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Generation time 10 000 generations | 10° generations 10’ generations
RNA molecules 10 sec 27.8h=1.16d 115.7d 3.17 a
1 min 6.94 d 1.90 a 19.01 a
Bacteria 20 min 138.9d 38.03 a 380 a
10 h 11.40 a 1140 a 11408 a
Higher multicelluar 10d 274 a 27380 a 273 800 a
organisms 20 a 20 000 a 2x10" a 2x10%a

Time scales of evolutionary change




Controlled experiments on evolution and RNA replication

Evolution in silico and optimization of RNA structures

Sequence-structure maps, neutral networks, and intersections

Design of RNA molecules with predefined properties



1. Controlled experiments on evolution and RNA replication



Bacterial Evolution

S. F. Elena, V. S. Cooper, R. E. Lenski. Punctuated evolution caused by selection of
rare beneficial mutants. Science 272 (1996), 1802-1804

D. Papadopoulos, D. Schneider, J. Meier-Eiss, W. Arber, R. E. Lenski, M. Blot.
Genomic evolution during a 10,000-generation experiment with bacteria.
Proc.Natl.Acad.Sci.USA 96 (1999), 3807-3812



lawn of E.coli

nutrient agar

Serial transfer of Escherichia coli
cultures 1in Petri dishes

1day T 6.67 generations
1 month T 200 generations
1 year 12400 generations
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Fig. 1. Change in average cell size (1 fl = 107 '° L)
in a population of E. coli during 3000 generations
of experimental evolution. Each point is the mean
of 10 replicate assays (22). Error bars indicate
95% confidence intervals. The solid line shows the
best fit of a step-function model to these data
(Table 1).
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Fig. 2. Correlation between average cell size and
mean fitness, each measured at 100-generation
intervals for 2000 generations. Fitness is ex-
pressed relative to the ancestral genotype and
was obtained from competition experiments be-
tween derived and ancestral cells (6, 7). The open
symbols indicate the only two samples assigned
to different steps by the cell size and fithess data.

Epochal evolution of bacteria in serial transfer experiments under constant conditions

S. F. Elena, V. S. Cooper, R. E. Lenski. Punctuated evolution caused by selection of rare beneficial mutants.

Science 272 (1996), 1802-1804
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Variation of genotypes in a bacterial serial transfer experiment

D. Papadopoulos, D. Schneider, J. Meier-Eiss, W. Arber, R. E. Lenski, M. Blot. Genomic evolution during a
10,000-generation experiment with bacteria. Proc.Natl.Acad.Sci.USA 96 (1999), 3807-3812



Evolution of RNA molecules based on Q3 phage

D.R.Mills, R.L.Peterson, S.Spiegelman, An extracellular Darwinian experiment with a
self-duplicating nucleic acid molecule. Proc.Natl.Acad.Sci.USA 58 (1967), 217-224

S.Spiegelman, An approach to the experimental analysis of precellular evolution.
Quart.Rev.Biophys. 4 (1971), 213-253

C.K.Biebricher, Darwinian selection of self-replicating RNA molecules. Evolutionary
Biology 16 (1983), 1-52

G.Bauer, H.Otten, J.S.McCaskill, Travelling waves of in vitro evolving RNA.
Proc.Natl. Acad.Sci.USA 86 (1989), 7937-7941

C.K.Biebricher, W.C.Gardiner, Molecular evolution of RNA in vitro. Biophysical
Chemistry 66 (1997), 179-192

G.Strunk, T.Ederhof, Machines for automated evolution experiments in vitro based on
the serial transfer concept. Biophysical Chemistry 66 (1997), 193-202
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Stock solution: Qb RNA-replicase, ATP, CTP, GTP and UTP, buffer

The serial transfer technique applied to RNA evolution in vitro



Reproduction of the original figure of the
serial transfer experiment with Qf RNA

D.R.Mills, R,L,Peterson, S.Spiegelman,
An extracellular Darwinian experiment
with a self-duplicating nucleic acid
molecule. Proc.Natl.Acad.Sci.USA

58 (1967), 217-224
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Fig. 9. Scrial transfer cxperiment. Each o-25 ml standard reaction mixture
contained 40 xg of Qf rcplicase and **P-UTP, The first reaction (o transfer)
was initiated by the addition of o2 pug ts-1 (temperature-sensitive RNA)
and incubated at 35 °C for 20 min, whereupon o0-02 ml was drawn for
counting and 002 ml was used to prime the second reaction (first transfer),
and so on. After the first 13 reactions, the incubation periods were reduced
to 1§ min (transfers 14-29). Transfers 30-38 were incubated for 1o min.
Transfers 39-52 were incubated for 7 min, and transfers 53-74 were incu-
bated for § min. The arrows above certain transfers (o, 8, 14, 29, 37, 53,and
%3) indicate where o'co1-o0'1 ml of product was removed and used to prime re-
actions for sedimentation annlysis on sucrose. The insct examines both infec-
tious and total RNA. The rcsults show that biologically competent RNA ceases
to appear after the 4th transfer (Mills et al. 1967).
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The increase in RNA production rate during a serial transfer experiment



cNo new principle will declare itself
from below a heap of facts.

Sir Peter Medawar, 1985



Questions that cannot be answered by current experimental techniques:

(1) How does the distribution of genotypes change with time?

(1) Which intermediates are passed during an optimization experiment?
(i11) Why does optimization occur in steps?

(iv) What happens at the edges of the quasi-stationary epochs?

(v) How much do individual trajectories leading from the same initial state to the
same target differ?

(vi) Is there a proper statistics for evolutionary optimization?



Population biology

Molecular genetics

Evolution of molecules

Genotype Genome DNA/RNA sequence
Phenotype Organism Molecular structure and function
Fitness Reproductive success Replication rate
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Definition of RNA structure



James D. Watson, 1928-, and Francis Crick, 1916-,
Nobel Prize 1962

1953 — 2003 fifty years double helix

The three-dimensional structure of a
short double helical stack of B-DNA
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Complementary replication as the
simplest copying mechanism of RNA
Complementarity is determined by
Watson-Crick base pairs:

GIC and A=U



5'-End 3'-End
Sequence GCGGAUUUAGCUCAGDDGGGAGAGCMCCAGACUGAAYAUCUGGAGMUCCUGUGTPCGAUCCACAGAAUUCG CACCA
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A symbolic notation of RNA secondary structure that is equivalent to the conventional graphs



Definition and physical relevance of RNA secondary structures

RNA secondary structures are listings of Watson-Crick
and GU wobble base pairs, which are free of knots and
pseudokots.

D.Thirumalai, N.Lee, S.A.Woodson, and D.K.Klimov.
Annu.Rev.Phys.Chem. 52:751-762 (2001):

wdecondary structures are folding intermediates in the
formation of full three-dimensional structures.



RNA sequence GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGACGGUCCCAUCGGUACUCCA

Biophysical chemistry:
thermodynamics and
. kinetics Inverse folding of RNA:
RNA folding:
. Biotechnology,
Structural biology, design of biomolecules
spectroscopy of with predefined
b1omolecul.es, . structures and functions
understanding Empirical parameters

molecular function

RNA structure

Sequence, structure, and function



How to compute RNA secondary structures

Efficient algorithms based on dynamic programming are available for computation of
minimum free energy and many suboptimal secondary structures for given sequences.

M.Zuker and P.Stiegler. Nucleic Acids Res. 9:133-148 (1981)
M.Zuker, Science 244: 48-52 (1989)

Equilibrium partition function and base pairing probabilities in Boltzmann ensembles of
suboptimal structures.

J.S.McCaskill. Biopolymers 29:1105-1190 (1990)

The Vienna RNA Package provides in addition: inverse folding (computing sequences
for given secondary structures), computation of melting profiles from partition
functions, all suboptimal structures within a given energy interval, barrier tress of
suboptimal structures, kinetic folding of RNA sequences, RNA-hybridization and
RNA/DNA-hybridization through cofolding of sequences, alignment, etc..

I.L.Hofacker, W. Fontana, P.F.Stadler, L.S.Bonhoeffer, M.Tacker, and P. Schuster. Mh.Chem.
125:167-188 (1994)

S.Wuchty, W.Fontana, [.L.Hofacker, and P.Schuster. Biopolymers 49:145-165 (1999)
C.Flamm, W.Fontana, I.L.Hofacker, and P.Schuster. RNA 6:325-338 (1999)

Vienna RNA Package: http://www.tbi.univie.ac.at



hairpin loop

free end

Elements of RNA secondary structures

hairpin
loop

free end
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as used in free energy calculations

hairpin loop
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5’-end 3’-end
GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGAGCGUCCCAUCGGUACUCCcA

\

free energy of stacking <0

AGY = D gout Dh(n) + D b(n)+ Di(n)+ -

stacks of hairpin bulges internal
base pairs loops loops

Folding of RNA sequences into secondary structures of minimal free energy, DG,>%
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Three base pairing alphabets built from natural nucleotides A, U, G, and C



Catalytic activity in the
AUG alphabet

Nature 402, 323-325, 1999

A rihozyme that lacks cytidine

Jeff Rogers & Gerald F. Joyce

Departments of Chemistry and Molecular Biology, and the Skaggs Institute for
Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road,
La Jolla, California 92037, USA

----------------------------------------------------------------------------------------------------------------------------------------------

The RNA-world hypothesis proposes that, before the advent of
DNA and protein, life was based on RNA, with RNA serving as
both the repository of genetic information and the chief agent of
catalytic function'. An argument against an RNA world is that the
components of RNA lack the chemical diversity necessary to
sustain life. Unlike proteins, which contain 20 different amino-
acid subunits, nucleic acids are composed of only four subunits
which have very similar chemical properties. Yet RNA is capable of
a broad range of catalytic functions’”. Here we show that even
three nucleic-acid subunits are sufficient to provide a substantial
increase in the catalytic rate. Starting from a molecule that
contained roughly equal proportions of all four nucleosides, we
used in vitro evolution to obtain an RNA ligase ribozyme that
lacks cytidine. This ribozyme folds into a defined structure and
has a catalytic rate that is about 10°-fold faster than the
uncatalysed rate of template-directed RNA ligation.



Catalytic activity in the
DU alphabet

Nature 420, 841-844, 2002

A ribozyme composed of only
two different nucleotides

John S. Reader & Gerald F. Joyce

Departments of Chemistry and Molecular Biology and The Skaggs Institute for
Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road,
La Jolla, California 92037, USA

RNA molecules are thought to have been prominent in the early
history of life on Earth because of their ability both to encode
genetic information and to exhibit catalytic function'. The
modern genetic alphabet relies on two sets of complementary
base pairs to store genetic information. However, owing to the
chemical instability of cytosine, which readily deaminates to
uracil®, a primitive genetic system composed of the bases A, U,
G and C may have been difficult to establish. It has been suggested
that the first genetic material instead contained only a single
base-pairing unit’>”’. Here we show that binary informational
macromolecules, containing only two different nucleotide sub-
units, can act as catalysts. In vitro evolution was used to obtain
ligase ribozymes composed of only 2,6-diaminopurine and uracil
nucleotides, which catalyse the template-directed joining of two
RNA molecules, one bearing a 5'-triphosphate and the other a
3'-hydroxyl. The active conformation of the fastest isolated
ribozyme had a catalytic rate that was about 36,000-fold faster
than the uncatalysed rate of reaction. This ribozyme is specific
for the formation of biologically relevant 3',5'-phosphodiester
linkages.
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AUGC 0.794 A 0.007
UGC 0.548 A 0.011

GC 0.067 A 0.007

3-End

Probability of successful trials in inverse folding

0.003 A 0.001
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Accessibility of cloverleaf RNA secondary structures through inverse folding



2. Evolution in silico and optimization of RNA structures



Optimization of RNA molecules in silico

W.Fontana, P.Schuster, 4 computer model of evolutionary optimization. Biophysical
Chemistry 26 (1987), 123-147

W .Fontana, W.Schnabl, P.Schuster, Physical aspects of evolutionary optimization and
adaptation. Phys.Rev.A 40 (1989), 3301-3321

M.A.Huynen, W.Fontana, P.F.Stadler, Smoothness within ruggedness. The role of neutrality
in adaptation. Proc.Natl.Acad.Sci.USA 93 (1996), 397-401

W.Fontana, P.Schuster, Continuity in evolution. On the nature of transitions. Science 280
(1998), 1451-1455

W.Fontana, P.Schuster, Shaping space. The possible and the attainable in RNA genotype-
phenotype mapping. J. Theor.Biol. 194 (1998), 491-515

B.M.R. Stadler, P.F. Stadler, G.P. Wagner, W. Fontana, The topology of the possible: Formal
spaces underlying patterns of evolutionary change. J.Theor.Biol. 213 (2001), 241-274



Stock Solution —> Reaction Mixture ——>
e

Replication rate constant:
f,=g/[a+ Ddq®]
Ddg ®=dy(S,.Sp)

Selection constraint:

# RNA molecules is
controlled by the flow

N(@)~N +N

The flowreactor as a
device for studies of
evolution in vitro and
in silico




3'-End

5'-End v

70
60
= e
33328

) 50 = *
20 .
30 40
Randomly chosen Phenylalanyl-tRNA as

initial structure target structure



Plus Strand

Plus Strand

Minus Strand

Plus Strand

Point Mutation

GAAUCCCGAA —> GAAUCCCGUCCCGAA

Insertion

GAAUCCCGAA —> GAAUCCiA

Deletion

Mutations in nucleic acids represent the mechanism for variation of genotypes.



Master sequence

Mutant cloud

mutations

“Off-the-cloud”

N

UonNeNUIdUO))

The molecular quasispecies

in sequence space



Genotype-Phenotype Mapping

c
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Evolutionary dynamics
including molecular phenotypes
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In silico optimization in the flow reactor: Trajectory (biologists® view)
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In silico optimization in the flow reactor: Trajectory (physicists® view)



Endconformation of optimization
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Transition inducing point mutations

Change in RNA sequences during the final five relay steps 39 A 44
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In silico optimization in the flow reactor: Main transitions
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Three important steps in the formation of the tRNA clover leaf from a randomly chosen
initial structure corresponding to three main transitions.
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AUGC GC

Movies of optimization trajectories over the AUGC and the GC alphabet
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Alphabet Runtime Transitions  Main transitions  No. of runs

AUGC 385.6 22.5 12.6 1017
GUC 448.9 30.5 16.5 611
GC 2188.3 40.0 20.6 107

Statistics of trajectories and relay series (mean values of log-normal distributions)



3. Sequence-structure maps, neutral networks, and intersections



GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGACGGUCCCAUCGGUACUCCA

Minimum free energy
criterion

Inverse folding of RNA secondary structures

The idea of inverse folding algorithm is to search for sequences that form a
given RNA secondary structure under the minimum free energy criterion.
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Stop sequence of an
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Target sequence
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Target structure S,

Approach to the target structure S, in the inverse folding algorithm



Minimum free energy

criterion
/> GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGACGGUCCCAUCGGUACUCCA
éStd > UGGUUACGCGUUGGGGUAACGAAGAUUCCGAGAGGAGUUUAGUGACUAGAGG
3?d trial >  CUUCUUGAGCUAGUACCUAGUCGGAUAGGAUUUCCUAUCUCCAGGGAGGAUG
g:ﬁ - —>  CUUUUCUUCACGUUAGAUGUGUAAUGGACAUGUGUUUAUUUAGGAAAGGCGC
\ AUAACGUGAGUGUCUAAUACUGAUCGCUCCGGAGGGUGGUGGCGUUGUUAAU

Inverse folding of RNA secondary structures

The inverse folding algorithm searches for sequences that form a given RNA
secondary structure under the minimum free energy criterion.



CGTCGTTACAATTTAGGTTATGTGCGAATTCACAAATT GAAAATACAAGAG. . . . .

CGTCGTTACAATTTAAGTTATGTGCGAATTCCCAAATTAAAAACACAAGAG. . ...

Hamming distance dy(Iy,l,) =4

(i) dp(l,I;)=0
(i) dy(l,Lp) = dy(ly,1y)
() dy(l,13) T dy(l,L) + dg(),13)

The Hamming distance between sequences induces a metric in sequence space



Hamming distance dy(S,S,) =4

The Hamming distance between structures in parentheses notation forms a metric
in structure space



RNA sequences as well as RNA secondary structures can be
visualized as objects in metric spaces. At constant chain
length the sequence space is a (generalized) hypercube.

The mapping from RNA sequences into RNA secondary
structures i1s many-to-one. Hence, it 1s redundant and not
invertible.

RNA sequences, which are mapped onto the same RNA
secondary structure, are neutral with respect to structure.
The pre-images of structures in sequence space are neutral
networks. They can be represented by graphs where the edges
connect sequences of Hamming distance d; = 1.
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Real numbers

Structure space
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Function

Sequence space Structure space Real numbers

The pre-image of the structure S, in sequence space is the neutral network G,



Neutral networks are sets of sequences forming the same structure.
G, 1s the pre-image of the structure S, in sequence space:

G, = y_l(sk) n {yj | y(Ij) =S, }

The set 1s converted into a graph by connecting all sequences of
Hamming distance one.

Neutral networks of small RNA molecules can be computed by
exhaustive folding of complete sequence spaces, 1.e. all RNA
sequences of a given chain length. This number, N=4" | becomes
very large with increasing length, and is prohibitive for numerical
computations.

Neutral networks can be modelled by random graphs in sequence
space. In this approach, nodes are inserted randomly into sequence
space until the size of the pre-image, 1.e. the number of neutral
sequences, matches the neutral network to be studied.



G=y ' SO U{L|yd)=5c}

g L;(k)
= el
‘ Xj—12/27—0.444, A = Gy
Connectivity threshold: Aep =1 - 1¢ /6D

Alphabet size k: AUGC n k=4 k I,

i 2 0.5 GC,AU
Mc> Agp - ... network Gy 1s connected 3 0.423 GUC.AUG

A <A - ... network Gy is not connected 4 0.370 AUGC
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A multi-component neutral network
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Alphabet

AU --

AUG T

AUGC 0.275 A 0.064
UGC 0.263 A 0.071

GC 0.052 A 0.033

3-End

Degree of neutrality 1|

0.217 A0.051
0.279 A 0.063
0.257 A0.070

0.057 A 0.034

0.207 £ 0.055

0.289 + 0.062

0.251 = 0.068

0.060 £ 0.033

3-End

0.073 A 0.032
0.201 A 0.056
0.313 A 0.058
0.250 A 0.064

0.068 A 0.034

Degree of neutrality of cloverleaf RNA secondary structures over different alphabets



Stable tRNA clover leaf structures built from
binary, GC-only, sequences exist. The
corresponding sequences are found through
inverse folding. Optimization by mutation
and selection 1n the flow reactor turned out
to be a hard problem.

The neutral network of the tRNA clover
leaf in GC sequence space 1s not
connected, whereas to the corresponding
neutral network in AUGC sequence space
is close to the connectivity threshold, I, .
Here, both inverse folding and optimization
in the flow reactor are much more effective
than with GC sequences.
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The hardness of the structure optimization problem depends on the
connectivity of neutral networks.



From sequences to shapes and back: a case study in
RNA secondary structures

PETER SCHUSTER"?3 WALTER FONTANA?, PETER F.STADLER??
aNDp IVO L. HOFACKER?

! Institut fiir Molekulare Biotechnologie, Beutenbergstrasse 11, PF 100813, D-07708 Jena, Germany
* Institut fiir Theoretische Chemie, Universitit Wien, Austria
® Santa Fe Institute, Santa Fe, U.S.A.

SUMMARY

RNA folding is viewed here as a map assigning secondary structures to sequences. At fixed chain length
the number of sequences far exceeds the number of structures. Frequencies of structures are highly non-
uniform and follow a generalized form of Zipf’s law: we find relatively few common and many rare ones.
By using an algorithm for inverse folding, we show that sequences sharing the same structure are
distributed randomly over sequence space. All common structures can be accessed from an arbitrary
sequence by a number of mutations much smaller than the chain length. The sequence space is percolated
by extensive neutral networks connecting nearest neighbours folding into identical structures. Implications
for evolutionary adaptation and for applied molecular evolution are evident: finding a particular
structure by mutation and selection is much simpler than expected and, even if catalytic activity should
turn out to be sparse in the space of RNA structures, it can hardly be missed by evolutionary processes.

Proc. R. Soc. Lond. B (1994) 255, 279284 279
Printed in Great Britain
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Figure 4. Neutral paths. A neutral path is defined by a series
of nearest neighbour sequences that fold into identical
structures. Two classes of nearest neighbours are admitted:
neighbours of Hamming distance 1, which are obtained by
single base exchanges in unpaired stretches of the structure,
and neighbours of Hamming distance 2, resulting from base
pair exchanges in stacks. Two probability densities of
Hamming distances are shown that were obtained by
searching for neutral paths in sequence space: (i) an upper
bound for the closest approach of trial and target sequences
(open circles) obtained as endpoints of neutral paths
approaching the target from a random trial sequence (185
targets and 100 trials for each were used); (ii) a lower bound
for the closest approach of trial and target sequences (open
diamonds) derived from secondary structure statistics
(Fontana et al. 1993a; see this paper, §4); and (iii) longest
distances between the reference and the endpoints of
monotonously diverging neutral paths (filled circles) (500
reference sequences were used).

© 1994 The Royal Society

Reference for postulation and in silico verification of neutral networks
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The compatible set € of a structure S, consists of all sequences which form
S, as its minimum free energy structure (the neutral network G,) or one of 1ts
suboptimal structures.



Structure S,

Structure S

Intersection of two compatible sets: -

The intersection of two compatible sets is always non empty: C, U C,a U
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GENERIC PROPERTIES OF COMBINATORY
MAPS: NEUTRAL NETWORKS OF RNA
SECONDARY STRUCTURES!
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Random graph theory is used to model and analyse the relationships between sequences and
secondary structures of RNA molecules, which are understood as mappings from sequence
space into shape space. These maps are non-invertible since there are always many orders of
magnitude more sequences than structures. Sequences folding into identical structures form
neutral networks. A neutral network is embedded in the set of sequences that are compatible
with the given structure. Networks are modeled as graphs and constructed by random choice
of vertices from the space of compatible sequences. The theory characterizes neutral
networks by the mean fraction of neutral neighbors (A). The networks are connected and
percolate sequence space if the fraction of neutral nearest neighbors exceeds a threshold
value (A > A*). Below threshold (A < A*), the networks are partitioned into a largest “giant”
component and several smaller components. Structures are classified as “common” or
“rare” according to the sizes of their pre-images, i.e. according to the fractions of sequences
folding into them. The neutral networks of any pair of two different common structures
almost touch each other, and, as expressed by the conjecture of shape space covering
sequences folding into almost all common structures, can be found in a small ball of an
arbitrary location in sequence space. The results from random graph theory are compared to
data obtained by folding large samples of RNA sequences. Differences are explained in
terms of specific features of RNA molecular structures. © 1997 Society for Mathematical
Biology

THEOREM 5. INTERSECTION-THEOREM. Let s and s' be arbitrary secondary
structures and C[s). C[s'] their corresponding compatible sequences. Then,

Cls]InC[s'] # 2.

Proof. Suppose that the alphabet admits only the complementary base pair [XY] and we
ask for a sequence x compatible to both s and s'. Then j(s,s') = D,, operates on the set of
all positions {x,,...,x,}. Since we have the operation of a dihedral group, the orbits are
either cycles or chains and the cycles have even order. A constraint for the sequence
compatible to both structures appears only in the cycles where the choice of bases is not
independent. It remains to be shown that there is a valid choice of bases for each cycle,
which is obvious since these have even order. Therefore, it suffices to choose an alternating
sequence of the pairing partners X and Y. Thus, there are at least two different choices for
the first base in the orbit. u

Remark. A generalization of the statement of theorem 5 to three differ-
ent structures is false.

Reference for the definition of the intersection
and the proof of the intersection theorem
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Kinetics of RNA refolding between a long living metastable conformation
and the minmum free energy structure






4. Design of RNA molecules with predefined properties
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One Sequence, Two Ribozymes:
Implications for the Emergence
of New Ribozyme Folds

Erik A. Schultes and David P. Bartel*

We describe a single RMA sequence that can assume either of two ribozyme
folds and catalyze the two respective reactions. The two ribozyme folds share
no evolutionary history and are completely different, with no base pairs (and
prabably no hydrogen bonds) in common. Minor variants of this sequence are
highly active for one or the other reaction, and can be accessed from prototype
ribozymes through a series of neutral mutations. Thus, in the course of evo-
lution, new RNA folds could arise from preexisting folds, without the need to
carry inactive intermediate sequences, This raises the possibility that biological
RMAs having no structural or functional similarity might share a common
ancestry. Furthermore, functional and structural divergence might, in some
cases, precede rather than follow gene duplication.

Related protein or RNA sequences with the
same folded conformation can often perform
very different biochemical functions, indi

ate isolates have the same fold and function, it
is lhnught that l.hey descended from a common
gh a series of mutational variants

that new biochemical functions can arise ﬁ'om
preexisting folds. But what evolutionary mech-
anisms give rise to sequences with new macro-
molecular folds? When considering the origin
of new folds, it is useful to picture, among all
sequence possibilities, the distribution of se-
quences with a particular fold and function.

that were eech functional. Hence, sequence het-
erogeneity among divergent isolates implies the
existence of paths through sequence space that
have allowed neutral drift from the ancestral
sequence to each isolate. The set of all possible
neutral paths composes a “neutral network,”
connecting in sequence space those widely dis-
persed seq sharing a particular fold and

This distribution can range very far in seq
space (1), For example, only seven nucleotides
are strictly conserved among the group I self-

activity, such that any sequence on the network
can potentially access very distant sequences by
neutral ions (3-5).

splicing introns, yet secondary (and p ly
tertiary) structure within the core of the ri-
bozyme is preserved (2). Because these dispar-

Institute for Bi dical Research and De-
partment of Biology, Massachusetts Institute of Tech-
nology, 9 Cambridge Center, Cambridge, MA 02142,
USA
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Theoretical analyses using algorithms for
predicting RNA secondary structure have
suggested that different neutral networks are
interwoven and can approach each other very
closely (3, 5-&). Of particular interest is
whether ribozyme neutral networks approach
each other so closely that they intersect, If so,
a single sequence would be capable of fold-
ing into two different conformations, would
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have two different catalytic activities, and
could access by neutral drift every sequence
on both networks. With intersecting net-
works, RNAs with novel structures and ac-
tivities could arise from previously existing
rlhozymcs, without the need to carry non-

as lutionary inter-
mediates. l-icre, we explore the proximity of
neutral networks experimentally, at the level
of RNA function. We describe a close appo-
sition of the neutral networks for the hepatitis
delta virus (HDV) self-cleaving ribozyme
and the class III self-ligating ribozyme.

In choosing the two ribozymes for this in-
vestigation, an important criterion was that they
share no evolutionary history that might con-
found the evolutionary interpretations of our
results. Chuosmg at least one artificial -
b dependent evolutionary his-
tories. The class 1II ligase is a synthetic ri-
bozyme isolated previously from a pool of ran-
dom RNA sequences (9). It joins an oligonu-
cleotide substrate to its 5' terminus. The
prototype ligase sequence (Fig. 1A) is a short-
ened version of the most active class 11l variant
isolated after 10 cycles of in vitro selection and

lution. This minimal retains the
activity of the full-length isolate (10). The HDV
ribozyme carries out the site-specific self-cleav-
age reactions needed during the life cycle of
HDV, a satellite virus of hepatitis B with a
circular, single-stranded RNA genome (17).
The prototype HDV construct for our study
(Fig. 1B) is a shortened version of the antige-
nomic HDV ribozyme (/2), which undergoes
self-cleavage at a rate similar to that reported
for other antigenomic constructs (13, 14).

The prototype class III and HDV ribozymes
have no more than the 25% sequence identity
expected by chance and no fortuitous strue-
tural similarities that might favor an intersec-
tion of their two neutral networks. Neverthe-
less, seq; can be designed that simul
neously satisfy the base-pairing requirements

21 JULY 2000 WVOL 289 SCIENCE www.sciencemag.org
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Evolutionary design of RNA molecules
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Aptamer binding to aminoglycosid antibiotics: Structure of ligands

Y. Wang, R.R.Rando, Specific binding of aminoglycoside antibiotics to RNA. Chemistry & Biology 2
(1995), 281-290



HoN—2
3 LB - 3 ;
2 4
OH 6 OH by o
0 504 4 H
H, (0] 5
1 ) NH; NH,
3

-6 cQceecOO00ccODcOcO®ce@®ccc-

A

tobramycin

RNA aptamer

Formation of secondary structure of the tobramycin binding RNA aptamer

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, Saccharide-RNA recognition in an aminoglycoside
antibiotic-RNA aptamer complex. Chemistry & Biology 4:35-50 (1997)



The three-dimensional structure of the
tobramycin aptamer complex
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Questions that cannot be answered by current experimental techniques:

(1) How does the distribution of genotypes change with time?

(11))  Which intermediates are passed during an optimization experiment?
(111)  Why does optimization occur in steps?

(iv)  What happens at the edges of the quasi-stationary epochs?

(v)  How much do individual trajectories differ?

(vi)  Which is the proper statistics for evolutionary optimization?
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Web-Page for further information:

http://www.tbi.univie.ac.at/~pks
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