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Abstract A brief review on biochemical kinetics

in the twentieth century mainly concerned with en-

zyme kinetics and cooperative processes is presented.

Molecular biology and, in particular, structural biol-

ogy provided the basis for modeling biological

phenomena at the molecular level. Structure was rec-

ognized as the ultimate and only level at which

biological processes find an explanation that is satis-

factory for chemists and physicists. A new epoch in

biology was initiated by successful extensions of the

molecular approach from individual molecules and

reactions to the cellular and organismic level. Starting

with sequencing of whole genomes in the 1980s more

and more techniques became available that are suit-

able for upscaling from molecules to cells. A series

of research programs was initiated: genomics deal-

ing with sequencing the DNA of whole organisms,

proteomics considering all proteins of a cell and their

interactions, metabolomics studying all metabolic re-

actions of a cell or an organism, and functional geno-

mics or systems biology aiming at an exploration of

the dynamics of complete biological entities. At the

same time computational facilities have experienced

an unexpected development in speed of calculations

and storing devices. At present computer simulations

of whole cells at molecular resolution are within

reach. The challenge for the theorist in biology is to

develop methods for handling the enormously com-

plex networks of gene regulation and metabolism in

such a way that biological questions can be addressed.

This goal cannot be achieved by dynamical systems

theory alone. What is needed is a joint effort from

different mathematical disciplines supported by em-

pirical knowledge and tools from discrete mathe-

matics to informatics. Two sections with selected

examples from our own laboratory dealing with struc-

tural bioinformatics of RNA and with a dynamical

systems approach to gene regulation are added.
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In this section a historically motivated review of dif-

ferent mathematical techniques applied to problems

in biochemistry and molecular biology is presented

in three parts: (i) dynamical systems derived from

chemical reaction kinetics, (ii) free energy optimi-

zation problems in predictions and design of bio-

polymer structures, and (iii) methods from discrete

mathematics applied in the comparison and analysis

of sequence data.
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Biochemical kinetics

In the first half of the twentieth century mathemati-

cal modeling in biology was essentially based on

the application of differential equations in two dis-

ciplines: (i) population genetics and (ii) biochemical

kinetics. Other approaches were discrete models

based on difference equations in discrete time inter-

vals caused, for example, by seasonal cycles and

discrete numbers of individuals or particles. The

most popular discrete model goes back to the medi-

eval mathematician Fibonacci1. Population genetics,

founded by the three scholars Ronald Fisher,

J. B. S. Haldane, and Sewall Wright, soon became

a theory in its own right through uniting Darwin’s

concept of natural selection and Mendelian genetics

in the Neo-Darwinian theory of evolution. A large

repertoire of analytical tools has been developed

either by adopting methods from mathematics or

by conceiving new techniques (see, e.g., Ref. [1]).

In particular, the models were extended to difference

equations handling time in discrete intervals repre-

senting seasonal synchronization, to stochastic de-

scriptions in order to account for phenomena related

to small numbers of individuals in populations, and

to random walk processes for situations were selec-

tion is absent [2]. Population genetics developed its

own language that makes it sometimes hard to trans-

late the results of molecular life sciences into this

rather rigid conventional frame.

Biochemical kinetics branched of conventional

chemical kinetics in the second decade of last centu-

ry when Michaelis and Menten [3] published their

seminal work on enzyme kinetics. AlthoughMichaelis-

Menten kinetics is neither a rigorous treatment of

simple enzyme reactions nor a universally applicable

approximation, it set the stage for more than ninety

years of biochemical kinetics. Two new concepts

based on experimental discoveries were decisive

for the further development of modeling in biology:

(i) methods for studying rapid reactions in solution,

in particular stopped flow and relaxation techniques

[4, 5] and (ii) statistical methods to study conforma-

tions and conformational changes of polymers [6], in

particular models of biopolymers [7]. Rapid reaction

techniques, in particular relaxation methods [8], en-

abled direct studies on elementary steps in biopoly-

mer folding, conformational changes, and enzyme

kinetics [9], and provided a new basis for the explo-

ration of biochemical mechanisms. The theory of

polymers provided also a first frame for studies on

proteins and nucleic acids and yielded global statis-

tical quantities that could be used as a reference for

global characterization and comparison of different

unfolded polymers. Originally derived from the Ising

theory of ferromagnetism [10] the one-dimensional

chain model for biopolymers [7, 11] provided the

first approach towards a statistical mechanics of

cooperative phenomena in the folding process of

proteins or nucleic acids. Kinetics of cooperative

transitions within the chain model was studied as

well [11, 12]. In its simplest form the chain model

uses only two thermodynamic parameters: (i) a nu-

cleation parameter, �, and (ii) a parameter for the

local or single segment equilibrium, s. Numerous

attempts were made to compute the two parameters

from molecular data (for an early example see

Refs. [13, 14], more recent work based on Monte-

Carlo simulations is found in Ref. [15]). Many

attempts were made to determine � and s experimen-

tally, as an example we mention here only a publica-

tion of more recent accurate measurements [16].

Biochemical kinetics has been in the focus of in-

terest in the life sciences for three quarters of the

twentieth century but then went through a period

of stagnation between 1980 and 2000 before it re-

gained importance in modeling gene regulation and

metabolic reaction networks. At present it represents

one of the major tools of computational systems

biology [17] (see subsection on sequences, genetic

information, and its processing and section on dy-

namical systems of genetic regulation networks).

Biopolymer structures

In the second half of the twentieth century new and

extremely fruitful inputs into biology came from

physics and chemistry: the techniques for the deter-

mination of molecular structures, primarily X-ray

crystallography, were extended to investigations on

biomolecules. The new discipline, structural biology,

provided a straightforward explanation for the mech-

1 Leonardo Pisano known as Fibonacci lived approximately
1170–1250 in Pisa and used the then already know pro-
gression, anþ1 ¼ an þ an�1 for n�3 with the initial values
a1 ¼ 1 and a2 ¼ 1 to model the growth of an isolated popu-
lation of rabbit couples under the assumptions that (i) every
month each couple gives birth to one new couple and
(ii) the newborn couples start breeding after two months:
at ¼ 1; 1; 2; 3; 5; 8; 13; . . . for t ¼ 1; 2; 3; 4; 5; 6; 7 . . . months.
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anism of DNA replication, detailed insights into

structures of proteins and other biomolecules, and

allowed for molecular interpretations of protein

functions2. A new paradigm for understanding and

explaining mechanisms involving biological macro-

molecules was born:

sequence ¼) structure ¼) function

Crystallographic techniques for the determination

of molecular structures of proteins and nucleic acids

saw an impressive development, the resolution of

X-ray diffraction methods has been increased to the

level of atoms. In addition, several other techniques

became available and the current repertoire of meth-

ods for elucidation of molecular structures comprises

electron microscopy, various methods from molecu-

lar spectroscopy, in particular nuclear magnetic res-

onance, fluorescence, Fourier transform infrared and

electron spectroscopy, as well as mass spectrometry.

At present structure determination and interpretation

of molecular properties and reactivities by means of

known structures has become the standard of biolog-

ical research. One more recent important step for-

ward in understanding function in supramolecular

complexes was the successful structure determina-

tion of the entire ribosome around the turn of the

millennium [19, 20]: surprisingly, the catalytic mol-

ecule in the complex was found to be a RNA and not,

as previously assumed, a protein molecule.

The accessibility of biopolymer sequences and

structures provided a challenge for theorists: can

structures be predicted from known sequences? If

biopolymers were in a state of minimum free energy,

the structure prediction problem would be tanta-

mount to the search for the global minimum of a

free energy surface in conformation space and struc-

ture prediction would boil down to an optimization

problem. Apart from the occurrence of kinetically

favored metastable states and specific interactions

with other biomolecules in the environment in vivo

small protein and nucleic acid molecules are mostly

at thermodynamic equilibrium. For large molecules

kinetic folding certainly has a strong influence on the

native conformations. The question that is intimately

related with the equilibrium hypothesis concerns the

accessibility of molecular potentials or conformation-

al energy landscapes of biopolymers [21]. Sufficient-

ly accurate ab initio calculations are still not within

reach and therefore one has to rely on empirically

determined force fields [22, 23] or mean potentials,

for example knowledge-based potentials from confor-

mational ensembles of mean force [24–26].

The search for minimum free energy structures of

molecules with known sequences, in essence, is an

optimization problem that, however, was found to be

notoriously difficult for proteins. Nevertheless, bio-

polymer structures are central to current biology and

literature on prediction and design of protein and

nucleic acid structures has become so extensive that

we can mention here only a few typical examples.

De novo protein folding3 is not reliable enough,

the alternative approach, comparative or homology

modeling [27] suffers also from possible sources of

errors related to the incompleteness of structure li-

braries with respect to natural protein folds [28]. An

analysis performed five years later [29] comes to

the much more optimistic conclusion that the current

data bank is already sufficient for correct predic-

tions, which are comparable to low-resolution exper-

imental structures. The protein structure community

performs regular contests in structure predictions,

the last in the series was the ‘‘Sixth Meeting on

the Critical Assessment of Techniques for Protein

Structure Prediction’’ (CASP6) whose results are

reported in Ref. [30]. The main conclusion is that

only modest progress has been made over the last

decade [31]. Structure prediction has a highly rele-

vant inverse problem, the design of structures, which

can be tailored for predefined purposes. Putting aside

the structure-function relation part of the problem,

inverse folding or protein design searches for se-

quences that fold into given structures (Fig. 1). In

practice, protein design was first considered to be an

extremely complex task and, indeed, the purely

computational problem of protein design was proven

to be NP-complete4 [32]. A combined approach to

protein design by theory and experiment, however,

2 Instead of presenting individual references on the first
investigations on biopolymers we recommend a monograph
that describes the beginning and the first years of molecular
and structural biology [18].

3 Protein structure predictions that do not use direct input
from known structures are called de novo folding.
4 The notion NP-complete originated in computer science
and is – somewhat sloppily – used for problems for which
no algorithms exist that allow for finding solutions in poly-
nomial time. Polynomial time means that the time required to
find a solution increases with some power of the problem size.
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turned out to be quite successful in many different

applications [33–35]. Enormous scientific and com-

mercial interest in rational design of proteins led

to substantial progress within the last decade (see,

e.g., the special issue [36] and the recent reviews

[37, 38]) and design software became a frequently

used and indispensable tool in academia as well as

industry.

Structures of nucleic acids fall into two cate-

gories: (i) antiparallel double helical and (ii) single

strand structures. Double helical structures of DNA –

with Watson-Crick base pairs exclusively – fall into

different classes (A-DNA, B-DNA, etc.). They were

long thought to be monotonous, and therefore bor-

ing. Molecular geneticists, however, were never

satisfied with this idea. How could a regulatory pro-

tein then find its DNA target sequences with such

high specificity? Crystallographic studies with mod-

el oligonucleotides beginning with the first high-

resolution structure of a short DNA double-helix by

Dickerson and Drew [39–41], however, showed high

variability and pronounced sequence dependence of

the B-DNA structure [42–44]. In addition, interme-

diate forms between A-DNA and B-DNA were found

and a pathway based on crystal structures was sug-

gested and interpreted in terms of sequence depen-

dent stabilities of local conformations [45–48].

Structures of single strand nucleic acid molecules,

predominantly RNA, turned out to be easier to handle

than proteins, because there is a coarse-grained

version of structure, the so-called secondary struc-

ture, which is much easier to handle and to pre-

dict. Secondary structures, in essence, are listings

of Watson-Crick type base pairs formed in intramo-

lecular antiparallel double helices. The formation of

these substructures provides the largest stabilizing

contribution to the free energy of folding. Minimum-

free energy structures are computable by means of

dynamic programming algorithms [49, 50]. RNA

suboptimal structures and conformational partition

functions are computable by dynamic programming

algorithms as well [51–53], and folding kinetics can

be modeled by means of an efficient stochastic pro-

cess [54, 55]. Structure prediction is assisted by

straightforward estimates on the reliability of the

predicted structures. Moreover, algorithms for in-

verse folding [50, 56] became available. Computa-

tional nucleic acid design can be considered with

different constraints like, for example, thermody-

namic stability or efficient folding (see section on

the prediction of structures and design of molecules).

In addition, the relations between sequence, second-

ary structure, and function space in the sense of

Fig. 1 are readily accessible in case of RNA second-

ary structures [57, 58].

Full three-dimensional structures of single strand

nucleic acids are much harder to predict and to ana-

lyze. Different from protein spatial structures, how-

ever, there is a dominant interaction between side

chains, namely base pair formation that is stronger

than other interactions. Base pairs – Watson-Crick

and others – can be classified in straightforward

manner [59, 60]. Sequence specific recurrent motifs

were found to dominate three-dimensional RNA

structures [61, 62] and a recently formed RNA ontol-

ogy consortium aims at completion of the RNA motif

collection in order to provide enough information for

the prediction of RNA structure from sequence [63].

An alternative approach to rational design mimics

biological evolution in order to create molecules

with predefined properties. In evolutionary biotech-

nology no structural information is required [64,

65] to design molecules with predefined functions

(Fig. 1). Evolutionary design is straightforward and

works particularly well with RNA molecules. An ini-

tial population with sufficient sequence diversity is

created either through random synthesis or through

replication with artificially high mutation rates.

Population sizes up to N� 1015 molecules have been

used in typical test-tube evolution experiments. The

desired function of the molecule is created through

successive selection cycles (Fig. 2) consisting of (i)

selection of the best suited molecules from a popu-

Fig. 1 Relations between sequences, structures, and func-
tions in biopolymer design. The design problem is sketched
in terms of mappings between three abstract spaces: sequence
space, structure space, and function space. The sizes of the
ellipses represent the current estimate of their cardinality.
There are more sequences than structures and, presumably,
there are more structures than functions (see the section on
the prediction of structures and design of molecules)
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lation, (ii) test of the desired function, (iii) amplifi-

cation, and (iv) diversification through replication

with adjusted mutation rates. The cycles are con-

tinued until molecules with desired properties are

obtained. As an example for the selection step we

mention the frequently applied technique of system-

atic evolution of ligands by exponential enrichment

(SELEX) [66, 67]: a solution with RNA molecules is

applied to a chromatographic column that contains

covalently bound target molecules to which the

RNAs are wanted to bind. Depending on the solvent

all molecules are retained, which have stronger af-

finity to the target than some minimal binding con-

stant. The retained molecules are eluted, amplified

and diversified by mutation, and applied to the col-

umn again in a solvent that requires stronger binding

to be retained. The procedure is continued until mole-

cules with optimized binding properties are obtained.

The kinetic theory of evolutionary optimization of

RNA molecules in populations is well developed

[68–70]. For investigations of stochastic phenomena

computer algorithms are available for small popula-

tions up to N¼ 100,000 molecules [71–73].

Sequences, genetic information, and its processing

A novel era of molecular genetics began when large

scale DNA sequencing became possible through the

novel techniques of Walter Gilbert and Frederick

Sanger [74, 75]. Automatic identification of labeled

nucleotides [76] and computer assisted reconstruc-

tion of long DNA stretches and eventually of whole

genomes [77] facilitated sequence data production,

made sequencing substantially cheaper, and initiated

the era of genomics. One of the major milestones

towards the chemistry of life and the first highlight

of the new sequencing approach to molecular ge-

netics certainly was the determination and publica-

tion of the DNA consensus sequence of the human

genome (International Human Genome Sequencing

Consortium, 2001 [78]). Further improvement inDNA

sequencing techniques is required when the dream of

genome based personalized medicine should become

true. This is not outside reach, since progress in sin-

gle molecule techniques [79–83] has initiated new

approaches towards single molecule DNA sequenc-

ing [84–88]. Genomics, in essence, is the successful

upscaling of gene sequencing to the level of the en-

tire cell. An at first surprising result was that only a

minor fraction of about 5% of the human genome is

used for coding proteins. For several years people

thought that the rest of the genome – be it even

95% – was so called junk that remains unused as a

remnant of phylogenetic history of man. Similar

results were obtained for most higher organisms.

The discovery of regulatory functions of RNA mole-

cules – small interfering RNAs (siRNAs) and others –

changed this common belief. In order to clarify the

encoding function of DNA strong efforts were under-

taken by a consortium staring the ENCyclopedia

Of DNA Elements (ENCODE) project. The goal is

to identify all DNA transcripts and to analyze their

function. Recently, first results were reported for 30

million bases representing 1% of the human genome

Fig. 2 The selection cycle in evolutionary design. Molecular
properties are optimized in consecutive cycles consisting of
selection from a sufficiently diverse pool of molecules, test
for the desired function, amplification, and mutation of the
selected molecules. The selection cycles are continued until
molecules with the desired properties are obtained
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[89]. One result is that ‘‘the genome is by far more

than a mere vehicle for genes’’ [90] and DNA is

pervasively transcribed, presumably more than 90%

of the sequence appear at least in one transcript.

Comparison of DNA sequences through alignment

and reconstruction of phylogenetic trees [91] re-

quired methods from discrete mathematics, in par-

ticular graph theory. Alignment of sequences started

with dynamic programming algorithms based of two

different scoring schemes: (i) the Needleman-Wunsch

scoring scheme [92] leading to the best global align-

ment of two sequences and (ii) the Smith-Waterman

scoring scheme [93] returning the best local align-

ment. Since then an enormous variety of different

techniques for the alignment of two and more

sequences have been developed and now fast and

reliable software is available for large scale compar-

isons of sequences and for the search of databases

(see, e.g., Ref. [94]). The availability of whole gen-

omes for the reconstruction of the tree of life re-

vealed a number of surprises. In particular, it turned

out that horizontal gene transfer is much more com-

mon in prokaryotic life than expected [95–97] and

this might well jeopardize the existence of a tree of

life during early precambrian development and ren-

der futile the search for such a tree [98–102]. More

recent estimates based on data from more genomes

[103, 104] show, however, that this fear was exag-

gerating the effect of gene migration between spe-

cies and kinds of consensus trees do nevertheless

exist. A challenge for theorists, nevertheless, remains:

new methods of sequence comparisons are required

that do not presuppose the existence of a single

unique tree [105–107].

In case of RNA viruses the structure of the RNA

genome encodes not only proteins but also the life

cycle of the phage [108]. Molecular structures of

viral RNAs are often conserved despite substantial

sequence variation. The same is true for RNA mole-

cules with functions based on their structures. Then,

simultaneous sequence alignment and structure

prediction becomes a highly relevant issue. An algo-

rithm developed by Sankoff [109] solves the problem

in principle. For applications to natural RNA mole-

cules, however, the Sankoff algorithm is not suitable,

since it requires O(n4) memory and O(n6) CPU time.

All practical implementations employ heuristics to

reduce the search space. The first such attempt was

Foldalign by Gorodkin et al. [110] which allowed

only simple stem-loops. Meanwhile, many other sim-

plified versions are available which reduce search-

space by restricting possible sequence alignments or

possible structures, or both [111–120]. Other notable

approaches derive the conserved structure without

sequence alignment [121, 122].

The DNA sequence, in essence, is the chemical

formula of a DNA molecule, and contains the en-

coded information for the cellular synthesis of pro-

teins and RNA molecules and as such provides no

direct access to their spatial structures nor does it tell

the function of the biomolecules. The next logical

step is to investigate the translation products of genes

and to develop methods to discover their interactions

[123]. Precisely this is the goal of proteomics5 [124].

Application of chip technology [125] and mass spec-

trometry [126] opened previously unknown possibil-

ities. This new field developed novel techniques to

analyze proteins, to study interactions between pro-

teins, the two-hybrid systems [127, 128] for exam-

ple, and to perform high throughput investigations.

The next step in the development of modern ge-

netics brings biochemical kinetics back in the focus

of interest. Indeed, systems biology and=or quanti-

tative biology aim at quantitative description and

modeling of reaction dynamics in entire cells and

organisms (for a comprehensive review of different

techniques applied to genetic regulation and meta-

bolic networks see Ref. [129]). The current com-

puter work on dynamics is almost entirely dealing

with integration of kinetic equations derived from

biochemical reaction networks. Because of the enor-

mously large number of molecular species in cellular

reaction networks, modules of metabolism rather

than whole cells are frequently studied. One of the

first studies of this kind was dealing with glycolysis

in yeast [130]. A special language, systems biology

markup language (SBML), has been developed

[131] in order to allow for an automated formulation

of kinetic differential equations from input data de-

scribing the reaction mechanism. Appropriately

SBML is directly combined with an efficient ODE

solver, for example CVODE [132].

For real biological systems the problem of up-

scaling dynamical systems to the enormously high

dimensions of metabolic networks is still unsolved.

Several kinds of more or less suitable approxima-

5 As the genome or the genotype is genetic information
upscaled to the cellular level, the proteom is the set of all
proteins and their interactions in the cell.
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tions have been applied. One example is the replace-

ments of kinetic equations by piecewise linear ODE

in properly defined segments of concentration space

[133]. Other approaches perform metabolic flux anal-

ysis [134–139] or consider the topology of cellular

networks by statistical methods [140–143].

Fig. 3 RNA secondary structures. The figures show the sequence, the conventional graph of the secondary structure, and its
symbolic notation for phenylalanyl transfer RNA. The principle of folding RNA sequences into secondary structures consists of
double helix formation with Watson-Crick and G–U base pairs under the condition of free energy minimization. The four
double helical stacking regions are indicated in color. As shown in the insert on the r.h.s. the backbone strand folds back on
itself leading to antiparallel orientation in the double helix. In the symbolic notation at the bottom of the figure, which is
equivalent to the secondary structure graph in the middle, base pairs are represented by parentheses and single nucleotides are
shown as dots. Coloring of base pairs is dispensable since the left and right parts of parentheses are assigned to each other by
conventional mathematical notation requiring the absence of pseudoknots in the secondary structure (see, e.g., Ref. [58]). The
sequence contains a number of modified nucleotides (D¼ dihydro-uracil, M¼methyl-guanine, Y¼wyosine, T¼ thymine,
P¼ pseudouridine), which among other properties have the effect to stabilize the cloverleaf structure of the tRNA. The insert on
the l.h.s. shows a structure with a (H-type) pseudoknot. In this case the assignment of base pairs requires colors
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Prediction of structures and design of molecules

Secondary structures of single stranded RNA mole-

cules provide a basis for the mathematical analysis

of the relations between sequences and structures.

The secondary structures, in essence, are listings of

Watson-Crick and G–U base pairs in antiparallel

double helical regions, which are formed through

folding the backbone strand back on itself (Fig. 3).

A commonly applied condition for RNA secondary

structures is the absence of so called pseudoknots6.

The main motivation for the neglect of pseudoknots

is technical: computation of minimum free energy

structures with pseudoknots is enormously more

time consuming than the standard algorithms [144].

A justification for the approach, however, can be

seen in the fact that pseudoknots are rare and they

can be introduced into optimized secondary struc-

tures as tertiary interactions.

The number of possible pairing patterns for a giv-

en sequence is very large and increases exponential-

ly with chain length n. All these pairing patterns can

be understood as suboptimal conformations of one

RNA molecule. Most suboptimal conformations have

positive free energies of formation7. It is straight-

forward to neglect suboptimal conformations with

positive free energies unless they are required as

intermediates along lowest passes of lowest free

energies from one conformation to another. The

remaining number of suboptimal conformations is

still very high. The set of suboptimal conformations

for a given sequence can be computed by means of

algorithms: Zuker [52] computes all conformations

of most but not all classes, Wuchty et al. [51] com-

pute all suboptimal conformations within a defined

energy band above the minimum free energy, and the

algorithm developed by John McCaskill [53] calcu-

lates the partition function based on the secondary

structures of all suboptimal conformations.

Structure prediction

Computation of minimum free energy (mfe) second-

ary structures is commonly performed by means of

algorithms based on dynamic programming [49, 145,

146]. Additivity of the free energies of structural

elements is assumed. These structural elements are

loops (hairpin loops, internal loops, bulges, and

multi loops), flexible elements (joints or free ends),

and stacks of two adjacent base pairs. Loops and

flexible elements consist of unpaired nucleotides and

provide a destabilizing mainly entropic contribution

to the free energy (for a comprehensive review see

Ref. [58]). Structure stabilizing contributions come

from base pair stacking in the double helical regions.

Free energies, energies, and entropies of the structur-

al elements are introduced as empirical parameters

and are derived from kinetic and thermodynamic

data measured on model compounds, which are com-

monly either synthetic or natural oligo-ribonucleo-

tides [147, 148]. Empirical data are also available for

folding of single-stranded DNA [149, 150]. The us-

age of integer algebra allows for substantial speedup

of the computations [50]. A major problem for the

reliability of RNA secondary structure prediction is

the existence for low lying suboptimal conforma-

tions that can erroneously become the mfe structure

because of limited accuracy of parameters and ap-

proximate nature of the assumptions, for example

the additivity of the free energies of substructures.

Another source of errors are tertiary interactions,

which by definition are not included in secondary

structure computations (the different classes of pseu-

doknots are just one example). Tertiary interactions

may change the base paring pattern on the secondary

structure in the minimum free energy conformation

and cause errors in this way.

Structures formed from unfolded sequences under

laboratory conditions or in nature need not coincide

with the minimum free energy structure. Kinetic

effects may determine the observed conformation.

An illustrative example is the hairpin=double-hairpin

switch shown in Fig. 4. The double-hairpin is formed

approximately twice as often as the single hairpin,

because it has two nucleation sites compared to one

in the hairpin, and accordingly the distribution of

structures is 33=67 whereas the equilibrium mixture

would favor the hairpin in a ratio of 88=12. A sub-

stantial difference between the kinetically preferred

and the thermodynamically determined distribution

6 A pseudoknot is defined as an RNA structural element con-
taining conventional base pairs of (approximate) Watson-
Crick geometry, G –––C, A¼U, and G–U, and unpaired
nucleotides, which when written in the symbolic notation
requires colored parentheses for uniqueness. In other words,
the symbolic notation violates mathematical parentheses as-
signment (Fig. 3).
7 The energy of formation is computed as the free energy
difference between the structure under consideration and the
unfolded or random coil chain. A positive free energy of
formation implies that the conformation is unstable in com-
parison with the random coil chain.
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of conformations is to be expected for large RNA

molecules [151]. Moreover, synthesis by transcrip-

tion starts always from one end and secondary struc-

ture formation goes on during synthesis. Refolding

yielding the thermodynamically favored substruc-

tures becomes unlikely when the sequences are suf-

ficiently long and a partial secondary structure has

been formed that is stable enough against unfolding

at the temperature of the experiment.

Suboptimal conformations are computed straight-

forwardly by means of dynamical programming: the

energy table is computed as in the case of mfe struc-

ture calculation and all conformations are obtained

by extending backtracking to all possible paths. The

only problem is the enormously large number of

suboptimal states even when they are restricted to

negative free energies. Possible ways out of the di-

lemma are the neglect of certain classes of con-

formations [52] or the restriction to conformations

within a predefined energy band above mfe [51]. The

free energies of the entire set of suboptimal struc-

tures can be visualized as a free energy landscape

provided an appropriate notion of distance between

conformations is introduced, which is compatible

with the move set for kinetic folding [58]. The whole

spectrum of suboptimal structures shows families

of conformations that share common structural fea-

tures. These families are related to basins of the

conformational free energy landscape to be discuss-

ed below.

Folding kinetics at the resolution of single base

pairs can be formulated as a stochastic process and

simulated by means of trajectory calculations and

trajectory sampling [54]. A move set for folding ki-

netics is defined in such a way that every conforma-

tion can be reached from every conformation, for

example base pair cleavage and base pair formation.

For economic computational performance it turned

Fig. 4 RNA structures and suboptimal conformations. The figure sketches three commonly used notions of RNA secondary
structure for an RNA molecule of chain length n¼ 33 with the sequence shown in the insert. The minimum free energy (mfe)
structure (l.h.s.) is obtained by conventional folding algorithms based on dynamic programming computing the structure of
minimum free energy for a given sequence (mfe: �G0¼�110 kJ=mol relative to the unfolded sequence). In the middle we
show energies of the mfe structure and the suboptimal conformations. The interconvertibility of conformations through saddle
points is shown by means of the barrier tree (r.h.s.): individual suboptimal conformations are connected via the paths of lowest
free energies, which are represented only by the free energies of the two local minima and the lowest saddle connecting them.
The example shown in the figure represents a so-called RNA switch, an RNA molecule that can exist in two dominant
conformations denoted by S0 (red, being the mfe structure) and S1 (blue, being the lowest suboptimal conformation with a
free folding energy of �G0¼�105 kJ=mol), S2 and S8 (red) and higher lying states are suboptimal conformations in the basin
of S0, whereas S3, S4, S5, S6, S7, S9, and S10 (blue) and others belong to S1. Free energies of energy levels are given relative to
the mfe
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out that a third move, the shift move, is required in

which a nucleotide shifts directly between two pair-

ing partners8. The algorithm applied to the calcula-

tions of trajectories simulates the Markov process

underlying the master equation for the chemical re-

action network [152, 153]. These direct simulations

provide important insights into RNA structure for-

mation, but can only be performed for rather small

molecules because of the enormous computational

efforts required in both CPU-time and memory. An

alternative approach starts from the complete set of

suboptimal conformations. Using the conventional

Arrhenius formula, reaction rate parameters can be

calculated for every elementary step and the folding

kinetics can be calculated by solving the reaction

network of conformational changes [55]. Further

simplification restricts transitions to processes on

the barrier tree.

The move set defines a distance d
ðsÞ
1;2 between two

conformations, S1 and S2, as the minimum number

of moves that is required to convert S1 into S2. It is

straightforward to verify that d
ðsÞ
1;2 fulfils the condi-

tions for a metric in the space of conformations.

Assignment of free energies to the points represent-

ing the conformations results in a free energy land-

scape. Each move set defines a (multi-dimensional)

folding landscape, since different move sets give rise

to different neighborhood relations and therefore

induce different landscapes in conformation space.

The barrier tree can be understood as a ‘‘one-dimen-

sional’’ approximation to the folding landscape (for

more details on kinetic folding of RNA secondary

Fig. 5 Folding and inverse folding of RNA. RNA folding assigns a structure, commonly the mfe structure, to every sequence
(l.h.s.). In the structure design problem (r.h.s.) a sequence is calculated that forms the given structure as its mfe structure. This
inverse folding problem is solved in an iterative way [50]. In general, inverse folding is not unique in the sense that many
sequences form the same mfe structure

8 The shift move can be understood as a combination of base
pair opening and base pair formation in a single step.
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structures see the contribution by Hofacker and

Flamm in this issue).

Structure design

The inversion of RNA secondary structure prediction

is the structure design problem: the computation of

sequences that form a given secondary structure as

the minimum free energy structure. Inverse problems

are often solved by iteration of the forward problem

and such a strategy is used here as well. The inverse

folding algorithm for RNA secondary structures

starts from a (randomly) chosen sequence, which

is compatible with the structure9. The sequence is

changed by single nucleotide mutations in such a

way that the distance between the current mfe struc-

ture and the predefined mfe structure decreases.

Different initial sequences, in essence, give rise to

different solutions as the inverse folding problem is

not unique. It may also happen that the algorithm

finds no solution to some initial sequences. Since

there exist structures that cannot be formed by any

sequence of the given length [154] inverse folding

may also have no solution.

The design of multistable RNA molecules is more

tricky. The design problem can be transformed into a

combinatorial optimization problem and solved by

means of a simple heuristic [155]. Molecules with

two dominant conformations called RNA switches

like the one shown in Fig. 4 are readily obtained by

this procedure indicating that such conformational

switches should also be accessible in evolution.

Sequence structure mapping

In general, Ns ¼ 4n different sequences are pos-

sible for RNA molecules with a chain length of n

nucleotides, whereas the number of secondary struc-

tures is definitely smaller than Nstr � 3n. A calcula-

tion based on combinatorics yields the asymptotic

expression for long chain lengths Nstr � 1:4848�
n�3=2ð1:84892Þn [156]. For polymers (n�50) the

numbers of sequences exceed the numbers of struc-

tures by many orders of magnitude and hence, we

expect to encounter extensive neutrality with respect

to minimum free energy structure formation [57]. In

Fig. 6 Combinatory map of RNA structures. The relation between sequences and structures as modeled as a mapping from
sequence space into structure space, Sk¼ (I.). This map is not invertible, because we are dealing almost always with many
more sequences than structures. Scalar properties of molecular function can be visualized as a second mapping from structure
space into the real numbers, fk¼�(S.).

9 A sequence is called compatible with a structure when it has
an admissible base combination (A and U, C and G, G and C,
G and U, U and A, or U and G) at all positions where base
pairs occur in the structure.
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other words the cardinality of sequence space is

enormous compared to that of structure space. In

particular, this is even true for binary sequences10

where we are dealing with Ns ¼ 2n sequences of

chain length n.

The sequences folding the same mfe structure S

form a neutral network in sequence space [157]. A

neutral network is a graph in sequence space with

G[S] being the nodes:

G½S� ¼  �1ðSÞ ¼ fIj ðIÞ ¼ Sg; ð1Þ
The edges connect all pairs of sequences belonging

to this graph that are converted into each other by a

single point mutation11. A useful quantity for the

characterization of neutral networks is the degree

of neutrality, �ll, which is obtained by averaging the

fraction of Hamming distance one neighbors that

form the same mfe structure, lI ¼ n
ð1Þ
ntr =ðn � ð�� 1ÞÞ

with n
ð1Þ
ntr being the number of neutral one-error

neighbors, over the whole network, G[S]:

�ll½S� ¼ 1

jGðSÞj
X

I 2G½S�
lI ð2Þ

Connectedness of neutral networks is, among other

properties, determined by the degree of neutrality,

[157]:

With probability one a network is:

connected if �ll>lcr

not connected if �ll>lcr

(
ð3Þ

where lcr ¼ 1� � 1
��1 where � is the number of let-

ters in the nucleotide alphabet, �¼ 4 for the natural

(AGCU)-alphabet and �¼ 2 for binary sequences.

Computations yield lcr¼ 0.5, 0.423, and 0.370 for

the critical value in two, three, and four letter alpha-

bets. It is remarkable that the connectivity threshold

depends exclusively on the number of digits in the

nucleotide alphabet. Random graph theory predicts

a single largest component for non connected net-

works, i.e., networks below threshold, that is com-

monly called the ‘giant component’. Real neutral

networks derived from RNA secondary structures

may deviate from the prediction of random graph

theory in the sense that they have two or four equally

sized largest components [58, 154].

Dynamical systems of genetic regulation networks

Dynamical systems theory provides highly useful

tools for the analysis of qualitative behavior of low-

dimensional differential equations. Chemical reac-

tion networks are commonly modeled by dynamical

systems consisting of autonomous ordinary differen-

tial equations (ODEs) of the type

dx

dt
¼ x

: ¼ f ðx; pÞ; x2D � Rn and p2Rm; ð4Þ

where x¼ (x1; . . . ; xn) are the concentration variables

and p¼ ðp1; . . . ; pmÞ the parameters12. The domain

of concentration variables D is always a subset of the

real numbers, because concentrations by definition

are nonnegative numbers. The vector f subsumes

the right hand side of the kinetic equations:

f ðx; pÞ ¼

f1ðx; pÞ
f2ðx; pÞ

..

.

fnðx; pÞ

0
BBB@

1
CCCA:

For a given set of parameters the complete set of

initial conditions x0 determines uniquely a solution

curve or trajectory of the dynamical system. Unique-

ness implies that trajectories never cross. The trajec-

tories end in !-limits, which are called attractors and

may consist of single points as well as manifolds

of two or more dimensions like limit cycles, chaotic

attractors, or they may also diverge in an infinite

domain. Time reversal, i.e., replacing t by -t, causes

the trajectories to converge to the �-limits. The set

of all trajectories of a dynamical system is called the

phase portrait and defines a flux that leads from �- to

!-limits. Nonlinear dynamical systems commonly

have more than one attractor. Then, the domain D

is partitioned into basins of attraction, which are

separated by separatrices (Fig. 7). When trajectories

cross the boundary of the positive orthant they can

only do it the direction from outside to inside, since

concentrations can never become negative.10 Binary sequences oligo- or polynucleotide sequences con-
tain only two mononucleotides that can form a base pair, C
and G, A and U, or D and U where D is 2,6-diamino-purine.
11 These are the pairs of sequences with Hamming distance
dH¼ 1. The Hamming distance is the minimal number of
mutations to convert one sequence into the other.

12 For simplicity column and row vectors are distinguished
only when it is necessary. Here _xx is a column vector what
becomes clear from the definition of f ðx; pÞ.
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Gene regulation

As an example of bifurcation analysis applied to

genetic regulation we present a dynamical system

describing transcription and translation of two regu-

latory proteins, P1 and P2, controlling the activity of

two genes G1 and G2 through cross interaction, e.g.,

G1 is controlled by P2 and G2 by P1, respectively.

The transcription products of the genes are assumed

to be two messenger RNAs, Q1 and Q2, which en-

code the amino acid sequences of the two proteins.

Neglecting all intermediates the over-all reaction

mechanism for transcription, translation, and degra-

dation has the simple form

Gi þ PjÐ
ki
Gi � Pj�!

kQ
i
Gi � Pj þ Qi activation

Gi þQi �
k
Q
i
Gi þ PjÐ

ki
Gi � Pj repression

Qi�!
k
Q
i
Qi þ Pi translation

Qi�!
dQ
i
� degradation

Pi�!
dPi

� degradation

ð5Þ
with i¼ 1, 2 and j¼ 2, 1. Activation and repression

refer here to the action of the regulatory protein on

the gene: binding of the activator is required for gene

activity whereas repressor binding prevents trans-

cription. Concentration variables are denoted by

lower case letters, [Qi]¼ qi and [Pi]¼ pi (i¼ 1, 2).

The equilibrium parameters, K1 and K2, are given

as dissociation constants, and therefore lower values

of K refer to stronger binding. The kinetic rate param-

eters are denoted by k and d, the superscripts, ‘Q’

and ‘P’ refer to mRNAs and proteins, respectively.

Then the kinetic equations including the degradation

terms for mRNAs and proteins are of the form:

dqi

dt
¼ kQi g

0
i FiðpjÞ � dQi qi; i ¼ 1; 2 and j ¼ 2; 1

dpi

dt
¼ kPi qi � dPi pi; i ¼ 1; 2:

ð6Þ
Activation and repression are commonly modeled

by means of simple binding functions for complex

formation:

FactðpÞ ¼ pn

K þ pn
activation

FrepðpÞ ¼ K

K þ pn
repression;

ð7Þ

Fig. 7 Phase portraits of gene regulation. The upper part of
the figure shows the case of cross-activation of two genes.
Two stable points (black circles) are separated by a separatrix
(black curve) that passes through an unstable point (a saddle,
white circle). The stable states represent the alternatives
both genes on (dark grey trajectories) and both genes off
(light grey trajectories). The lower part shows cross-repres-
sion leading to the alternatives gene 1 on and gene 2 off
(dark grey) and gene 1 off and gene 2 on (light grey). A
Hill coefficient of n¼ 2 and the values k1¼ k2¼ 2, K1¼
K2¼ 0.5, and d1¼ d2¼ 1 (upper plot), and k1¼ k2¼ 4,
K1¼K2¼ 0.25, and d1¼ d2¼ 1 (lower plot) for the param-
eters were chosen.
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where n is the Hill coefficient that is related to co-

operative binding of multimeric proteins [158] and

proteins as DNA replication is not considered here,

and the total concentration of the genes, [Gi]¼ g0
i ;

(i¼ 1, 2), is a constant and can be subsumed in the

rate parameter ðkQi _¼¼ k
Q
i g

0
i Þ.

For the purpose of illustration we can make anoth-

er simplification that has only little consequences

for the dynamical behavior around stationary points:

protein concentrations are assumed to be propor-

tional to the mRNA concentrations (p1¼�1q1 with

�i ¼ kPi =d
P
i ), which becomes exact at the stationary

states. The kinetic equations for the concentrations

of mRNAs are formally unchanged when the disso-

ciation constants are properly scaled: Ki ) Ki=�
n
i

(i¼ 1, 2). Concentration space is then only two di-

mensional and trajectories can be visualized in a

plane13. The phase portraits in Fig. 7 were calculated

for cross-regulation of the two genes leading for ac-

tivation to two states with both genes on or both

genes off, and to a toggle switch, gene 1 on, gene

2 off or gene 1 off, gene 2 on, for the repression case,

respectively. The approximation describes well only

the situation near stationary states and thus the phase

portraits contain only point attractors. It fails, how-

ever, for oscillatory systems, which have limit cycle

attractors at substantial distance from a stationary

point (see below).

The phase portrait of a dynamical system depends

on the system parameters, which are the equilibrium

constant of regulatory complexes and the reaction

rate parameters in the example reported here. Com-

monly phase portraits stay qualitatively the same for

large variations in the parameters14 but then change

abruptly through bifurcations at certain parameter

values. In order to illustrate bifurcation behavior it

is necessary to identify one parameter or one char-

acteristic parameter combination for the variation,

for example the transcription rate parameter ki, the

complex dissociation constant Ki, or both. Figure 8

presents an example of a pitchfork bifurcation

at which the qualitative behavior of the system

changes: one stable stationary point lying on the

symmetry axis x1 ¼ x2 is replaced by an unstable

stationary point on the symmetry axis and two sym-

metrically lying stable points, �xx1>�xx2 and �xx2>�xx1.

The toggle switch discussed in the previous para-

graph thus requires a situation beyond the bifurca-

tion point. As seen from the numerical values used

for the parameters, strong binding and fast transcrip-

tion favor the genetic switch.

Elimination of variables by means of a stationarity

assumption may lead to completely wrong model

behavior in regions far off the stationary points.

For example, the combination of activation and re-

pression, Fact
i ðpjÞ and F

rep
j ðpiÞ, gives rise to a Hopf

bifurcation and undamped oscillations at sufficiently

strong binding and sufficiently large kinetic param-

eters for Hill coefficients n�3 [159]. In the simpli-

fied system with two variables (x1, x2) no undamped

oscillations occur, which can be proven by straight-

forward calculations.

Fig. 8 A pitchfork bifurcation in gene regulation. The figure
shows the dependence of stationary points in the repression-
repression case with Hill coefficient n¼ 2. Variation of the
parameters was introduced by means of an auxiliary variable
s: k1¼ k2¼ 1 � s and K1¼K2¼ 1=s (d1¼ d2¼ 1). The pitch-
fork bifurcation is observed at: scrit¼ 1.58746. Below the
critical point, s<scrit, one stable stationary point with
�xx1 ¼ �xx2 is observed, whereas the stationary point is unstable
and two other stable stationary points exist above the critical
value, s>scrit, as shown in the phase portrait in Fig. 7

13 In order to indicate the assumption of proportionality the
variables are denoted by x1 and x2 and the superscripts ‘Q’ and
‘P’ are dropped on the rate constants.
14 In precise mathematical terms qualitative identity of two
phase portraits means that they are related by a homeomor-
phism or continuous transformation implying an equivalence
relation and one-two-one correspondence between points in
the two figures that is continuous in both directions. In par-
ticular, this is expressed in the same topological relations
between attractors and separatrices.
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Fig. 9 Forward and inverse methods in biochemical kinetics. The two diagrams sketch typical forward (upper part) and inverse
(lower part) problems in systems biology. Dynamics is modeled by means of ordinary or partial differential equations. In the forward
problem solution curves are computed from known model equations, parameters, and conditions. The inverse problem determines
parameters from model equations, conditions, and measurements. In systems biology parameters are derived ultimately from
genomics and proteomics data, or they allow for making inferences on genetic and metabolic systems from known parameter values
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Inverse methods

Conventional techniques of modeling chemical reac-

tion networks by means of differential equations are

based on the forward approach of reaction kinetics

(Fig. 9): kinetic equations, general, boundary, and ini-

tial conditions, as well as the parameters are assumed

to be known, solution curves are computed and com-

pared to experimental data. Unknown parameters are

commonly determined by fitting to data that were

measured under suitable conditions. Inverse problems

became first popular in scattering theory: the angular

intensity distribution of scattered radiation is recorded

after a scattering event and the scattering object has

to be reconstructed. Highly elaborate and fully auto-

mated methods for this reconstruction are available in

computer tomography (CT) and magnetic resonance

imaging (MRI). The inverse problem in reaction ki-

netics is concerned with the direct determination of

parameters from data. In particular, a set of experi-

mental data is given as input and the set of parameters

is determined from known mechanism and conditions

(Fig. 9). Apart from exceptional pathological cases

forward problems are well-posed in the sense of

Jacques Salomon Hadamard15. Inverse problems are

almost always ill-posed. The case of inverse folding

of RNA has been mentioned already: when properly

formulated the forward problem has a unique solu-

tion, which is not the case for the inverse problem

[57]. The same is true, in essence, for parameter iden-

tification of kinetic differential equations. Ill-posed

problems require unconventional or special techniques

for finding approximative solutions, regularization

with several variants is most frequently used [160,

161]. For nonlinear systems the inverse problem is

solved by iterations. A general overview on solution

methods for inverse problems and applications to

some selected problems are found in the two collective

volumes by Engl et al. [162] and Colton et al. [163].

Experimental data always contain a certain amount

of noise that gives rise to uncertainty in the de-

termined parameter values. Often the data are not

sufficient for providing reliable information on

all parameters. Sensitivity analysis and application

of sparsity constraints16 are suitable tools for the

identification of relevant and faithfully predicable

parameters.

Reverse engineering of bifurcation behavior – al-

so characterized as a level two inverse method ap-

plied to dynamical systems – aims at the design of

a predefined bifurcation pattern. An algorithmic pro-

cedure for inverse bifurcation analysis has been con-

ceived and automated for iterative computation of

approximative solutions [164]. We sketch the basic

idea of the approach: the m-dimensional parameter

space of Eq. (4), P � Rm, is partitioned into input

and system parameters: p ¼ ðpi; psÞ2Pi�Ps. The

bifurcation manifold � consists of sets in parameter

space P for which structural stability breaks down

[165]. For a value of the system parameter ps we

define � (ps)¼�\ {ps} being the intersection of �
with the plane defined by ps (Fig. 10). The forward

problem consists in finding the orthogonal projection

of some point p in parameter space onto the mani-

fold �(ps). In other word the forward operator is a

mapping F: P! P in parameter space that can be

assumed to be well-posed:

FðpÞ 	 ðFðpÞi;FðpÞsÞ ¼ ðP?½�ðpsÞ�pi; psÞ ð8Þ
Here P?½�� is an orthogonal projection operator onto

the manifold �. Figure 10 shows an iterative proce-

dure calculating F(p) in case of a nonlinear system.

The inverse bifurcation problem consists in a var-

iation of ps with the goal to bring the point pi as

close as possible to the bifurcation manifold. In

mathematical terms it is formulated by

min
ps

JðpÞ ¼ kFðpÞi � pik subject to

plow
 p
 pupp and 0
 �ðFðpÞiÞ; ð9Þ

where k � k is the l2 norm and � : Pi ! Rk repre-

sents some k-dimensional nonlinear constraints.

The region to be searched in parameter space is com-

monly bounded by physical or chemical restrictions

resulting in lower and upper bounds in the param-

eters, which are appropriately introduced into the

algorithm.

The method described here has been used to per-

form reverse engineering for a number of relevant

biological problems [160]. Examples are the opti-

mization of circadian rhythms with respect to insen-

sitivity to temperature, the conditions under which

the cell cycle in yeast can be locked in the S-phase,

the choice of parameters that allows for oscillations

in gene regulatory systems, and maximization of os-

cillatory regimes in parameter space.

15 For a well-posed problem (i) a solution exists, (ii) the
solution is unique, and (iii) the solution depends continuously
on the data in some reasonable topology.
16 Sparsity means that many parameters take on very small
values. Application of a sparsity constraint implies that all
parameter up to a certain threshold value are set zero.
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Concluding remarks

Biochemistry, molecular biology, and genome re-

search are currently reaching a point where rigorous

mathematical methods and efficient computational

techniques can be applied. Thereby biological mod-

eling can be placed upon a firm molecular basis. Still

many problems have to be solved and open questions

remain for principal issues. Examples are the han-

dling of low particle numbers and fluctuations, the

description of spatial heterogeneity or the analysis of

processes involving multi-component supramolecu-

lar complexes to mention just the most obvious pro-

blems that call for novel approaches. Indeed, the

mechanisms, by which natural nanodevices or mo-

lecular machines perform the most complex cellular

processes, are largely unknown. Nevertheless, present

day biology has become firmly rooted in chemistry

and physics without loosing its specific approach

towards understanding nature and the enormously

rich wealth of observations and data provides for

the first time a fundament upon which a theoretical

biology of the future can be placed. In view of the

breathtaking progress of knowledge and data accu-

mulation in current biology the need for a compre-

hensive theory of cellular life based on structural

biology and chemical kinetics becomes more and

more urgent every day.
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