereas only the application of both restrictions (hairpin loop
length and stack length restriction) leads to more sequences than structures for the two letter
alphabets, A = {A, U} and A = {G, C}. Indeed we compute more structures than sequences
for sufficiently long two letter sequences with σ = 1 and λ = 1, 3.

2.4. Compatibility of sequences and structures

A sequence X = (x1x2 . . . xn) over an alphabet A with κ letters is compatible with the structure
or the matching � if {i–j} ∈ � implies that xixj is an allowed base pair. This situation
is expressed by xixj ∈ B. We denote the set of all sequences that are compatible with a
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structure � by

C(A)[�] = {
X|{i–j} ∈ � �⇒ xixj ∈ B

}
. (5)

Clearly, for each i ∈ ϒ we may choose an arbitrary letter from the nucleic acid alphabet A,
while for each pair we may choose any of the � base pairs contained in B. For a given structure
we have, therefore,

|C(A)[�]| = κ |ϒ |�|�| (6)

compatible sequences.
The problem has a relevant inverse too: a structure is compatible with a sequence when it

fulfils precisely the compatibility relation defined above. The set of all structures which are
compatible with a sequence X over an alphabet A is given by

C[X(A)] = {
�

∣∣{i–j} ∈ � �⇒ xixj ∈ B
} = {� |X ∈ C[�i]} . (7)

This compatible set comprises all possible structures consisting of the mfe structure together
with all suboptimal conformations. The two notions of compatibility assign, based on the
same condition, a set of sequences to a given structure and conversely a set of structures to a
predefined sequence. The two relations are somewhat complementary in sequence space and
shape space.

How many structures are compatible with a given sequence X? The calculation of this
number is rather involved, and apart from computation and exhaustive enumeration of all
(suboptimal) structures, which is possible for small RNA molecules only, we have to rely here
on an estimate that is based on recursions analogous to (2) and (3).8 The estimate makes use
of the stickiness of an RNA sequence, p(X), expressing the probability that two arbitrarily
chosen nucleotides can form a base pair,

p(X) = 2
∑

αiαj ∈B
pi(X)pj (X) with pk(X) = nk(X)

n
, k = i, j, (8)

where ni(X) and nj (X) are the numbers of nucleotides αi and αj in the sequence X,
respectively,

∑κ
i=1 pk(X) = 1, and n = ∑

αi∈A ni(X) is the chain length of the molecule.
For a (random) sequence X with defined nucleotide composition (p1, . . . , pκ) and stickiness
p(X) the recursion can be extended according to [18]

sm+1(p) = sm(p) + p

m−λ∑
j=1

sj−1(p) · sm−j (p),

with s0(p) = s1(p) = · · · = sλ(p) = 1,

(9)

The quantity sn(p) yields an estimate of the number of structures that are compatible with the
sequence X. The recursion and the estimate can be extended to a restriction of the length of
stacks, nst � σ [15]:

sm+1(p) = 	m+1(p) + 
m−1(p),

	m+1(p) = sm(p) +
m−2∑

k=λ+2σ−2


k(p) · sm−k−1(p), (10)


m+1(p) = p

�(m−λ+1)/2	∑
k=σ−1

	m−2k+1(p) · pk,

8 The number of all compatible structures can also be obtained from the partition function [17] in the limit of infinite
temperature, T → ∞ (section 4.2). This limit, however, is not easy to compute because of numerical problems.
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Table 2. Estimates on the numbers of suboptimal structures, sn(p), with λ = 3, σ = 1, p(X)

being the stickiness of sequence X.

Chain length, n Stickiness, p(X)

1.0 0.5 0.375 0.25

10 65 21.4 14.3 8.6
20 1.07 × 105 7 403 2 778 787.8
50 1.82 × 1015 1.27 × 1012 8.52 × 1010 2.57 × 109

100 6.32 × 1032 2.09 × 1026 8.05 × 1023 5.81 × 1020

200 2.07 × 1068 1.55 × 1055 1.95 × 1050 8.06 × 1043

with s0 = s1 = · · · = sλ+2σ−1 = 1, 
0 = 
1 = · · · = �λ+2σ−3 = 0, and 	0 = 	1 = · · · =
	λ+2σ−1 = 1. Performing the recursion up to m + 1 = n provides us again with an estimate
for the numbers of secondary structures.

Physically acceptable suboptimal structures exclude hairpin loops with one or two single
nucleotides and hence λ = 3. Since suboptimal conformations need not fulfil the criterion of
negative free energies, no restriction on stack lengths is appropriate. For a minimum hairpin
loop length of λ = 3 and σ = 1 we find the numbers collected in table 2. The numbers of
suboptimal structures become very large at moderate chain length n itself. The expressions
given here become asymptotically correct for long sequences. In order to provide a test for
smaller chain lengths we refer to one particular case where the number of suboptimal structures
has been determined by exhaustive enumeration: the sequence

AAAGGGCACAGGGUGAUUUCAAUAAUUUUA

with n = 30 and p = 0.4067 has 1,416,661 configurations, and the estimate by means of
recursion (10) yields a value s30(0.4067) = 1.17×106 for λ = 3 and σ = 1 that is fairly close
to the exact number.

2.5. Computation of mfe structures

Secondary structures of RNA molecules with minimal free energies are modelled in terms of
a mapping from sequence space onto shape space,

ψ : {Q(A)
n ; dH (Xi, Xj )} mfe�⇒ {Sn; dS(Si, Sj )} or Sk = ψ(Xk). (11)

Thereby we make the implicit assumption that mfe structures can be uniquely assigned to
sequences. This assumption is essentially correct for not too small sequences and a sufficiently
high resolution in the free energy parameters; the exceptions are only molecules that have
degenerate ground state structures because of symmetry.9

Computation of secondary structures with minimum free energies [6] is based on the
same principle as counting the numbers of structures (figure 7). First, the free energies of the
smallest possible substructures are taken or computed from a list of parameters, and then
a dynamic programming table of free energies is progressively completed by proceeding
from smaller to larger segments until the minimum free energy of the whole molecule is
obtained. Backtracking reconstructs the structure. The conventional approach is empirical
and uses the free energies and enthalpies of RNA model compounds to derive the parameters

9 We remark that almost all RNA folding routines return a single mfe structure for a sequence input no matter whether
the ground state is degenerate, because backtracking commonly accepts the first solution it finds. Ground state
degeneracies are found in calculations of all suboptimal structures (for example by means of the routine RNAsubopt
in the Vienna RNA package; see also section 4.2).
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Figure 8. Stacking parameters for the interaction between GC base pairs. Free energies of
stacking are given for the three different interaction geometries (the first and the third pair of
pairs are identical). Values are given in kcal mol−1. Additivity is assumed, and summation yields
G0 = −12.40 kcal mol−1 for the free energy of interaction in the stack of five pairs.

for the individual structural elements. These elements correspond to the substructures shown
in figure 6 which are partitioned further to allow for base pair specific contributions. As
an example we show a computation of the stacking free energy for a cluster of GC-pairs
in figure 8, which is obtained from three free stacking energy parameters for the GC-pairs
interacting at different geometries. In total 21 different free stacking energy parameters are
required for the six base pairs. In order to be able to compute the temperature dependence,
21 stacking enthalpy parameters are required in addition. Loops are taken into account with
loop size dependent parameters, and hairpin loops, bulges, internal loops, and multiloops are
treated differently. Other parameters consider nucleotide stacking on top of regular stacks,
especially stable configurations, for example tetraloops10 with specific sequences and end-
on-end stacking of stacks. Stacks are (almost) the only structure stabilizing elements because
only base pair stacking is a contribution with substantial negative free energy. Further structure
stabilization comes from stacking of single bases called ‘dangling ends’ upon stacks, and there
are other sequence specific contributions. Loops are almost always destabilizing because of
the entropic effect of the ring closure that freezes internal degrees of freedom.

Listings of parameters, which are updated every few years, can be found in the literature
[7–9,19]. These parameters define an energy function E(X; �) that assigns a unique free
energy value to every substructure and provides the tool for completing the entries in the
dynamic programming table. Several software packages are available, and web servers make
secondary structure calculations easily accessible for everybody (see, for example, the Vienna
RNA package and the Vienna RNA server [12, 20]).

The calculated numbers of structures can now be compared with the numbers of mfe
structures actually obtained by folding sequences of chain lengthsnover an alphabetA (table 3).
The number of structures formed by AU and AUG sequences is substantially smaller than those
obtained through folding sequences from AUGC, UGC, and GC alphabets. The explanation
is straightforward: since the hydrogen bonding and stacking free energies of G–C pairs are
substantially larger than those of A–U pairs sequences lacking C can only form weak pairs
and, accordingly, stable stacks have to be longer. The instability of shorter stacks in the
alphabets {A,U} and {A,U,G} implies that structures with these stacks cannot be obtained as
mfe structures. In other words, a realistic estimate of the numbers of structures formed by
AU and AUG sequences requires a value of σ > 2. Although the restriction of hairpin loops
and stacks to λ = 3 and σ = 2 for G and C containing alphabets comes close to the results

10 It is common to denote the size of small hairpin loops by special words: ‘triloops’ are hairpin loops with three single
nucleotides in the loop, ‘tetraloops’ have four single nucleotides, and ‘pentaloops’ five single bases.
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Table 3. Comparison of exhaustively folded sequence spaces. The values are derived through
exhaustive folding of all sequences of chain length n from a given alphabet. The numbers refer
to actually occurring minimum free energy structures (open chain included) without isolated base
pairs and are directly comparable to the total numbers of acceptable structures, s

(3,2)
n , with λ = 3

and σ = 2 as computed from the recursion in equation (3) [15]. The parameters are taken from [7]a.

Chain length n Number of sequences Number of structures

2n 4n s
(3,2)
n GC UGC AUGC AUG AU

7 128 1.64 × 104 2 1 1 1 1 1
8 256 6.55 × 104 4 3 3 3 2 1
9 512 2.62 × 105 8 7 7 7 3 1

10 1024 1.05 × 106 14 13 13 13 5 3

12 4096 1.68 × 107 37 35 35 36 14 8
14 1.64 × 104 2.68 × 107 101 83 89 93 31 20
16 6.55 × 104 4.29 × 109 304 214 246 260 72 44
18 2.62 × 105 6.87 × 1010 919 582 735 180 96
20 1.05 × 106 1.10 × 1012 2 741 1 599 2 146 504 232

25 3.36 × 107 1.13 × 1015 44 695 18 400 1 471
30 1.07 × 109 1.15 × 1018 760 983 218 318 21 315

a We remark that later updates of parameters, e.g. [8], yield smaller numbers of mfe structures because the triloops
are more strongly disfavoured in more recent parameter sets (see also figure 9).

Figure 9. All secondary structures of sequences with n = 9 and 10, λ = 3 and σ = 2. The sketch
shows all eight structures with hairpin loop sizes nhp � 3 and stack sizes nst � 2 for n = 9, and
all 14 structures for n = 10. Structures not realized as mfe structures within the natural AUGC
alphabet (with the parameters set of [7]) are indicated in grey colour. The structures not realized
have a hairpin loop of size 3 enclosed by a stack of two base pairs with no 3′-dangling end. In
computations with the more recent parameter set [8] all structures with triloops enclosed by two
stacked base pairs are missing. These are structures 1–3 for sequences of chain length n = 9 and
structures 1–4 for sequences with n = 10.

of exhaustive folding and enumeration, we do still find fewer structures formed by AUGC
sequences than predicted.

In order to present an example for why some structures cannot be formed as mfe structures
we consider the completely folded sequence spaces with n = 9 and n = 10 (figure 9). The
non-realized mfe structures are those missing an unpaired nucleotide at the 3′-end of the stack
with two base pairs. The extra stabilization of the stack by the 3′-dangling end is indispensable
for the formation of a stable structure. This is also supported by choosing slightly changed
triloop parameters: the marginal stability of small triloops with the shortest possible stacks is
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Figure 10. Cofolding of RNA molecules. The cofolding of two or more, in general N , RNA
molecules follows the same principles as the folding of a single open chain molecule, or even
folding a circular RNA molecule, provided three features are properly accounted for: (i) The pairs
of free ends (zero for circular RNAs, one for ordinary folding of a single strand, two and more
for cofolding) constitute an exterior loop that does not contribute energetically, (ii) for three or
more molecules each of the (N − 1)! different permutations of the molecules along the circle
has to be taken into account, and (iii) complex formation is concentration dependent and proper
accounting of the thermodynamic equilibrium is indispensable. As shown in the rightmost example,
a conformation that is forbidden by the no-pseudoknot condition (III) in one permutation, say
1 → 3 → 2, is legitimate in another permutation, here 1 → 2 → 3.

turned into instability by using the parameter set [8]. With these parameters only triloops with
three adjacent base pairs are stable elements in small RNA molecules (see figure 9).

2.6. Cofolding of RNA molecules

The RNA folding algorithm can be generalized in a straightforward way to compute structures
resulting from simultaneous folding of two or more RNA molecules [12,21,22]. As illustrated
in figure 10, the search for the most stable hybrid of N molecules starts by concatenation and
circular of the N molecules. On a circle only (N − 1)! permutations are different11, and all
of them have to be computed. To obtain the energetically optimal hybrid structure of the N

molecules we choose the complex with the lowest mfe out of the (N − 1)! different solutions.
Accordingly, for cofolding two molecules there is only one arrangement, for three molecules
we have to consider two different arrangements on the circle, six for four molecules, etc.
Whenever one of the sequence cuts is bridged by a base pair an exterior loop is formed, which
does not contribute to the free energy of the complex.

Cofolding depends on the concentrations since the complex formation is a bimolecular
chemical reaction [21, 23]. The two monomeric species A and B can form three different
complexes, AA, AB and BB, which by mass action fulfill three equilibrium relations,

R + S
KRS� RS with R = A, B; S = A, B. (12)

11 In total we have N ! permutations. On the circle it makes no difference with which molecule we start counting and
therefore only N !/N = (N − 1)! arrangements are different.
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The equilibrium constants can be obtained from the computed partition functions

KAA = 1

2

(
QAA

(QA)2
− 1

)
e−�I /RT ,

KBB = 1

2

(
QBB

(QB)2
− 1

)
e−�I /RT ,

KAB =
(

QAB

QA QB

− 1

)
e−�I /RT ,

(13)

wherein Q denotes the partition functions of monomers and dimers as obtained by the folding
routine and �I is the free energy difference composed with some reference state commonly
called the initiation energy (section 4.2). The free concentrations of monomers, a = [A] and
b = [B], are obtained from mass conservation and the total monomer concentrations a0 and
b0, respectively, as solutions of the two nonlinear equations

a + 2 a2 KAA + a b KAB − a0 = 0,

b + 2 b2 KBB + a b KAB − b0 = 0.
(14)

The dimer concentrations result then from equations (12):

[AB] = KAB ab [AA] = KAA a2, and [BB] = KBB b2. (15)

Stable hybridization obviously requires [AB]  {a, b, [AA], [BB]}.

3. Evolution and design of RNA structures

RNA structures and properties can be optimized through mutation and selection (for reviews
see [24–26] and the collection of papers [27]). We shall focus here on the influence of RNA
secondary structures on the evolutionary process. Towards this goal we shall discuss first the
inverse problem of RNA folding [12], which is the basis of designing RNA-structures, then
investigate the mapping of sequences into structures in more detail [28], and eventually discuss
computer simulations of RNA optimization [29].

3.1. Inverse folding

Given a sequence X, the folding problem consists of finding a structure S that minimizes an
energy function E(X; S) and satisfies other constraints, such as the no-pseudoknot condition
III. In section 2.5 we have seen that the folding problem for pseudoknot-free secondary
structures is easily solved by means of dynamic programming. In the inverse folding problem
we have the same energy function E and the same constraints, but we are given the structure S

and search for a sequence X that has S as an optimal structure. We denote the set of solutions
of the inverse folding problem by ψ−1(S)

.= {X|ψ(X) = S}. Note that ψ−1(S) may be empty,
since there are secondary structures that are not formed as minimum energy structures of any
sequence (section 2.5).

Just as the folding problem can be regarded as an optimization problem on the energy
landscape of a given sequence, we can also rephrase the inverse folding problem and turn
it into a combinatorial optimization problem. To this end, we consider a measure d(S1, S2)

for the structural dissimilarity of two RNA secondary structures S1, S2. A variety of such
distance measures have been described in the literature [12,30–33], and two of them have
been mentioned already (section 2.2). Since we are interested here only in sequences of equal
length, we may simply use the cardinality of the symmetric difference of S1 and S2:

d(S1, S2) = ∣∣(S1 ∪ S2) \ (S1 ∩ S2)
∣∣. (16)
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Clearly, sequence X folds into structure S if and only if 	(X) = d(S, ψ(X)) = 0. Hence,
inverse folding translates into minimizing d over all sequences. We know a priori that solutions
to the inverse folding problem must be compatible with the structure:

ψ−1(S) ⊆ C[S]. (17)

It is straightforward to modify this approach to search, for instance, for sequences in which
the ground state is much more stable than any structural alternative [12]: let E(X; S) be the
energy of structure S for sequence X, and let G(X) be the ensemble free energy of sequence
X, which can be computed by McCaskill’s algorithm [17] (See also 4.2). Then, sequences
with the desired property minimize

	(X) = E(X; S) − G(X) = −RT ln γX(S), (18)

where γX(S) is the weight of structure S in the Boltzmann ensemble of sequence X.
It has been found empirically [12] that this combinatorial optimization problem is easily

solvable by means of adaptive walks. Starting from a randomly chosen initial sequence X0

we produce mutants by exchanging a nucleotide at the unpaired positions ϒ or by replacing
one of the six pairing combinations by another one in a pair in S. A mutant is accepted
if the cost function 	(X) decreases. In a more sophisticated version, implemented in the
program RNAinverse, a significant speed-up is achieved by optimizing parts of the structure
individually. This reduces the number of evaluations of the folding procedure for long
sequences. A more sophisticated stochastic local search algorithm is used in the RNA-SSD
software [34].

3.2. Neutral networks

Inverse folding cannot provide a unique answer for every structure since we have many more
sequences than structures. As follows directly from table 3 the mapping S = ψ(X) is many-
to-one in all five alphabets.

The set of sequences that form a given mfe structure S, the pre-image of S in sequence
space or the neutral set

G[S] = ψ−1(S)
.= {X|ψ(X) = S}, (19)

is a subset of the compatible set of structure S: G[S] ⊂ C[S]. The neutral set is turned into a
graph, the neutral network, by connecting all pairs of nodes with Hamming distance 1 by an
edge.

The global properties of neutral networks may be derived using random graph theory [35].
The characteristic quantity for a neutral network is the degree of neutrality, λ̄, which is obtained
by averaging the fraction of Hamming distance 1 neighbours that form the same mfe structure,
λX = n

(1)
ntr /

(
n · (κ − 1)

)
, with n

(1)
ntr being the number of neutral one-error neighbours, over the

whole network, G[S]:

λ̄[S] = 1

|G(S)|
∑

X∈G[S]

λX. (20)

The connectedness of neutral networks is, among other properties, determined by the degree
of neutrality [36]:

with probability 1 a network is

{
connected if λ̄ > λcr

not connected if λ̄ < λcr
, (21)

where λcr = 1−κ− 1
κ−1 . Computations yield λcr = 0.5, 0.423 and 0.370 for the critical value in

two, three and four letter alphabets, respectively. Random graph theory predicts a single largest
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component for non-connected networks, i.e. networks below the threshold, that is commonly
called the ‘giant component’. Real neutral networks derived from RNA secondary structures
may deviate from the prediction of random graph theory in the sense that they have two or
four equally sized largest components. This deviation is readily explained by the non-uniform
distribution of the sequences belonging to G[Sk] in sequence space, which is caused by the
specific structural properties of Sk [37, 38]. In particular, sequences that fold into structures
which allow for closure of additional base pairs at the ends of the stacks are more probable to
be formed by sequences that have an excess of one of the two bases forming a base pair than
by those with the uniform distribution xG = xC and xA = xU. In the case of GC-sequences
the neutral network of such a structure is then depleted from sequences in the middle of the
sequence space and we find two largest components, one at excess G and one at excess C.

The union of the one-error neighbourhoods of all sequences belonging to a neutral network
G[Sk] is characterized as the shadow of structure Sk in sequence space. Since single nucleotide
exchanges are the most frequent mutations the shadows determine the role of structures in
evolutionary processes. Here we consider the shadows of a few typical examples of RNA
structures.

The first example is a series of hairpin structures of chain length n = 33 with one long
stack (table 4). We compare the longest possible hairpin with a triloop and a stack of nst = 15
base pairs (S(hp33)

1 ) with shorter stacks, nst = 13 and 11, and larger hairpin loops, nlp = 7 and

11 (S(hp33)

2 and S
(hp33)

3 ), or longer free ends (S(hp33)

4 and S
(hp33)

5 ). First the two letter alphabets,
GC and AU, show always substantially lower degrees of neutrality than all alphabets with three
or four letters. In order to provide a reference we compute the maximum degree of neutrality,
λmax(S), for the five different alphabets by assuming that mutation of an unpaired nucleotide
does not change the mfe structure, whereas mutation of a nucleotide in a base pair will change
the structure with a certain probability (figure 11) and find

λmax(S) = 1

n

(
γsn · |ϒ | + γbp · 2 |�|) . (22)

Herein, γsn and γbp are the probabilities of staying within the set of compatible sequences when
an unpaired nucleotide or a nucleotide of a base pair is mutated, respectively. Clearly, γsn = 1
and for the base pairs we compute by averaging: γbp = 0 for AU and GC, γbp = 1/4 for AUG
and UGC, and γbp = 2/9 for AUGC. Actually, λmax(S) is the probability of staying within
the compatible set C[S] after a point mutation at an arbitrary position. the maximal degrees
of neutrality for the hairpins in table 4 are summarized in table 5: the maximum degrees of
neutrality in the two letter alphabets are smaller than the values for the three and four letter
alphabets. As a matter of fact the λmax values of three and four letter alphabets are quite
close, with somewhat higher values for three letters. The data in table 4 essentially confirm
the estimate of equation (22), except that that in all examples, except that the simple hairpin
sequences over the AUGC alphabet show the highest degree of neutrality. The explanation
is straightforward: neutral networks contain sequences forming the same mfe structure and
not sequences that are compatible with the structure. Mutated unpaired nucleotides can pair
with other nucleotides and the probability for the occurrence of such an event reduces γsn.
Neglecting all stereochemical and other restrictions, the probability of remaining unpaired is
γsn = 1/3 = 0.3333 for AUG and UGC but γsn = 19/36 = 0.5278 for AUGC. Despite the
approximate nature of this estimate it is definitely suitable for explaining the observed trends
in the degrees of neutrality.

It is interesting to note that alphabets without C have increasingly higher degrees of
neutrality with increasing loop size (S(hp33)

1 → S
(hp33)

2 → S
(hp33)

3 ). An interpretation of this
observation can be given in terms of base pair stability: GC pairs and GC pair stacking is much
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Table 4. Degree of neutrality in different nucleotide alphabets (Part I). The values for the degree of
neutrality, λ̄[S], were obtained by sampling 10,000 random sequences folding into the structures
S using the inverse folding routine [12] and computing their complete one-error neighbourhoods
in sequence space. Four types of mfe structures are considered: (i) hairpin loops of chain length
n = 33, S

(hp33)

k (k = 1, . . . , 5), (ii) a structure of chain length n = 33 with two hairpin loops,
S(dhp33), (iii) a Y-shaped structure of chain length n = 50, S(y50), and (iv) a two component structure
of chain length n = 135, S(dcp135). Clover-leaf structures of chain length n = 76 will be presented
in table 6. The values for the degree of neutrality, λ̄[S], were obtained by sampling 10 000 random
sequences folding into the mfe structures. In some cases several smaller samples were used because
of CPU economy reasons.

Structurea Nucleotide alphabet

GC UGC AUGC AUG AU

S
(hp33)

1 0.09 ± 0.00 0.23 ± 0.02 0.24 ± 0.01 0.24 ± 0.02 0.09 ± 0.00

S
(hp33)

2 0.10 ± 0.02 0.29 ± 0.03 0.31 ± 0.02 0.32 ± 0.03 0.15 ± 0.00

S
(hp33)

3 0.11 ± 0.04 0.30 ± 0.05 0.33 ± 0.04 0.36 ± 0.05 0.21 ± 0.04

S
(hp33)

4 0.21 ± 0.01 0.33 ± 0.02 0.34 ± 0.01 0.35 ± 0.02 0.21 ± 0.00

S
(hp33)

5 0.21 ± 0.03 0.37 ± 0.05 0.40 ± 0.02 0.41 ± 0.03 0.27 ± 0.01

S(dhp33) 0.09 ± 0.05 0.27 ± 0.08 0.34 ± 0.08 – –

S(y50) 0.06 ± 0.03 0.24 ± 0.07 0.29 ± 0.06 0.21 ± 0.07 0.08 ± 0.04

S(dcp135) 0.04 ± 0.02 0.21 ± 0.06 0.26 ± 0.05 0.19 ± 0.06 0.05 ± 0.03

a The following structures were used:

S
(hp33)

1 : (((((((((((((((...)))))))))))))))

S
(hp33)

2 : (((((((((((((.......)))))))))))))

S
(hp33)

3 : (((((((((((...........)))))))))))

S
(hp33)

4 : ....(((((((((((((...)))))))))))))

S
(hp33)

5 : ....(((((((((((.......)))))))))))

S(dhp33): ..(((((....)))))....((((.....))))

S(y50): .(((((...(((((.....)))))...(((((.....)))))...)))))

S(dcp135): ..((((((.((((((.....))))))..((((((......))))))...((((((....))))))..))))))
.......((((((.((((((.....))))))....((((((......))))))..)))))).

more favoured energetically than AU or GU pairing. The larger the free energy gain for a
new base pair created by mutation is, the more likely it will show up in the mfe structure, and
GC-rich sequences are more likely to change structure on mutation therefore.

The double hairpin structure, S(dhp33), in figure 4 is perfectly stable in GC containing
alphabets but unstable in the AU and AUG alphabets. In particular, the stack with only four
base pairs is unable to stabilize the pentaloop. We shall find a similar problem in the case of
the clover-leaf structures in table 6. A stack length of 4 is not enough to stabilize a pentaloop,
but five base pairs in structure S(y50) are sufficient to stabilize the pentaloop and the multiloop
of the ‘Y’ conformation. The last structure considered in table 4 presents a more complex
structure of chain length n = 135 consisting of two joined structural motifs, a clover-leaf and
a Y-element. The degrees of neutrality in the various alphabets are about 10% to 20% lower
than in the simpler Y-structure, but the distribution over the alphabets,

λ̄(AUGC)(S) > λ̄(UGC)(S) > λ̄(AUG)(S)  λ̄(AU)(S) � λ̄(GC)(S),
is characteristic for the majority of generic RNA structures.12

12 ‘Generic’ stands here for typical in the sense that constructed conformations like single long hairpins may have
deviant distributions.
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Figure 11. Compatibility of sequences and single point mutations. The upper part of the
sketch shows mutations in unpaired nucleotides and base pairs in the natural four letter alphabet
A = {A,U,G,C}. Four base pairs, AU, CG, GC, and UA, remain compatible with probability
γbp = 1/6 and two base pairs with probability γbp = 1/3, yielding an average probability
of γ̄bp = 2/9. The two lower diagrams show base pair mutation in the three letter alphabets
A = {A,U,G} and A = {U,G,C} and the two letter alphabets A = {A,U} and A = {G,C}, yielding
γbp = 1/4 and γbp = 0, respectively.

Table 5. Maximum degree of neutrality λmax(S) calculated using equation (22).

Structure Nucleotide alphabets

AU, GC AUG, UGC AUGC

S
(hp33)

1
1

11 = 0.090 909 7
22 = 0.318 182 29

99 = 0.292 929

S
(hp33)

2
7

33 = 0.212 121 9
22 = 0.409 091 115

297 = 0.387 205

S
(hp33)

3
1
3 = 0.333 333 1

2 = 0.5 13
27 = 0.481 482

S
(hp33)

4
7

33 = 0.212 121 9
22 = 0.409 091 115

297 = 0.387 205

S
(hp33)

5
1
3 = 0.333 333 1

2 = 0.5 13
27 = 0.481 482

Table 6. Degree of neutrality in different nucleotide alphabets (Part II). The values for the degree of
neutrality, λ̄[S], were obtained by sampling 1000 random sequences folding into the four clover-leaf
structures with different stack sizesa using the inverse folding routine [12].

Structurea Nucleotide alphabet

GC UGC AUGC AUG AU

S1 0.05 ± 0.03 0.26 ± 0.07 0.28 ± 0.06 – –
S2 0.06 ± 0.03 0.26 ± 0.07 0.28 ± 0.06 0.22 ± 0.05 –
S3 0.06 ± 0.03 0.25 ± 0.07 0.29 ± 0.06 0.21 ± 0.06 –
S4 0.07 ± 0.03 0.25 ± 0.06 0.31 ± 0.06 0.20 ± 0.06 0.07 ± 0.03

a The following clover-leaf structures were used:

S1: ((((((...((((........)))).(((((.......))))).....(((((.......))))).))))))....
S2: ((((((...(((((......))))).(((((.......))))).....(((((.......))))).))))))....
S3: ((((((...(((((......))))).(((((.......))))).....((((((.....)))))).))))))....
S4: ((((((...((((((....)))))).((((((.....)))))).....((((((.....)))))).))))))....

In table 6 we show, as a last example, computed values of the degree of neutrality, λ̄[S],
in neutral networks derived from tRNA-like clover-leaf structures with different stack lengths
of the hairpin loops. The most striking feature of the data is the weak structure dependence of
λ̄[S] within a family: for a given alphabet the clover-leaves S1, S2, S3 and S4, have almost the
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Table 7. The lengths of neutral paths through sequence space. The degree of neutrality, λ̄, and
the mean lengths of neutral paths through sequence space, d̄H (X0, Xf ) (with X0 being the initial
and Xf the last sequence), are compared for three examples: (i) folding of (stand alone) AUGC
sequences of chain length n = 100, (ii) cofolding of AUGC sequences of chain length n = 100 with
a single fixed sequence, and (iii) cofolding of AUGC sequences of chain length n = 100 with two
single fixed sequences. The values represent averages over samples of 1200 random sequences.
The value for the path length in GC sequence space with n = 100 is an estimate from figure 10
in [40, 39].

Molecule Alphabet Degree of Neutral path length,
neutrality, λ̄ d̄H (X0, Xf )

Single fold GC 0.08 ≈45
Single fold AUGC 0.33 >95
Cofold with one sequence AUGC 0.32 75
Cofold with two sequences AUGC 0.18 40

same λ̄ values irrespective of the stability of the corresponding fold. Because of the shorter
stack lengths in S1, S2 and S3 and the weakness of the AU pair, no AU-sequences forming
these structures were obtained by inverse folding. The same was found for S1 in the case
of AUG-sequences. Considering the fact that λcr decreases from two to four letter alphabets,
we see that neutral networks in two letter sequence spaces (λ̄ ≈ 0.06 and λcr = 0.5) and
four letter sequence spaces (λ̄ ≈ 0.3 and λcr = 0.37) must have rather vast extensions,
the former being certainly non-connected, whereas the latter approach the connectivity
threshold.

The extension of neutral networks can be visualized best by evaluating the lengths of
neutral paths [28]. A neutral path connects pairs of neighbouring neutral sequences of
Hamming distance dH = 1 for single nucleotide exchanges and dH = 1 or 2 for base
pair exchange with the condition that the Hamming distance from a reference sequence
increases monotonously along the path. The path ends when it reaches a sequence, which
has only neutral neighbours that are closer to the reference sequence. Table 7 compares the
degree of neutrality and the length of neutral path for GC and AUGC sequences of chain
length n = 100 with the expected result: networks in AUGC space extend through whole
sequence space, whereas GC networks sustain a neutral path of roughly only half of this
length. The table also contains comparisons with constrained molecules that were cofolded
with one or two fixed sequences [39]. The three values demonstrate the influence of multiple
constraints on neutrality, which lead to a decrease in both degree of neutrality and length of
neutral path.

Shape space covering is a consequence of the existence of neutral networks and the
widespread almost random distribution of neutral sequences in sequence space. Sequences
forming common shapes are distributed (almost) randomly in sequence space. Accordingly,
one need not search the entire sequence space in order to find a sequence that folds
into a given common shape. One can indeed show that it is sufficient to screen a
(high-dimensional) sphere around an arbitrarily chosen reference sequence in order to
find (with probability one) at least one sequence for every common shape [28]. The
radius of this shape space covering sphere, rcov(n), can be estimated straightforwardly
[40, 41]:

rcov(n) = min

{
h = 1, 2, . . . , n | Bh(n, κ) � κn

s
(3,2)
n

}
,
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where Bh is the number of sequences contained in a ball of radius h and can be easily obtained
from the recursion

Bh(n, κ) =
h∑

i=1

bi(n, κ); bi = bi−1 · (κ − 1)(n + 1 − i)

i
; b0 = 1.

The covering radius for common shapes is much smaller than the radius of sequence space
(n/2). For example, it amounts to rcov = 15 for AUGC-sequences of chain length n = 100
and thus one has to search only a small fraction of sequence space Q(AUGC)

100 that contains
2.21 × 10−38 × |Q(AUGC)

100 | = 0.355 × 1023 sequences in order to find at least one sequence for
each of the common shapes.

3.3. Evolutionary optimization

The evolution of RNA molecules based on replication, mutation, and selection in a constant
environment can be described by an ODE [43]:13

dxi

dt
=

M∑
k=1

fk Qki xk − xi 
(t) , i = 1, . . . , M, with


(t) =
M∑

k=1

fk xk(t) and
M∑

1=1

xi = 1.

(23)

Herein the relative concentrations of the M individual RNA sequences are denoted by
xi = [Xi], and Qij are the elements of a mutation matrix Q. These elements, in the simplest
case of the uniform error rate assumption, can be expressed by an (average) error rate p per
site and replication:

Qij = pdH (Xi ,Xj ) · (1 − p)n−dH (Xi ,Xj ). (24)

The mutation probability thus is only a function of the error rate and the Hamming
distance, dH (Xi, Xj ), between the two sequences involved. The results of the analysis of
replication-mutation kinetics have been presented and discussed extensively [44–47]. We
refrain here from repeating them in detail but mention the error threshold phenomenon that
confines the possibility of evolutionary optimization to mutation rates below a critical value.
For constant chain length n one obtains

p < p crit = 1 − σ
− 1

n
m with σm = fm

f̄−m

and f̄−m =
∑M

j=1,j �=m fjxj

1 − xm

, (25)

where Xm is the sequence with the highest replication rate, fm = max{f1, f2, . . . , fM},
called the master sequence, σm is called the superiority of the master sequence, and f̄−m

is the mean replication rate of all sequences except the master sequence. Simple replication
rate parameter landscapes, for example the single-peak landscape with fm = α and fj =
β ∀ j = 1, . . . , M, j �= m and hence f̄−m = β, have been used frequently in studies
of equation (23) and its solutions [46, 47]. More realistic landscapes are the basis of the
computer simulations described in this section. At error rates below the error threshold the
population approaches an ordered stationary distribution in sequence space that has been called
a quasispecies. In mathematical terms the quasispecies is the largest eigenvector of the matrix
W = {Wij = fj Qij , i, j = 1, 2, . . . , M}. If, however, the error rate increases above the
critical value the ordered population structure changes abruptly into the uniform distribution

13 We remark that the use of ODEs to describe the kinetics of mutation and selection implies that the population size,
N , is sufficiently large for it to have no influence on the results.
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Figure 12. Evolutionary optimization as a multitype branching process. The sketch
in the upper part shows only replication acts that lead to mutation. A full genealogy
is a time ordered series, which records all individual replication acts, for example
X0, · · · , X0, Xa, · · · , Xa, Xb, · · · , . . . , XT −1, XT , leading to the target. The population size is
either constant (Moran model [42]) or it fluctuates around a constant value (flow reactor: N ±√

N ),
and hence every replication act has to be compensated by the elimination of one molecule that is
tantamount to the end of some trajectory in the system. The sketch at the bottom illustrates the
reconstruction of the optimization run by means of a ‘relay series’.

x1 = x2 = · · · = xM = 1/M . In reality, no stationary population with a uniform distribution
can exist since the size of the sequence space, |Q(AUGC)

n | = 4n, exceeds any population size,
N , by many orders of magnitude. As a consequence, the population can never cover whole
sequence space and drifts randomly. Depending on the mutation rates and landscape structure
it will drift as a whole or separate into clones of related sequences [48]. The behaviour of
populations in the neighbourhood of the critical error rate depends strongly on the distribution
of the replication rate parameters around the master sequence: single-peak and other steep
landscapes are characterized by sharp error thresholds, whereas flat landscapes give rise to a
gradual transition from quasispecies to drifting populations (see, e.g. [47, 49]).

In the ODE approach, the population dynamics is considered as a process taking place
exclusively in sequence space. As in population genetics, the structures and properties of
phenotypes appear in the model only as parameters. Additionally, as mentioned above, kinetic
differential equations refer to an infinite population size. Accordingly, a different description
is required for the study of finite size effects on evolutionary optimization. Replication and
mutation of RNA molecules leading to selection in confined populations have indeed been
studied in finite populations also. The best suited stochastic methods for modelling the system
are multitype branching processes [50]. Simplified versions of the branching trajectories in
replication and mutation are shown in figure 12. As expected, the mean values of the stochastic
variables coincide with the deterministic solution [51]. Standard deviations, however, can be
enormous, as we shall see in the numerical data shown below.

In order to simulate the interplay between mutation acting on the RNA sequence and
selection operating on phenotypes, here the RNA structure, the sequence-structure map has to
be an integral part of the model [29, 53, 54]. The simulation tool starts from a population of
RNA molecules and simulates chemical reactions corresponding to replication and mutation
in a continuous stirred flow reactor (CSTR) using Gillespie’s algorithm [55, 56]. In target
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Figure 13. The secondary structure of a typical transfer RNA. Shown is the phenylalanyl-transfer
RNA (tRNAphe) from the yeast Saccharomyces cerevisiae.

search problems the replication rate of a sequence Xk , representing its fitness fk , is chosen
to be a function of the Hamming distance between the mfe structure formed by the sequence,
Sk = f (Xk), and the target structure ST ,

fk(Sk, ST ) = 1

α + dH (Sk, ST )/n
, (26)

which increases when Sk approaches the target (α is an adjustable parameter that is commonly
chosen to be 0.1). A trajectory is completed when the population reaches a sequence that folds
into the target structure. Accordingly, the simulated stochastic process has two absorbing
barriers, the target and the state of extinction. For sufficiently large populations (N > 30
molecules) the probability of extinction is very small, for population sizes reported here,
N � 1000, extinction has never been observed.

A typical trajectory is shown in figure 14. In this simulation a homogenous population
consisting of N molecules with the same random sequence and the corresponding structure
is chosen as the initial condition. The target structure is the well-known secondary structure
of phenylalanyl-transfer RNA (tRNAphe) shown in figure 13. The mean distance to the target
of the population decreases in steps until the target is reached [29, 48, 54]. Individual (short)
adaptive phases are interrupted by long quasi-stationary epochs. In order to reconstruct the
optimization dynamics, a time ordered series of structures was determined that leads from
an initial structure, SI , to the target structure, ST . This series, called the relay series, is a
uniquely defined and uninterrupted sequence of shapes. It is retrieved through backtracking,
that is in the opposite direction from the final structure to the initial shape (see the lower
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Figure 14. A trajectory of evolutionary optimization. The topmost plot presents the mean distance
to the target structure of a population of 1000 molecules. The plot in the middle shows the width
of the population in Hamming distance between sequences, and the plot at the bottom is a measure
of the velocity with which the centre of the population migrates through sequence space. Diffusion
on neutral networks causes spreading on the population in the sense of neutral evolution [52]. A
remarkable synchronization is observed: at the end of each quasi-stationary plateau a new adaptive
phase in the approach towards the target is initiated, which is accompanied by a drastic reduction
in the population width and a jump in the population centre (the top of the peak at the end of the
second long plateau is marked by a black arrow). A mutation rate of p = 0.001 was chosen, the
replication rate parameter is defined in equation (26), and the initial and target structures are shown
below table 8.

part of figure 14). The procedure starts by highlighting the final structure and traces it back
during its uninterrupted presence in the flow reactor until the time of its first appearance. At
this point we search for the parent shape from which it descended by mutation. Now we
record the time and structure, highlight the parent shape, and repeat the procedure. Recording
further backwards yields a series of shapes and times of first appearance which ultimately
ends in the initial population.14 Usage of the relay series and its theoretical background
allows classification of transitions [29, 58]. Inspection of the relay series together with the
sequence record on the quasi-stationary plateaus provides hints for the distinction of two
scenarios:

(i) The structure is constant and we observe neutral evolution in the sense of Kimura’s theory
of neutral evolution [59]. In particular, the number of neutral mutations accumulated
is proportional to the number of replications in the population, and the evolution of
the population can be understood as a diffusion process on the corresponding neutral
network [52] (see also figure 14).

14 It is important to stress two facts about relay series: (i) The same shape may appear two or more times in a given
relay series. Then, it is extinct between two consecutive appearances. (ii) In contrast to a genealogy, which is the
complete recording of parent–offspring relations in the form of a time-ordered series of genotypes, the relay series
lists only changes in shapes.
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Table 8. Statistics of the optimization trajectories. The table shows the results of sampled
evolutionary trajectories leading from a random initial structure, SI , to the structure of tRNAphe,
ST , as the targeta. Simulations were performed with an algorithm introduced by Gillespie [55–57].
The time unit is here undefined. A mutation rate of p = 0.001 per site and replication were used.
The mean and standard deviation were calculated under the assumption of a log-normal distribution
that fits well the data of the simulations.

Alphabet Population Number of Real time from Number of replications
size, N runs, nR start to target [107]

Mean value σ Mean value σ

AUGC 1 000 120 900 +1380 −542 1.2 +3.1 −0.9
2 000 120 530 +880 −330 1.4 +3.6 −1.0
3 000 1199 400 +670 −250 1.6 +4.4 −1.2

10 000 120 190 +230 −100 2.3 +5.3 −1.6
30 000 63 110 +97 −52 3.6 +6.7 −2.3

100 000 18 62 +50 −28 – –

GC 1 000 46 5160 +15700 −3890 – –
3 000 278 1910 +5180 −1460 7.4 +35.8 −6.1

10 000 40 560 +1620 −420 – –

a The structures SI and ST were used in the optimization:

SI : ((.(((((((((((((............(((....)))......)))))).))))))).))...(((......)))
ST : ((((((...((((........)))).(((((.......))))).....(((((.......))))).))))))....

(ii) The process during the stationary epoch involves several structures with identical
replication rates, and the relay series reveals a kind of random walk in the space of these
neutral structures.

The diffusion of the population on the neutral network is illustrated by the plot in the middle of
figure 14 that shows the width of the population as a function of time [48,60]. The population
width increases during the quasi-stationary epoch and sharpens almost instantaneously after a
sequence had been created, that allows the start of a new adaptive phase in the optimization
process. The scenario at the end of the plateau corresponds to a bottleneck of evolution. The
lower part of the figure shows a plot of the migration rate or drift of the population centre
and confirms this interpretation: the drift is almost always very slow unless the population
centre ‘jumps’ from one point in sequence space to another point in sequence space where the
molecule initiating the new adaptive phase is located. A closer look at the figure reveals
the coincidence of the three events: (i) beginning of a new adaptive phase, (ii) collapse-
like narrowing of the population spread, and (iii) jump-like migration of the population
centre.

Table 8 collects some numerical data obtained from repeated evolutionary trajectories
under identical conditions.15 Individual trajectories show enormous scatter in the time or the
number of replications required to reach the target. The mean values and the standard deviations
were obtained from the statistics of the trajectories under the assumption of a log–normal
distribution. Despite the scatter, three features are unambiguously detectable:

(i) The search in GC sequence space takes about five time as long as the corresponding process
in AUGC sequence space, in agreement with the difference in neutral network structure
discussed above.

(ii) The time to target decreases with increasing population size.
(iii) The number of replications required to reach the target increases with population size.

15 ‘Identical’ means here that everything was kept constant except the seeds for the random number generators.
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Combining items (ii) and (iii) allows a clear conclusion concerning the time and material
requirements of the optimization process: fast optimization requires large populations, whereas
economic use of material suggests working with small population sizes just sufficiently large
to avoid extinction.

Systematic studies on the parameter dependence of RNA evolution were reported in a
recent simulation [61]. An increase in the mutation rate leads to an error threshold phenomenon
that is close to one observed with quasispecies on a single-peak landscape as described
above [47]. Evolutionary optimization becomes more efficient16 with increasing error rate
until the error threshold is reached. A further increase in the error rate leads to an abrupt
breakdown of the optimization process. As expected, the distribution of replication rates
or fitness values, fk , in sequence space is highly relevant too: a steep decrease in fitness
with the distance to the master structure represented by the target that has the highest fitness
value leads to the sharp threshold behaviour as observed with single-peak landscapes, whereas
flat landscapes show a broad maximum of optimization efficiency without an indication of a
threshold-like behaviour.

4. Kinetic folding of RNA

In the neutral network concept and in evolutionary optimization we assigned the mfe structure, a
single conformation, to every sequence and were interested in the changes in structure resulting
from changes in the sequence. Every ground state or conformation of lowest free energy is
accompanied by a large set of suboptimal states, and often these suboptimal states contribute
to the molecular properties at biologically relevant temperatures (273 K < T < 373 K). For the
properties of RNA molecules not only the existence of suboptimal conformations is important
but also their interconnections on the time scale: which conformations can be reached from
given initial states and how long does it take for them to appear? RNA switches represent a class
of molecules which take part in genetic and metabolic regulation by means of conformational
changes (see section 6).

In figure15 three different notion of structure are illustrated by means of energy level
diagrams: (i) conventional RNA folding assigns the mfe structure to the sequence (leftmost
diagram); (ii) suboptimal conformations accompany the mfe-structure (middle diagram) and
contribute to the molecular properties in the sense of a Boltzmann ensemble, the partition
function is the proper description of the RNA molecule at thermodynamic equilibrium or in
the limit of infinite time; and (iii) at finite time the situation is different, since a single molecule
may have one or more long-lived metastable conformations in addition to the mfe structure
(rightmost diagram showing the energy levels and saddle point of an ‘RNA switch’). Then the
observed molecular structure depends also on the initial conditions and on the time window
of the experiment. The relation between the energy levels of the suboptimal structures and
their role in folding kinetics is introduced by means of the transitions states relating them.
We see structures that are very close on the energy scale, for example S0 and S1 or S7 and
S8 in figure 15, but difficult to reach from each other because they are separated by a high
free energy barrier. To go from S2 to S0, on the other hand, is much easier, because they
belong the the same basin of conformations. In this section we shall illustrate the problem of
kinetic folding using the concept of the conformation space of RNA secondary structures. The
lifetime of conformations in a landscape with multiple local minima depends on the barriers
between them. For RNA secondary structures these barriers can be readily computed [62,63],

16 The efficiency of evolutionary optimization is measured by the average and best fitness values obtained in populations
after a predefined number of generations.
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Figure 15. Three different notions of structure. The mfe structure is shown as the only relevant
conformation on the left-hand side corresponding in a formal sense to the zero temperature limit
(lim T → 0). In the middle we show the set of suboptimal structures as it is considered at
equilibrium and temperature T in the form of the partition function. The notion of the equilibrium
structure implies the limit of infinite time (lim t → ∞). On the right-hand side we show the
barrier-tree of a molecule which exemplifies a situation that is encountered, for example, in RNA
switches. At finite time we may find one or more long-lived conformations in addition to the mfe
structure.

and Arrhenius kinetics on the barrier landscape provides a reliable tool for estimating these
lifetimes [64].

The kinetic aspects of folding RNA sequences into secondary structures were already
considered in the mid-1980s [65]. A large number of algorithms aiming at a computation of
folding kinetics were developed later [63,66–75]. Most of them treat whole stacks as single
unities and this is justified for long stacks because of the well known cooperativity of stack
formation [76]. In the secondary structures of RNA molecules we have long as well as small
stacks and occasionally even single base pairs in native structures (for an example see the 5S
RNA in figure 27). Only a few approaches to kinetic folding resolve the process to elementary
steps that involve single base pairs or single nucleotides [63, 74, 75]. We shall be concerned
with an algorithm at single nucleotide resolution here in subsection 4.3.

4.1. Conformation space

The set of all structures that are compatible with a single sequence X, defined in equation (7),
is a commonly high dimensional subspace of shape space. This subspace is the conformation
space of the sequence unless a restriction is introduced in the form of neglecting all high en-
ergy conformations that are not required as saddle points in transitions between (meta)stable
conformations. The conformation space represents the structural diversity of conformations
that are accessible from the ground state, S0, on thermal excitation. A free energy landscape on
conformation space is a useful tool for understanding and modelling the dynamics of confor-
mational changes. A metastable structure is tantamount to a local minimum of this free energy
surface. The two move sets discussed in the context of a measure of distance on shape space
(section 2.2) are also relevant for conformation space since they are tantamount to elementary
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Figure 16. Construction of barrier trees. The set of suboptimal conformations is related by a
move set as shown in the left-hand part of the sketch. The barrier tree is derived from the set
of suboptimal structures by eliminating all conformations except local minima of the free energy
surface and minima connecting saddle points of lowest free energy. We remark that the set of local
minima depends on the choice of the move set, although important local minima are very unlikely
to be changed for physically meaningful alterations of the move set.

moves in kinetic folding of RNA (figure 18, see also [63,74,75]). It is important to note that the
set of local minima in conformation space that is assigned to an RNA sequence by kinetic fold-
ing depends on the move set applied. The two move sets sketched in figure 18, however, agree
in all major local minima corresponding to sufficiently long lived metastable conformations.

Assigning a free energy value to every point in conformation space yields the
conformational energy landscape that can be used as a metaphor or as a tool to calculate kinetic
folding trajectories. Such a free energy landscape of a biopolymer is a highly complicated
object since the energy depends on nonlocal interactions and the carrier of the landscape,
and the conformation space is high-dimensional. For most purposes a simplification of the
conformational energy landscape called the barrier tree is sufficient [63]. A barrier tree is
constructed from the set of suboptimal conformations and their free energies. For pairs of
local minima the lowest path connecting them is selected and only three points are retained:
the two minima and the saddle (figure 16). Applying the construction principle to entire
conformation space yields the barrier tree of the molecule (see section 4.3).

4.2. Suboptimal structures and partition functions

Algorithms for the computation of suboptimal conformations have been developed, and two of
them are frequently used [77,78]. As we have already seen from our estimate, the numbers of
suboptimal states are very large and, moreover, they increase exponentially with chain length, n.
The first algorithm [77] is convenient and efficient but misses certain classes of conformations.
The latter of the two algorithms [78] has been designed for calculation of all conformations
within a given energy band above the mfe and adopts a technique originally proposed for
suboptimal alignments of sequences [79]. The algorithm starts from the same dynamic
programming table as the conventional mfe conformation but considers all backtracking results
within the mentioned energy band. As indicated in figure 15 the set of structures, mfe and
suboptimal conformations {S0, S1, S2, . . .}, is ordered since their free energies, {ε0, ε1, ε2, . . .}
fulfil the relation ε0 � ε1 � ε2 . . . .
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At equilibrium and temperature T the conformations form a Boltzmann ensemble that
contains Sj with the Boltzmann weight γj (T ) = gj exp

(−(εj − ε0)/RT
)
/Q(T ), where R is

the Boltzmann constant for 1 mole, R = NL · kB , and Q(T ) is the partition function17

Q(T ) =
∑

i

gi exp
(
−(εi − ε0)/RT

)
. (27)

Instead of having an mfe structure with defined base pairs, the ground state is now described
by a temperature dependent linear combination of states where the weighted superposition
of base pairs gives rise to base pairing probabilities pij (X, T ) which are the elements of the
matrix

P(X, T ) =
∑

k

γk(T ) A(Sk) or pij (X, T ) =
∑

k

γk(T ) aij (Sk) , (28)

which is a Boltzmann weighted superposition of the adjacency matrices (1) of the individual
structures with the following properties: in the limit T → 0 the base pairing probabilities
converge to the base pairing pattern of S0 (for a non-degenerate ground state, ε0 < ε1) as
described by the adjacency matrix A(S0), and in the limit T → ∞ all (micro)states have
equal weights and the partition function converges to the total number of all conformations
of the sequence X. An elegant algorithm that computes the partition function Q(T ) directly
by dynamic programming is found in [17]. It has been incorporated into the Vienna RNA
package [12].

Sequences folding into the same mfe structure, which are sequences belonging to one
neutral network, differ strongly with respect to the values of the mfes as well as the
numbers of suboptimal structures. For the purpose of illustration we choose again the simple
double-hairpin structure of chain length n = 33 (figure 2): the distribution of mfes fulfils
G0 = −5.74 ± 2.37 kcal mol−1. The spread of the distribution is best illustrated by the
smallest and the largest values: (G0)min = −15.80 and (G0)max = −0.40 kcal mol−1. The
numbers of suboptimal suboptimal structures in an interval of 10 kcal mol−1 even more broadly
distributed: n̄subopt = 12 000 ± 10 600 with a smallest and a largest value of (n̄subopt)min = 353
and (n̄subopt)max = 92,406, respectively. Although there is no perfect correlation, molecules
with lower free energies have fewer suboptimal conformations within a given energy band
above the mfe. In table 9 we show the two extreme cases, X

(dhp33)

1 and X
(dhp33)

3 , together

with two more sequence examples, X
(dhp33)

2 and X
(dhp33)

4 , lying close to the extreme cases. On
the other hand, the sequences with the lowest and highest free energies are not extreme with
respect to the numbers of states and thus the mfe and the number of suboptimals are neither
independent nor fully correlated properties:

GAUCGGGGUGGUUUGAAGAAGAGUAGUGAACUU: G0 = −0.40 kcal mol−1 n̄subopt = 51 610
CUAAUAGCAUCCUAUUCCCCGAGACAGUAUCUU: G0 = −0.40 kcal mol−1 n̄subopt = 14 962
GGGCAUAGGCGUGUGUGAUUCGAGCAUCUUUCG: G0 = −2.30 kcal mol−1 n̄subopt = 92 406
CCUAGGAGGGAUCUUGUAUGCUCGGCGCUUGAG: G0 = −2.30 kcal mol−1 n̄subopt = 87 792
UUCGGCCGAUGGGCUGCCUAGCCGAGAUCCGGU: G0 = −10.60 kcal mol−1 n̄subopt = 4 406
ACGCGUUUCCAAACGCAAAUGCCCAGGAAGGGC: G0 = −11.50 kcal mol−1 n̄subopt = 399
CAGAGUGGUGCCGCUCGAAGCCCCAAUACGGGG: G0 = −13.60 kcal mol−1 n̄subopt = 353
AAGGGCGGCGACGCCCACUCGGCGCGAAACGCU: G0 = −15.80 kcal mol−1 n̄subopt = 529

Without going into details we remark that other often-postulated relations are anything but
perfect: the energy gap between the mfe and the free energy of the first suboptimal conformation
(S1), ε0→1, correlates neither well with the value of the mfe nor with the weight of the mfe

17 Sometimes different microstates Si with the same free energy εj are lumped together to form one ‘mesoscopic’
state in the partition function and then the factor gj accounts for this degeneracy.
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Table 9. Suboptimal structures and partition functions Q(T ). Compared are four sequences folding
into the same mfe structure, the double hairpin S(dhp33) with very small (X(dhp33)

1 , X(dhp33)

2 ) and very
large numbers of suboptimal structures in a free energy interval of 10 kcal mol−1 above the mfe.
Apart from the mfe values (G0) we present also the free energies computed from the partition
function (T = 37◦C). The last sequence, X (swt33) , has a single hairpin mfe structure (section 4.4).
All energy values in the table are given in kcal mol−1. The table presents further the Boltzmann
weight of the mfe structure in the partition function.

Sequence Free energy Fraction of mfe Number of suboptimal structures
structure in Q(T )

G
(310)
0 G

(310)
0,Q mfe ↔ mfe + 10.0 mfe ↔ 0.0

X
(dhp33)

1 −13.60 −13.69 0.8633 353 2 501

X
(dhp33)

2 −11.50 −11.76 0.6556 399 948

X
(dhp33)

3 −2.30 −4.06 0.0577 92 406 131

X
(dhp33)

4 −2.30 −4.30 0.0391 87 792 172

X
(dhp33)

5 −10.60 −11.26 0.3440 4 406 6 268
X(swt33) −26.30 −26.50 0.7196 343 253 970

a The following sequences, all folding into the structure S(dhp33), were used:

X
(dhp33)

1 : CAGAGUGGUGCCGCUCGAAGCCCCAAUACGGGG

X
(dhp33)

2 : ACGCGUUUCCAAACGCAAAUGCCCAGGAAGGGC

X
(dhp33)

3 : GGGCAUAGGCGUGUGUGAUUCGAGCAUCUUUCG

X
(dhp33)

4 : CCUAGGAGGGAUCUUGUAUGCUCGGCGCUUGAG

X
(dhp33)

5 : UUCGGCCGAUGGGCUGCCUAGCCGAGAUCCGGU

X (swt33) : GGCCCCUUUGGGGGCCAGACCCCUAAAGGGGUC

S(dhp33): ..(((((....)))))....((((.....))))

structure in the partition function. Table 9 finally shows the number of suboptimal states up
to zero energy, the free energy of the open chain. As expected, more stable molecules tend to
have more suboptimal conformations with negative energies.

Two examples of calculations of partition functions and their evaluation in dot-plots are
shown in figure 17. We chose one example with a very large Boltzmann weight of the mfe
structure (X(dhp33)

1 , upper diagram) and, indeed, the dot-plot of the partition function shows
almost exclusively the squares of the most stable conformation. The second example is one with
a rather low weight, and here we can see directly the contributions of many other suboptimal
states to the base pairing probabilities pij (X, T ).

4.3. Folding kinetics

Kinetic folding of RNA molecules can be understood and modelled as a stochastic process
in RNA conformation space. The process corresponds to a time ordered series of secondary
structures, a trajectory

�0 → �1 → �2 → · · · → �T, (29)

where the initial and target structures, �0 and �T, may be chosen at will. Commonly, �0 = O
and �T = S0 are used, corresponding to the open chain and the mfe structure, respectively.
Individual trajectories (29) may contain loops, i.e. the same structure may be visited two or
more times. In general, it is of advantage to define the target conformation as an absorbing
state. Leaving the target state unconstrained causes the trajectory to approach a thermodynamic
ensemble in the sense that it visits the individual conformations with frequencies according
to the Boltzmann weights. For practical purposes the time required to fulfil the condition of
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Figure 17. Partition functions as ‘dot-plots’. The two diagrams show the partition functions of two
sequences, X

(dhp33)

1 and X
(dhp33)

4 (see caption of table 9), both forming the structure S(dhp33) as the
mfe. The lower left triangle shows the mfe structure as a dot-plot: each black square is tantamount
to a ‘1′ in the corresponding position of the adjacency matrix. The upper right triangle shows the
base pairing probabilities, where the size of the square corresponds to the value of pij (X, T ) in
equation (28).

ergodicity, however, is prohibitively long. Basic to the stochastic process is a set of moves
that defines the allowed transitions between conformations. In the simplest case the move
set contains base pair closure and base pair opening according to the conventional secondary
structure rules (conditions I to III). Such a move set corresponds to the base pair distance, dP , as
a metric in shape space. It turned out to be relevant to introduce also a shift move (figure 18),
since the trajectories approach the target much faster then [63] and there is experimental
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Figure 18. Move sets used in kinetic folding of RNA. Move set I considers only base pair closure
and base pair opening. The difference between nucleation and elongation is reflected by the
difference in the free energy values. Move set II contains, in addition, a shift move. For a different
goal—simulation of RNA folding and measure of distance in shape and conformation space—one
may restrict the shift to single base pairs or allow for simultaneous shifts of groups of stacked pairs
(three base pairs shifting together in the lower part of the figure).

evidence for shifting groups of base pairs [76,80]. If the move set is extended to simultaneous
shifts of as many nucleotides as possible within a given substructure element, the Hamming
metric between the symbolic or parentheses notations of structures, dH (Si, Sj ), turns out to be
the proper measure of distance.

The stochastic process (29) is described by a master equation for the ensemble
probabilities: Pk(t) is the probability observing the conformation Sk at time t . The time
derivatives fulfil the equation

dPk

dt
=

m+1∑
i=0

(Pik(t) − Pki(t)) =
m+1∑
i=0

kikPi − Pk

m+1∑
i=0

kik ,

with k = 0, 1, . . . , m + 1 and i → k ∈ themove set.

(30)

We assume that the open chain conformation O = Sm+1 is part of the suboptimal conformations,
S1, . . . , Sm. The transition probabilities are computed from the free energies of the
conformations:

Pik(t) = kik Pi(t) = Pi(t) e−(Gk−Gi)/(2RT )/�i, (31)

Pki(t) = kki Pk(t) = Pk(t) e−(Gi−Gk)/(2RT )/�k, (32)

with �j =
m+1∑

i=0,i �=j

exp
(−(Gj − Gi)/(2RT )

)
.



1454 P Schuster

In order to avoid the necessity of additional parameters the free energies are taken from
the suboptimal foldings. Calibration of the time scale occurs through adjusting the folding
kinetics of a model system to the experimental data [81]. Although it is straightforward to solve
the master equation (30) by means of an eigenvalue problem, practical difficulties arise from
the enormously high number of suboptimal conformations determining the dimensionality of
the system [64].

A simplification of full kinetic folding is introduced in the form of ‘barrier trees’ (figure 16).
All suboptimal conformations that neither represent a local minimum of the conformational
energy landscape nor a lowest energy transition state between two local minima are neglected.
The remaining barrier tree can be used to simulate kinetic folding by means of conventional
Arrhenius kinetics. The results are often in astonishingly good agreement with the exact com-
putations based on equation (30). Cases of less satisfactory agreement can be predicted [64].

Again we illustrate kinetic folding of RNA molecules by means of the same
example as used before, the double hairpin structure S(dhp33). Later we shall consider
an RNA switch, an especially designed molecule that sustains two different long lived
conformations. The sequence of the double hairpin molecules was chosen arbitrarily,
X

(dhp33)

5 = UUCGGCCGAUGGGCUGCCUAGCCGAGAUCCGGU. We begin by considering the partition
function shown in figure 19. The Boltzmann weight of the mfe structure is 0.3440 (table 9)
and, in addition to the two hairpins of the ground state conformation, S0,18 we recognize traces
of longer single hairpins. Next we compute and consider the barrier tree of the molecule
(figure 20). The restriction to local minima and saddle points reduces the 6268 conformations
with non-positive free energies (table 9) to the mfe structure plus 120 local minima including
the open chain, S120. In addition to an appreciable number of smaller basins we recognize four
major folding families with free energies 50% of the mfe or lower: {S9}, {S1 , S2; including
S16}, {S3 , S4}, and {S0 , S7; including S15}.

The folding kinetics from the open chain into the mfe structure of the double hairpin
molecule with sequence X

(dhp33)

4 is shown in figure 21. The computation yields the relative
concentrations, xk(t), for all 121 conformations (k = 0, . . . , 120) as a function of time. Most
of the concentrations are so small that the curves coincide with the t-axis for all practical
purposes. Therefore we show only the 12 states that reach higher concentration values. The
time order in which the first six intermediates appear corresponds precisely to the sequence of
the first six branching saddles in the barrier tree: S76 < S106 < S9 < S16 < S7. In addition,
we see that states belonging to the same basin disappear together: {S3 , S4} or {S1 , S2}. The
good agreement between the Arrhenius kinetics and the stochastic simulation is remarkable.
The double hairpin structure with sequence X

(dhp33)

4 is a typical inefficient folder: only about
50% of the molecules fold into the mfe directly, whereas the second half of the ensemble stays
for a relatively long time in one of the states {S1 , S2 , S3 , S4 , S9}. Eventually we consider
the structures of the 12 conformations (figure 22) in order to provide an explanation for the
nature of the basins. Conformations in the same basin share major structural features: S0 and
S7, for example, share the (lhs) tetraloop of the double hairpin structure and this is apparently
the structure whose nucleation is more difficult than that of the (rhs) pentaloop, S1 and S2 share
the inner loop structure with five base pairs, S3 and S4 have the outer six base pairs in common,
and S16 has the same four inner base pairs as S1 and S2.

As the last example of this subsection we present the kinetics of the conformational
change between the mfe structure, S0, and the first suboptimal conformation, S1, of an RNA

18 For the sake of simplicity we shall omit the superscript ‘(dhp33)’ in the forthcoming discussion. The numbered
structures in figure 20 correspond to suboptimal conformations, which are recorded and appreciably populated as
folding intermediates in the process from the open chain S120 to the mfe structure S0.
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Figure 19. Partition function of sequence X
(dhp33)

5 as a dot-plot. In addition to the two small
hairpins of the mfe structure, conformations with single long hairpins can be readily recognized.

switch (figure 24). This RNA switch is a molecule of chain length n = 33 with the sequence
Xswt33=(GGCCCCUUUGGGGGCCAGACCCCUAAAGGGGUC) that has been designed to have in essence
only two conformations, a long hairpin as the mfe structure, S0, and a metastable double hairpin
S1. Indeed, the partition function contains only contributions from the two conformations
S0 and S1 (figure 23). In table 9 we see that the Boltzmann weights are about 0.72 and
0.28, respectively. The kinetic curves shown in figure 24 show a pure two state transition
in both directions. From the difference in free energies, G0(S0) = −26.30 kcal mol−1

and G0(S1) = −25.30 kcal mol−1, we compute a difference in the transition times of
approximately 5 that fits very well the results of the Arrhenius kinetics. Comparing the dot-
plots and the barriers trees of the two systems, the randomly chosen double hairpin structure
and the designed switch, we see that the major effect of the design was to eliminate minor
basins and conformations, which are unfavourable for the transition.

4.4. RNA molecules with multiple structures

The barrier trees considered in the previous (section 4.3) indicate that the energy surface of
a typical RNA sequence has a large number of local minima with often high energy barriers
separating different basins of attraction. Thus non-native conformations can have energies
comparable to the ground state, and they can be separated from the native state by very high
energy barriers.

In order to deal with multiple conformations, we consider a collection of structures
(matchings) �1, �2, . . . , �k on the same sequence X. The fundamental question in this
context is whether there is a sequence in

C[�1, �2, . . . , �k] =
k⋂

j=1

C[�j ] (33)
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Figure 20. Barrier tree of the double hairpin molecule with sequence X
(dhp33)

5 . The numbered
suboptimal conformations correspond to intermediates that are sufficiently populated to be
recognized in the recording of the folding kinetics (figure 21).

and if so, what the size of this intersection of sets of compatible sequence is. To answer this
question, it is useful to consider the graph � with vertex set {1, . . . , n} and edge set

⋃k
j=1 �j .

Generalized Intersection Theorem. Suppose B ⊆ A × A contains at least one symmetric
pair, i.e. XY ∈ B implies YX ∈ B. Then

(i) C[�1, . . . , �k] �= ∅ if � is bipartite.
For k = 2, � is a disjoint union of paths and cycles with even length and hence always
bipartite.

(ii) The number of sequences that are compatible with all structures can be written in the form∣∣C[�1, �2, . . . , �k]| =
∏

components ψ of �

F(ψ), (34)

where F(ψ) is the number of sequences that are compatible with the connected
component ψ .

(iii) For the biophysical alphabet
⋂

j C[�j ] �= ∅ holds if and only if � is a bipartite graph.
In particular, for the case of bistable sequences, k = 2, we can express the size of the
intersection explicitly in terms of Fibonacci numbers,

F(Pk) = 2
(

Fib(k) + Fib(k + 1)
)

= 2Fib(n + 2),

F (Ck) = 2
(

Fib(k − 1) + Fib(k + 1)
)
,

(35)

where Pk and Ck are the path and cycle components of � with k vertices.
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Figure 21. Folding kinetics of the double hairpin molecules with sequence X
(dhp33)

5 . Shown
are the 12 relative concentrations of several intermediates that contribute appreciably to the total
concentration. All curves are obtained from an Arrhenius-type kinetics as described in detail
in [64] except the curve marked ‘S0, exact’, which was calculated through sampling trajectories of
the folding process according to [63]. In order to make the Arrhenius kinetics and the simulation
of the stochastic process comparable we defined the process leading to the mfe structure S0 to be
irreversible, corresponding to S0 being an absorbing state.

Figure 22. Suboptimal conformations in folding the double hairpin structure S(dhp33).
Conformations in the same basin are related in structure. Examples are {S0 and S7}, {S1, S2, and
S16}, {S3 and S4}. Conformation S15 is related to S7 and S0, but has the more-difficult-to-nucleate
left hairpin misfolded (triloop instead of tetraloop). Free energies in kcal mol−1.
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Figure 23. Partition function of sequence X(swt33) as a dot-plot. The molecule has essentially two
conformations, the long hairpin, S0, consisting of a stack of 14 base pairs closed by a pentaloop,
and the metastable conformation S1 consisting of two hairpin loops, each with six base pairs closed
by a tetraloop, that are joined by one single nucleotide. The dot-plot indicates dominance of the
mfe structure accompanied by the double hairpin conformation and no other structure present at a
detectable concentration at equilibrium.

For a proof of these propositions see [36, 82]. Interestingly, for two structures there is always
a non-empty intersection C[�1] ∩ C[�2]. In contrast, the chance that the intersection of three
randomly chosen structures is non-empty decreases exponentially with sequence length [83].
Recently, an alternative attempt has been made to extend the design aspect of the intersection
theorem to three or more sequences [84].

Given a collection of alternative secondary structures, we can again ask the inverse
folding or sequence design question. For simplicity we restrict ourselves to two structures
�1 and �2 here. For example, one might be interested in sequences that have two prescribed
structures �1 and �2 as stable local energy minima with roughly equal energy, for which
the energy barrier between these two minima is roughly E. It is not hard to design
a cost function 	(X) for this problem. In [82], the following ansatz has been used
successfully:

	(X) = E(X, �1) + E(X, �2) − 2G(X) +

+ ξ
(
E(X, �1) − E(X, �2)

)2
+ ζ

(
B(X, �1, �2) − E

)2
. (36)

Here, B(X, �1, �2) is the energy barrier between the two conformations �1, �2 which can
be readily computed from the barrier tree of the sequence X.

5. Confronting RNA secondary structure prediction with reality

A comprehensive discussion of the state of the art in RNA structure prediction would justify a
review in its own right with many different facets. Here we shall only consider two possibilities
to estimate or improve secondary structure prediction of RNA molecules: (i) estimates of
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Figure 24. Transitions between long-lived conformations in the RNA molecule with the sequence
Xswt33. The calculations of the conformational changes are carried out by means of Arrhenius-
type kinetics on the barrier tree shown in figure 15. The upper part shows the transition from the
first suboptimal conformation (S1, double hairpin; grey curve) into the mfe structure (S0, single
hairpin; black curve). The lower plot presents the kinetics of the transition in the opposite direction,
S0 → S1. Because of the energy difference, ε0→1 = 1.0 kcal mol−1, the transition S0 → S1
occurs about a factor 5 times slower than S1 → S0.

the reliability of secondary structure prediction and (ii) the inclusion of certain classes of
tertiary interactions like pseudoknots, end-on-end stacking and others that introduce structural
constraints on the stereochemically unintegrated double-helical regions of the secondary
structure.
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5.1. Reliability of secondary structure prediction

Medium size and large RNA molecules have suboptimal conformations of energies that are
close to the mfe. As we have seen, such a situation may occur also for small RNA molecules.
Low-lying suboptimal states provide a severe obstacle to the prediction of molecular structures
for several reasons:

(i) The parameters for RNA and DNA secondary structures are of limited accuracy because
model compounds are rare or even lacking for certain classes of base and base pair
interactions.

(ii) Tertiary interactions are neglected that may lead to changes in the energetic sequence of
conformations (see next section 5.2).

(iii) Kinetic folding rather than thermodynamics may determine the structures found in nature
[70, 71].

In this subsection we shall consider the effect of low-lying suboptimal states accounted for
by the partition function on the reliability of predicted structures, modules or segments of
structures. The basis of the reliability measures is the well-justified assumption that errors in
the empirical parameters will change the ordering of conformations on the energy axis but not
the nature of the suboptimal structures. Base pairs that occur in most conformations have a
high probability and are predicted reliably, therefore. Two different measures will be used for
this goal: (i) the base pairing probability, pij (X, T ), as directly obtained from the partition
function and (ii) the pairing entropy of a given nucleotide xi(X),

si(X, T ) = −
n∑

j=1

pij (X, T ) ln pij (X, T ), (37)

where we have absorbed the contribution of remaining unpaired, p(u)
i , in the diagonal element,19

p
(u)
i (X, T ) = pii(X, T ) = 1 −

n∑
j=1,j �=i

pij (X, T ). (38)

The base pairing probability, pij , refers to an individual pair i–j in a given structure, commonly
an mfe structure, and hence the two nucleotides in a pair have always the same probability
of being predicted correctly. A pairing probability close to 1 implies a high reliability of
prediction. For an unpaired base the value in the base pairing probability plot is the probability
of remaining unpaired (38). In the case of the pairing entropy, si , the estimate refers to a single
nucleotide, and si and sj may be different although the two nucleotides form a pair. An entropy
value close to zero implies complete determinism and high reliability of the prediction. High
entropy values correspond to high uncertainty. An upper value of the pairing entropy can be
estimated from the uniform distribution of pairing probabilities, pij = 1/n:

(si)max = −
n∑

i=1

1

n
ln

1

n
=

n∑
i=1

1

n
ln n = ln n.

Although the two reliability measures may differ in detail, they have the same reference in
the sense that the unique assignment of bases to base pairs is given by probability 1, pij = 1,
corresponding to zero entropy, si = sj = 0, and indeed they yield very similar results in actual
applications. Three examples are discussed here: (i) a randomly chosen small molecule with
a large variety of suboptimal conformations (X(dhp33)

4 ), (ii) phenylalanyl-transfer RNA as an
example of a molecule with an evolutionarily optimized rigid structure, and (iii) 5S ribosomal

19 This assumption converts the matrix P(X, T ) = {pij (X, T )} into a bistochastic matrix.
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RNA as an example of a molecule consisting of a rigid and easy-to-predict part and a flexible
module with low-lying suboptimal conformations.

In order to illustrate the two measures proposed for reliability estimates of secondary
structures, we consider first the molecules X

(dhp33)

4 that have been used to illustrate kinetic
folding with intermediates (figure 25). Only three positions (9, 27, and 28, marked in red)
are unpaired in (almost) all20 conformations and can be predicted with certainty therefore.
Because of the single-hairpin structure of the two lowest suboptimal conformations, all base
pairs have relatively small probabilities or high entropies. With this particulary flexible small
RNA molecule itself we encounter a problem that cannot be answered by purely thermodynamic
reliability measures: whether folding ends up with a double-hairpin or a single-hairpin structure
is a question of folding kinetics (see section 4.3).

The phenylalanyl-tRNA secondary structure has been chosen as the second example
because it represents a rigid RNA molecule and allows us to study the effect of base
modifications on the structure: three guanine residues are modified by methylation (M) or
conversion into the Y-base (Y), and four uracil residues are converted into dihydro-uracil (D),
thymidine (T) or pseudouridine (P) residues. Among other functions, base modifications are
believed to stabilize the structure and facilitate folding. The effect on structure stabilization
is easily recognized in figure 26. In the molecule without modification all stacks except
the terminal stack are uncertain and only a few unpaired nucleotides are predicted with high
reliability (yellow, orange or red). This uncertainty is also reflected, for example, by the
frequency of the mfe in the Boltzmann ensemble of conformations: as shown in table 10
this frequency is about seven times larger in the case of the sequence with modified bases.
The spectrum of conformations, eventually, provides the final piece of the puzzle through
coarse graining secondary structures and looking only for clover-leaves. The sequence without
modified bases has no clover-leaf structure as the mfe and shows clover-leaf structures only at
positions 2, 4 and 15–19 in an energy ordered set of suboptimal conformations. In the molecule
with modified nucleotides the situation is entirely different: the first seven conformations
are clover-leaves, and they are accompanied by further clover-leaves at positions 9, 12–14
and 16–19. Thus modification of bases reinforces the clover-leaf structure and, moreover,
in the specific way its done in the tRNAphe sequence it canalizes folding into the specific
structure of this molecule. It is also worth mentioning that base modification in tRNAphe

has a strong effect on kinetic folding: the process is not only speeded up, it is also made
more efficient in the sense that a very high percentage of the molecules fold directly in
the clover-leaf [63]. In the unmodified molecule approximately 50% fold fast and the rest
reach the mfe structure in a very slow process via long-lived folding intermediates (or folding
traps).

The third and last example is an RNA molecule that is somewhat larger than a tRNA,
the ribosomal 5S RNA from the archaebacterium Methanospirillum hungatei with n = 126
nucleotides. It has been chosen because it illustrates very well the usefulness of the reliability
concept for structure predictions. The molecule as shown in figure 27 falls into two parts: (i)
the stack in the middle and the hairpin on the right-hand side of the structure are predicted
with a probability very close to 1 and the prediction matches perfectly the experimental (na-
tive) structure; and (ii) the multiloop on the left-hand side has a low pairing probability and
is different from the native structure that contains a hairpin loop interrupted by an internal
loop. Accordingly, the prediction of the left part of the molecule (figure 27) is unreliable
and indeed we observe substantial disagreement between the predicted mfe structure and the
native structure of the molecule. It is also interesting to evaluate the position of the native

20 All 19 lowest conformations shown in figure 25 have an unpaired base at these positions.
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Figure 25. Illustration of the reliability of secondary structure prediction. We consider a small
RNA molecule that is derived from a random sequence X

(dhp33)

4 . The upper drawing on the left-
hand side shows the colour coded pairing entropy, and the base pairing probability is shown in the
drawing in the lower part. The table on the right-hand side shows structures and energies of the
mfe-conformation together with the 18 suboptimal configurations of lowest energy. Marked in red
are three unpaired bases, which occur in all 19 structures and are predicted correctly (almost) with
probability 1. Two positions with relatively high uncertainty are marked in violet and blue. Colour
code: red→orange→yellow→green→blue→violet . . ., decreasing reliability. The range for the
calculated base pairing entropies is 0 � si < 1.9. Hence, the largest actually observed value is
well below the maximal possible entropy, ln 33 = 3.5.

structure within the spectrum of suboptimal conformations of the molecule: the native structure
is conformation #329 936 and lies 8.39 kcal mol−1 above the mfe. For this particular molecule
we counted 1,814,405 conformations within an interval of of 10 kcal mol−1 above the ground
state. In addition, computed the degree of neutrality of this not very frequent structure and
obtained λ̄ = 0.20 ± 0.04, which is somewhat less than the corresponding quantity in the tR-
NAs (table 6). It is also interesting that two nucleotides were highly conserved on the neutral
network: C68 and position 69 with 96% A and 4% G. The native sequence has C68 and G69,
respectively.

Low base pair probabilities or high pairing entropies are a useful indication of low
prediction reliability. As said already, close energy values of conformations can easily lead
to sequence inversion on the energy scale for small changes in the parameters. Low base pair
probabilities, however, can result from other effects as well: two long-lived conformations, for
example S0 and S1 of Xswt33 (see also the sketch in figure 15), give a similar superposition
result as two conformations that are readily converted into each other because they are
separated by a small barrier only. For the high barrier molecule Xswt33, both structures are
well defined on time scales shorter than the time constant of the conversion, which is about
1011 time units compared to the folding of Xdhp33, where folding is completed in 106 time
units. If the time of experimental observation is shorter than the time of interconversion
of the conformations, the superposition is a spurious result of the partition function, and
Boltzmann ensembles restricted to the basin of S0 or S1 corresponding to either of the
two base pairing patterns detectable in figure 23 (dominant or less probable) would be
appropriate.
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Figure 26. Reliability of secondary structure prediction of the tRNAphe from yeast (Saccharomyces
cerevisiae). The figure shows colour coded base paring entropies (upper part) and base pairing
probabilities (lower part). On the left-hand side we show the results for the pure four letter sequence
without modifications. It is important to note that the entropy scale is different in the two drawings:
for the unmodified molecule we have 0 < s < 2.1 compared to 0 < s < 0.9 in the case of the
modified bases. The drawings on the right-hand side refer to the sequence with base modifications
(for sequence, structure, and base modifications see [85–87]). Since sufficient empirical data are
not available for modified bases, we generally excluded them from Watson–Crick base pairing.
Colour code: see caption of figure 25.

5.2. Pseudoknots and other tertiary interactions

Tertiary interactions are not considered in our definition of secondary structures mainly
for two reasons: (i) the parameters available for most of these interactions are much less
reliable than those for the conventional secondary structure elements because only few
experimental examples are available, and (ii) the inclusion of some of these elements is
in conflict with the efficient dynamic programming algorithm for thermodynamic folding.
Several tertiary interactions were already observed in the 3D-structure of tRNAphe [85]:
examples are a pseudoknot of ‘kissing loop type’ with strand inversion (G18–Ψ55, G19–C56),
several non Watson–Crick base pairs, three base triplets (G22–C13+M46, A23–U12+A9,
C25–G10+G45), and end-on-end stacking of RNA double helices. Consideration of
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Table 10. Comparison of tRNAphe secondary structure and suboptimal conformations without
and with modified nucleotides. ‘clvlf’ stands for clover-leaf, a structure with a multiloop that is
surrounded by four stacks (see figure13), ‘frequency’ refers to the statistical weight of the mfe
structure in the Boltzmann ensemble, and the conformation number is the number index of the
native structure in the energy ordered spectrum of suboptimal structures (the mfe structure is no. 1
in this list). All energies in kcal mol−1.

Sequence Mfe structure Native structure No. of structures

Energy Structure Frequency Energy Conf. No.
〈10 kcal mol−1〉

Unmodified −23.80 no clvlf 0.064 −22.40 19 398,180
Modified −21.50 clvlf 0.437 −20.50 3 26,512

end-on-end stacking provided a straightforward explanation for the L-shape of tRNAs,
which was first surprising because the combination of two times two stacks from the
clover-leaf secondary structure in order to form longer double helices was completely
unexpected. Later on, this list has been extended by many other transferable types of
interactions between nucleotides (for a more recent comprehensive classification of base pairs
see [89]).21

A detailed discussion of tertiary interactions would justify a review in its own right and
cannot be given here. Instead we shall present a few key references on pseudoknots since they
came recently into the focus of interest because of their importance in ribozyme structure and
function. In addition they are easier to incorporate into standard RNA prediction routines than
most of the other tertiary interactions. The first algorithm computing pseudoknots are about 25
years old [66,90]. The next important step in secondary structure prediction of RNA including
pseudoknots was an elegant dynamic programming algorithm [13] which, however, suffered
from a rather prohibitive O(n6) complexity in time and O(n4) in storage requirements. A
faster and less demanding (O(n5)) dynamic programming algorithm allow the computation
of the partition function including pseudoknots [91]. A database for RNA pseudoknots has
been installed [92] and provides a solid empirical basis for further improvement of pseudoknot
prediction. Kinetic folding algorithms based on stochastic base pair or base stack formation
and cleavage (subsection 4.3) are not restricted to pseudoknot free structures and are indeed
used for structure predictions including pseudoknots and knots [63, 73, 93, 94]. Recently,
systematic work was done on the classification of pseudoknot topologies because of their
decisive role in RNA function [95, 96]. We mention also a recent prediction heuristic that
outperforms the dynamic programming based algorithms [97]. Finally, there are new prediction
methods for structures with pseudoknots, which are based on several aligned sequences that
are known to form identical structures [98–100]. Alignment based methods, in general, reach
higher reliability in their predictions, because they combine the information from several
sequences [101, 102].

6. Evolutionary and rational design of RNA molecules in vitro

The concepts based on applying sequence to structure mappings and their inversions to RNA
secondary structures have been tested and used in evolution biotechnology and rational design
of RNA molecules. Only a short account of some experimental results from selection and

21 ‘Transferable’ indicates that the same type of base interaction has been found several times in different RNA
molecules.



RNA secondary structure 1465

Figure 27. Reliability of secondary structure prediction of the 5S RNA from Methanospirillum
hungatei. The topmost drawing shows the colour coded pairing entropy, the drawing in the middle
presents the base pairing probability, and the structure at the bottom is the native structure [88].
Colour code: see caption of figure 25.
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evolution of aptamers22 and ribozymes23 can be given here. We order them by the topics of
this review.

Properties of RNA molecules with random and natural sequences. A few theoretical
investigations dealt with random pools of RNA sequences [108–111]. In contrast to proteins
and other biopolymers, almost all random RNA sequences of sufficient chain length (n > 20
for {AUGC}) form stable structures. A typical random structure has a characteristic stack
length [108], has many internal loops and bulges, and looks irregular. Natural RNA molecules,
on the other hand, are the result of many millions of years of selection processes and
differ in many aspects from random RNA molecules. Natural RNAs, for example, have
lower free folding energies, than the average of random energies, thus demonstrating the
effect of evolutionary selection for stable structures. Natural RNAs fulfil multiple purposes
and they are optimized according to several criteria in the sense of a process heading
for a point on the Pareto front. The notion of barrier trees, in particular those of local
minima, saddles and basins, can be extended to landscapes built upon partially ordered sets
(posets) [112].

RNA molecules from restricted alphabets. Attempts to evolve RNA ligation catalyzing
ribozymes from restricted alphabets have been successful [113, 114]. The first example uses
AUG, the alphabet that lacks cytidine and was motivated by prebiotic reasoning since cytosine is
less stable than the other three nucleotide bases and might have been very rare under primordial
conditions. As predicted from secondary structure statistics [108], longer stacks are required
for stability and the isolated ribozyme without C [113] contains indeed only longer stacks
than the parent {AUGC}-molecule from which it was derived by directed evolution. The
attempt to make an RNA ligase that is free of G and C has not been successful. Replacing
A by 2,6-diamino-purine (D), which makes a stronger base pair than A, however, allowed is
to produce functional ribozymes [114]. Again this molecule has substantially longer stacks
than the parent ligase. The results obtained with the weakly binding restricted alphabets,
{AUG} and {AU} or {DU}, fully agree with the predictions of nonexisting stable structures in
tables 4 and 6.

Neutral networks. The existence of neutral networks and neutral paths in real RNA molecules
has been demonstrated by several experimental studies on selection of RNA molecules with
predefined properties, in particular aptamers and ribozymes (examples in [115–118]). The
search for a multipurpose ribozyme by Schultes and Bartel [115] revealed a long neutral
path through sequence space along which the secondary structures stayed unchanged and the
catalytic efficiencies of the two ribozymes, a ligase and a cleavage enzyme, remained constant at
values as high as the reference molecules. An obvious question is, Why show the artificial RNA
molecules and the computer calculations such a high degree of neutrality whereas functional
tRNA molecules tolerate only very limited sequences variability? An answer is provided by
the data in table 7: cofolding with other RNA molecules can be regarded as a model for multiple
constraints, and the values in the table show the reduction in the degree of neutrality with more
binding partners. Indeed, the artificial ribozymes are almost unconstrained and the tRNAs

22 Aptamers are RNA molecules that bind specifically other molecules. They are commonly prepared using the SELEX
technique through variation and selection [26, 103, 104].
23 ‘Ribozyme’ is a new word created through merging ribo(nucleic acid en)zyme. It characterizes a catalytically
active RNA molecule. The first ribozymes were found in nature [105–107]. Later on a great variety of ribozymes with
diverse catalytic functions ranging from organic catalysis—for example the Diels–Alder reaction—to RNA replication
has been prepared by means of variation and selection.
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are typical multiple task fulfilling molecules. It is worth mentioning that the occurrence of
neutral networks is not restricted to RNA molecules; they were also found with lattice protein
models [119] and with full protein structures [120–123].

Shape space covering. Folding complete sequence spaces followed by enumeration of
structures has shown that a relatively small number of common structures is opposed by a large
number of rare structures [28, 37]. In particular, the frequency-rank ordered distribution of
structures shows a modified power law that levels off at the high frequency end.24 Only common
sequences are relevant for evolutionary biotechnology and natural evolution because it is very
unlikely to find a rare structure by random searches or evolutionary strategies. Sequences
folding into common structures are distributed all over sequence space25, and therefore it
is not necessary or sufficient to search the whole sequence space in order to find a given
secondary structure. With probability 1 a sequence folding into the structure is contained in
a (high dimensional) sphere of computable radius in sequence space around every arbitrarily
chosen reference. Evidence for shape space covering has been found in the search for aptamers
and ribozymes [117, 118].

Riboswitches. Stable alternative conformations have been observed experimentally and
reported for a variety of natural RNA molecules [126–131]. Alternative conformations of
the same RNA molecule may determine completely different functions [132, 133]. Another
example is a relatively small molecule, SV11, that is replicated by Qβ replicase [134, 135].
It exists in two major conformations, a metastable multicomponent structure and a rod-like
hairpin conformation, constituting the mfe structure separated from the metastable native state
by a huge energy barrier. While the metastable conformation is a template for Qβ replicase,
the ground state is not. By melting and rapid quenching the molecule can be reverted from
the inactive stable to the active metastable form [136]. Small switching RNA molecules
(25 � n � 100) were designed, synthesized and investigated [115, 125, 137] (figure 28).
NMR spectroscopy turned out to be a very suitable tool (see, for example, [138]. A particularly
impressive example is a designed sequence that can satisfy the base-pairing requirements of
both the hepatitis delta virus self-cleaving ribozyme and an artificially selected self-ligating
ribozyme, which have no base pairs in common. This ‘intersection sequence’ displays catalytic
activity for both cleavage and ligation reactions [115]. A recent publication presents several
examples of drastic changes in catalytic functions and structures of ribozymes induced by a
few point mutations [118].

The capability of RNA molecules to form multiple (meta)-stable conformations with
different function is used in nature to implement so-called molecular switches that regulate
and control the flow of a number of biological processes. Gene expression, for example,
can be regulated when the two mutually exclusive structural alternatives correspond to an
active and inactive conformation of the transcript [139]. Mechanistically, one fold of the
mRNA, the repressing conformation, contains a terminator hairpin or some other structural
element which conceals the translation initiation site, whereas in the alternative conformation
the gene can be expressed [140]. The switching between two competing RNA conformations
can be triggered by molecular events such as the binding of a target metabolite. The
best known example of such a behaviour is provided by riboswitches [141]. These are

24 The power law applies for the rare structures, whereas the frequencies of the common structures are closer than a
power law distribution would predict (an operational definition of ‘common’ is presented in [40]).
25 Although this distribution is not (completely) random and has structure specific features [124], it is sufficiently
close to uniformity to allow the shape space covering conjecture.



1468 P Schuster

autonomous structural elements primarily found within the 5′-UTRs of bacterial mRNAs,
which, upon direct binding of small organic molecules, can trigger conformational changes,
leading to an alteration of the expression for the downstream located gene. Their general
architecture shows two modular units [142], a ‘sensor’ for a small metabolite and a unit
which ‘interprets’ the signal from the sensor unit and interfaces to those RNA elements
involved in gene expression regulation. The size of the sensor unit ranges typically
from 70 to 170 nucleotides, which is unexpectedly large compared to artificial aptamers
obtained by in vitro directed evolutionary experiments. Riboswitches regulate several key
metabolic pathways [143,144] in bacteria including those leading to coenzyme B12, thiamine,
pyrophosphate, flavin monophosphate S-adenosylmethionine and a couple of important amino
acids. The search for additional elements is continuing, e.g. [145, 146]. Riboswitches and
engineered allosteric ribozymes [147, 148] demonstrate impressively that RNA is indeed
capable of maintaining and regulating a complex metabolic state without the help of
proteins.

Algorithms for the design of RNA switches have been developed [82,149]. As examples
for switching RNAs, two small molecules each with two conformations are shown in
figure 28. The subtle balance between stacking energies and loop strain allows fine tuning
of thermodynamic and kinetic parameters. The example in the figure makes use of extra
stabilization by means of an especially stable tetraloop.

Evolution of non-coding RNA molecules. In recent years there has been mounting evidence
that non-coding RNAs play a dominant role in the regulatory networks of the cell (see,
e.g. [150–154] for reviews). Unlike protein coding genes, non-coding RNA (ncRNA) gene
sequences do not exhibit a strong common statistical signal that separates them from their
genomic context. Consequently, a reliable general purpose computational gene-finder for non-
coding RNA genes has remained elusive (see, for example [155]). Most classes of the currently
known non-coding RNAs, however, are characterized by a common, evolutionarily very well
conserved, secondary structure, while at the same time their sequence is rather variable. This
observation can be explained as the consequence of stabilizing selection acting (predominantly)
on the secondary structure in order to conserve RNA function, whereas the sequences remain
almost completely unconstrained and diffuse freely on the neutral network. Diffusion in
sequence space in the sense of Motoo Kimura’s neutral theory [59] forms indeed the conceptual
basis of phylogenetic inference. It is important to note, however, that substitution rates differ
dramatically between unpaired regions and base-paired regions, since sequence positions that
form conserved base pairs are highly correlated. This fact restricts the diffusion process to the
neutral network [52]. Corresponding stochastic models of sequence evolution are described,
for example [156–159]. The phase package [160, 161] implements such a model and is
specifically designed to infer phylogenies from RNAs, including ribosomal RNAs, which
have a conserved secondary structure.

Structural conservation in the presence of sequence variation is also the basis of recent
comparative genomics approaches towards RNA gene finding. The first tool of this type,
qrna [162], is based upon an approach which assesses the probability that a pair of
aligned sequences evolved under the constraint for preserving secondary structure. The
program RNAz [163] uses two independent criteria for classification: a z-score measuring
the thermodynamic stability of individual sequences and a structure conservation index
obtained by comparing the folding energies of the individual sequences with the predicted
consensus folding. Both quantities measure different aspects of stabilizing selection for RNA
structure.
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Figure 28. Two examples of self-induced small RNA switches [125]. The numbers below the
structures represent free energies relative to the unfolded conformation. Both cases demonstrate
how the stability of folds can be engineered by a proper choice of parts of sequences. A: the
conformers differ in the sequence of base pairs in the middle part of the stacking region,
3 A–U+2 G–U+1 G–C ↔ 3 A–U+1 G–U+2 G–C. The replacement of a G–U by a G–C, apart from
other minor differences in the orientation of base pairs, makes the stack in the structure on the right-
hand side more stable. B: Here we show how the influence of the mutation A→G in position 21
of the sequence destabilizes the double hairpin-structure on replacing an A–U pair by a G–U pair.
At the same time the single hairpin structure becomes more stable because the mutation leads to
an especially stable tetraloop of the GNRA class.

7. Perspectives of the RNA landscape concept

In this review the landscape paradigm has been applied to RNA secondary structures in
two distinct ways. Evolution of RNA through optimization in populations of molecules
was seen as a process guided by (i) sequence-structure mappings and (ii) kinetic folding
of RNA molecules. Table 11 presents an attempt to compare the two processes and to
point at common features and differences. Both processes involve ensembles of RNA
molecules and an optimization criterion that may be natural, maximal fitness or minimal
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Table 11. Comparison of RNA evolution and kinetic folding as processes in sequence and
conformation space.

Evolutionary optimization Kinetic folding

Optimization In sequence space In conformation space
Compatible set Set of sequences compatible with a given

structure
Set of structures compatible with a given
sequence

Restriction Compatible set criterion: ⇓ mfe struct.
Neutral network

Compatible set crit.: ⇓ ε0→k � εmax

Relevant conformations
Invariance None (structure for random drift

on neutral network)
Sequence

Move set Single point mutation Base pair closure, opening (and shift)
Detrimental noise Too high mutation rate, p > pmax Too high thermal energy, T > Tm

Initial state Population at t = 0 (arbitrary) Open chain, start conformation
or ensemble

Final state Target structure or property Predefined conformation or
thermodynamic ensemble

Trajectory A genealogy is a time series of sequences A folding path is a time series of structures
Process RNA evolution is the summation over

genealogies at the population level
RNA folding is the summation over

trajectories at the ensemble level
Optimization
criterion

Maximal fitness
(or artificially predefined)

Minimal free energy
(or artificially predefined)

free energy, or predefined by the experimenter. Initial states can be chosen at will, provided
they can be prepared in an proper experimental setup. Final states can be either pure
structures or ensembles. Both processes are driven by noise inducing population changes,
mutations or thermal fluctuations, respectively, and they share sensitivity to too much noise
destroying inheritance in the form of the error threshold [43, 44, 47] or thermal energy
melting the secondary structures. One important difference between the two processes,
however, is the existence of an additional invariant property in kinetic folding: the RNA
sequence remains unchanged during the entire process, whereas the distribution of structures
changes in evolution. The relay series, for example, is a simplified documentation of the
migration of the population in shape space (figure 14). Restriction of the evolutionary
process to a single neutral network leads to a diffusion-like process of neutral evolution
conserving structure [52], as is suggested for non-coding RNAs, and then the mfe structure is
invariant.

The next logical step is an extension of the landscape concept combining sequence and
conformation space as indicated in figure 29: the set of suboptimal structures is added to
the mfe, opening a new dimension with the free energy as the ordering criterion. The
object, which is optimized by selection, is the distribution of structures defined by the
sequence. Introduction of a folding timescale into the concept in the sense of kinetic
folding is straightforward. The distribution of structures can be replaced, for example, by
barrier trees, and then the optimization process concerns the folding behaviour together with
the structure. The optimization occurs according to two or more criteria and will lead to
Pareto optimal sets. The computational tools needed for studying the mappings underlying
this extended evolutionary process are still to be developed and comprise, for example, an
inverse kinetic folding routine that allows the computation of RNA sequences that give
rise to a predefined folding kinetics. At the same time such a software tool would be
suitable for designing molecules with given kinetic properties at the secondary structure level.
Combining kinetic folding and evolution will eventually provide the answers to one of the
open questions concerning biopolymer structures and properties: how does the simultaneous
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Figure 29. Combined sequence and conformation space. For modelling design and evolution of
RNA kinetic folding the notions of sequence space and conformation space have to be combined.
The object to be optimized is no longer a single RNA structure but the whole set of suboptimal
structures and their interconversions or, in a simplified version, the barrier tree.

optimization of thermodynamic stability and efficient folding behaviour operate in
nature?
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