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Selection of advantageous mutants in populations of N = 10 000 individuals
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= guanylateCombinatorial diversity of sequences:     N  =  4{

4   =  1.801  10   possible different sequences27 16Ç

5’- -3’

Combinatorial diversity of heteropolymers illustrated by means of an RNA aptamer 
that binds to the antibiotic tobramycin



Hydrogen bonds

Hydrogen bonding between nucleotide bases is the
principle of template action of RNA and DNA  
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Complementary replication as
the simplest copying 
mechanism of RNA
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GAA AA   UCCCG

GAAUCC A   CGA

GAA AAUCCCGUCCCG

GAAUCCA

Mutations represent the mechanism of variation in nucleic acids



Evolution of RNA molecules based on Qβ phage
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RNA  sample

Stock solution:  Q  RNA-replicase, ATP, CTP, GTP and UTP, bufferb

Time
0 1 2 3 4 5 6 69 70

The serial transfer technique applied to RNA evolution in vitro



The increase in RNA production rate during a serial transfer experiment



Evolutionary design of RNA molecules
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Selection cycle used in
applied molecular evolution
to design molecules with
predefined properties 
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The SELEX technique for the evolutionary design of aptamers
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Formation of secondary structure of the tobramycin binding RNA aptamer

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, Chemistry & Biology 4:35-50 (1997)



The three-dimensional structure of the
tobramycin aptamer complex

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, 
Chemistry & Biology 4:35-50 (1997)
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catalytically active
RNA molecule



A ribozyme switch

E.A.Schultes, D.B.Bartel, One sequence, two ribozymes: Implication for the emergence of 
new ribozyme folds. Science 289 (2000), 448-452



Two ribozymes of chain lengths n = 88 nucleotides: An artificial ligase (A) and a natural cleavage 
ribozyme of hepatitis-d-virus (B)



The sequence at the intersection: 

An RNA molecules which is 88 
nucleotides long and can form both 
structures



Reference for the definition of the intersection 
and the proof of the intersection theorem



Two neutral walks through sequence space with conservation of structure and catalytic activity



Sequence of mutants from the intersection to both reference ribozymes



Reference for postulation and in silico verification of neutral networks



No new principle will declare 
itself from below a heap of 
facts.

Sir Peter Medawar, 1985



Three-dimensional structure of
phenylalanyl-transfer-RNA 



RNA Secondary Structures and their Properties  

RNA secondary structures are listings of Watson-Crick and 
GU wobble base pairs, which are free of knots and pseudokots. 
Secondary structures are folding intermediates in the
formation of full three-dimensional structures.

D.Thirumalai, N.Lee, S.A.Woodson, and D.K.Klimov. 
Annu.Rev.Phys.Chem. 52:751-762 (2001)



5'-End

5'-End

5'-End

3'-End

3'-End

3'-End

70

60

50

4030

20

10

GCGGAU AUUCGCUUA AGDDGGGA M CUGAAYA AGMUC TPCGAUC A ACCAGCUC GAGC CCAGA UCUGG CUGUG CACAGSequence

Secondary Structure

Symbolic Notation

Definition and formation of the secondary structure of phenylalanyl-tRNA



RNA Minimum Free Energy Structures

Efficient algorithms based on dynamical programming are 
available for computation of secondary structures for given 
sequences. Inverse folding algorithms compute sequences 
for given secondary structures. 

M.Zuker and P.Stiegler. Nucleic Acids Res. 9:133-148 (1981)

Vienna RNA Package: http:www.tbi.univie.ac.at  (includes 
inverse folding, suboptimal structures, kinetic folding, etc.)

I.L.Hofacker, W. Fontana, P.F.Stadler, L.S.Bonhoeffer, 
M.Tacker, and P. Schuster. Mh.Chem. 125:167-188 (1994)



UUUAGCCAGCGCGAGUCGUGCGGACGGGGUUAUCUCUGUCGGGCUAGGGCGC

GUGAGCGCGGGGCACAGUUUCUCAAGGAUGUAAGUUUUUGCCGUUUAUCUGG

UUAGCGAGAGAGGAGGCUUCUAGACCCAGCUCUCUGGGUCGUUGCUGAUGCG

CAUUGGUGCUAAUGAUAUUAGGGCUGUAUUCCUGUAUAGCGAUCAGUGUCCG

GUAGGCCCUCUUGACAUAAGAUUUUUCCAAUGGUGGGAGAUGGCCAUUGCAG

Criterion of
Minimum Free Energy

Sequence Space Shape Space
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Point mutations as moves in sequence space



Sk I.   = ( )ψ
fk f Sk   = ( )

Sequence space Phenotype space Non-negative
numbers

Mapping from sequence space into phenotype space and into fitness values
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Mean degree of neutrality and connectivity of neutral networks



Giant Component

A multi-component neutral network



A connected neutral network



Theory of molecular evolution
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Chemical kinetics of replication 
and mutation as parallel reactions
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The molecular quasispecies
in sequence space



Optimization of RNA molecules in silico
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including molecular phenotypes



Stock Solution Reaction Mixture

The flowreactor as a 
device for studies of 
evolution in vitro and 
in silico



In silico optimization in the flow reactor: Trajectory
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In silico optimization in the flow reactor: Trajectory and relay steps
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Relay steps



Relay series of the trajectory leading 
from a randomly chosen initial 
structure to the clover-leaf of 
phenylalanyl-tRNA



Relay series: initial sequence of events and long stasis at shape 9



Relay series: sequence of continuous transitions on a fitness plateau



Relay series: final section leading to the phenylalanyl-tRNA clover-leaf



Sequences involved in the transitions of the trajectory leading from a randomly chosen initial structure
to the clover-leaf of phenylalanyl-tRNA

Part I



Sequences involved in the transitions of the trajectory leading from a randomly chosen initial structure
to the clover-leaf of phenylalanyl-tRNA                   

Part II



Sequences involved in the transitions of the trajectory leading from a randomly chosen initial structure
to the clover-leaf of phenylalanyl-tRNA

Part III



In silico optimization in the flow reactor: Uninterrupted presence
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Shift Roll-Over

Flip Double Flip
a a b
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β

Closing of Constrained 
Stacks

Multi-
loop

Major or discontinuous 
transitions: Structural 
innovations, occur
rarely on single point 
mutations



Elongation of StacksShortening of Stacks

Opening of Constrained Stacks

Multi-
loop

Minor or continuous 
transitions: Occur 
frequently on single 
point mutations



In silico optimization in the flow reactor: Major transitions

Relay steps Major transitions
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In silico optimization in the flow reactor
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Variation in genotype space during optimization of phenotypes





„...Variations neither useful not injurious would
not be affected by natural selection, and would 
be left either a fluctuating element, as perhaps 
we see in certain polymorphic species, or would 
ultimately become fixed, owing to the nature of
the organism and the nature of the conditions. 
...“

Charles Darwin, Origin of species (1859)



Genotype Space

Fi
tn

es
s

Start of Walk

End of Walk

Random Drift Periods

Adaptive Periods

Evolution in genotype space sketched as a non-descending walk in a fitness landscape
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