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Lysozyme – A small protein molecule

Protein folding: Levinthal’s paradox

How can Nature find the native 
conformation in the folding process?

Evolution: Wigner’s paradox

How can Nature find the optimal
sequence of a protein in the 
evolutionary optimization process?

n = 130 amino acid residues

6130 = 1.44 10101 conformations

20130 = 1.36 10169 sequences
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The golf course landscape

Levinthal’s paradox K.A. Dill, H.S. Chan, Nature Struct. Biol. 4:10-19



The pathway landscape

The pathway solution to Levinthal’s paradox K.A. Dill, H.S. Chan, Nature Struct. Biol. 4:10-19



The folding funnel

The answer to Levinthal’s paradox K.A. Dill, H.S. Chan, Nature Struct. Biol. 4:10-19



A more realistic folding funnel

The answer to Levinthal’s paradox K.A. Dill, H.S. Chan, Nature Struct. Biol. 4:10-19



An “all (or many) paths lead to Rome” situation

N  … native conformation

A reconstructed free energy surface for lysozyme folding:
C.M. Dobson, A. Šali, and M. Karplus, Angew.Chem.Internat.Ed. 37: 868-893, 1988
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Earlier abstract of the 
‚Origin of Species‘

Alfred Russell Wallace, 1823-1913Charles Robert Darwin, 1809-1882

The two competitors in the formulation of evolution by natural selection



   dx / dt  =  x   -  x  

x

i i i

j j

    

 ;    Σ  = 1 ;    i,j  

f

f  

i

j

Φ   

Φ    

fi Φ  = (

= Σ

x -  i )

j jx =1,2,...,n

[I ] = x  0 ;  i i i =1,2,...,n ; 
Ii

I1

I2

I1

I2

I1

I2

I i

I n

I i

I nI n

+

+

+

+

+

+

(A)    +

(A)    +

(A)    +

(A)    +

(A)    +

(A)    +

fn 

fi 

f1

f2 

I mI m I m++(A)    +(A)    +
fm 

fm fj= max { ; j=1,2,...,n}

xm(t)  1  for  t  

 [A] = a = constant

Reproduction of organisms or replication of molecules as the basis of selection
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Mean fitness or dilution flux, φ (t), is a non-decreasing function of time, 

Solutions are obtained by integrating factor transformation
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s = ( f2-f1) / f1;  f2 > f1 ; x1(0) = 1 - 1/N ; x2(0) = 1/N 
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Mutation-selection equation: [Ii] = xi 0,  fi > 0, Qij 0

Solutions are obtained after integrating factor transformation by means of an 
eigenvalue problem
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Error rate  p = 1-q
0.00 0.05 0.10

Quasispecies Uniform distribution

Quasispecies as a function of the replication accuracy q
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Computer simulation of RNA optimization

Walter Fontana and Peter Schuster,
Biophysical Chemistry 26:123-147, 1987

Walter Fontana, Wolfgang Schnabl, and
Peter Schuster, Phys.Rev.A 40:3301-3321, 1989





Walter Fontana, Wolfgang Schnabl, and
Peter Schuster, Phys.Rev.A 40:3301-3321, 1989



Evolution in silico

W. Fontana, P. Schuster, 
Science 280 (1998), 1451-1455



Mapping from sequence space into structure space and into function



Neutral networks are sets of sequences forming the same object in a 
phenotype space. The neutral network Gk is, for example, the pre-
image of the structure Sk in sequence space:

Gk = -1(Sk) π { j | (Ij) = Sk}

The set is converted into a graph by connecting all sequences of 
Hamming distance one.

Neutral networks of small biomolecules can be computed by 
exhaustive folding of complete sequence spaces, i.e. all RNA 
sequences of  a given chain length. This number, N=4n , becomes 
very large with increasing length, and is prohibitive for numerical  
computations. 

Neutral networks can be modelled by random graphs in sequence 
space. In this approach, nodes are inserted randomly into sequence 
space until the size of the pre-image, i.e. the number of neutral 
sequences, matches the neutral network to be studied.
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A connected neutral network formed by a common structure



Giant Component

A multi-component neutral network formed by a rare structure
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1. More sequences than structures
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Properties of RNA sequence to secondary structure mapping

1. More sequences than structures

2. Few common versus many rare structures

n = 100, stem-loop structures

n = 30

RNA secondary structures and Zipf’s law
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Properties of RNA sequence to secondary structure mapping

1. More sequences than structures

2. Few common versus many rare structures

3. Shape space covering of common structures

4. Neutral networks of common structures are connected
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Replication rate constant:

fk = / [ + dS
(k)]

dS
(k) = dH(Sk,S )

Selection constraint:

Population size, N = # RNA 
molecules, is controlled by 

the flow

Mutation rate:

p = 0.001 / site replication 

NNtN ±≈)(

The flowreactor as a 
device for studies of 
evolution in vitro and 
in silico
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Evaluation of RNA secondary structures yields replication rate constants
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In silico optimization in the flow reactor: Evolutionary trajectory
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Evolutionary trajectory

Spreading of the population 
through diffusion on the 
neutral network

Velocity of the population 
center in sequence space



Spread of population in sequence space during a quasistationary epoch:  t = 150



Spread of population in sequence space during a quasistationary epoch:  t = 170



Spread of population in sequence space during a quasistationary epoch:  t = 200



Spread of population in sequence space during a quasistationary epoch:  t = 350



Spread of population in sequence space during a quasistationary epoch:  t = 500



Spread of population in sequence space during a quasistationary epoch:  t = 650



Spread of population in sequence space during a quasistationary epoch:  t = 820



Spread of population in sequence space during a quasistationary epoch:  t = 825



Spread of population in sequence space during a quasistationary epoch:  t = 830



Spread of population in sequence space during a quasistationary epoch:  t = 835



Spread of population in sequence space during a quasistationary epoch:  t = 840



Spread of population in sequence space during a quasistationary epoch:  t = 845



Spread of population in sequence space during a quasistationary epoch:  t = 850



Spread of population in sequence space during a quasistationary epoch:  t = 855
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A ribozyme switch

E.A.Schultes, D.B.Bartel, Science 
289 (2000), 448-452



Two ribozymes of chain lengths n = 88 nucleotides: An artificial ligase (A) and a natural cleavage 
ribozyme of hepatitis- -virus (B)



The sequence at the intersection: 

An RNA molecules which is 88 
nucleotides long and can form both 
structures



Two neutral walks through sequence space with conservation of structure and catalytic activity
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Mount Fuji

Example of a smooth landscape on Earth



Dolomites

Bryce Canyon

Examples of rugged landscapes on Earth



Genotype Space

Fi
tn

es
s

Start of Walk

End of Walk

Evolutionary optimization in absence of neutral paths in sequence space
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Random Drift Periods

Adaptive Periods

Evolutionary optimization including neutral paths in sequence space



Grand Canyon

Example of a landscape on Earth with ‘neutral’ 
ridges and plateaus



Conformational and mutational landscapes of biomolecules 
as well as fitness landscapes of evolutionary biology are

rugged.
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End of WalkAdaptive or non-descending walks on rugged 
landscapes end commonly at one of the low lying local 
maxima.
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s
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Selective neutrality in the form of  neutral networks
plays an active role in evolutionary optimization and 
enables populations to reach high local maxima or even 
the global optimum.
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