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Chemical kinetics of molecular evolution

Historical prologue
The work on a molecular theory of evolution started more than 40 years ago ......

1971



Manfred Eigen
1927 -
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Mutation and (correct) replication  as parallel chemical reactions
M. Eigen. 1971. Naturwissenschaften 58:465, 

M. Eigen & P. Schuster.1977. Naturwissenschaften 64:541, 65:7 und 65:341



Evolution in the test tube:

G.F. Joyce, Angew.Chem.Int.Ed.
46 (2007), 6420-6436

Sol Spiegelman,
1914 - 1983



Kinetics of RNA replication
C.K. Biebricher, M. Eigen, W.C. Gardiner, Jr.
Biochemistry 22:2544-2559, 1983

Christof K. Biebricher, 
1941-2009



C.K. Biebricher, R. Luce. 1992. In vitro recombination and terminal recombination of RNA
by Q replicase. The EMBO Journal 11:5129-5135.

stable

does not replicate!
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RNA replication by Q-replicase

C. Weissmann, The making of a phage. 
FEBS Letters 40 (1974), S10-S18

Charles Weissmann
1931-



Chemical kinetics of molecular evolution (continued)

1977 1988



Application of quasispecies theory to the fight against viruses

Esteban Domingo
1943 -



Error threshold versus lethal mutagenesis

Vol.1(6), e61, 2005,
pp.450 – 460.
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Chemical kinetics of replication and mutation as parallel reactions



Factorization of the value matrix W separates mutation and fitness effects.
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Mutation-selection equation: [Ii] = xi  0,  fi  0, Qij  0

solutions are obtained after integrating factor transformation by means 
of an eigenvalue problem
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Complexity in molecular evolution

W =        G  F

0   ,  0   largest eigenvalue and eigenvector

diagonalization of matrix  W
„ complicated but not complex “

fitness landscapemutation matrix

„ complex “

genotype  phenotype

mutation selection
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The no-mutational backflow or 
zeroth order approximation



The no-mutational backflow or 
zeroth order approximation
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The ‚no-mutational-backflow‘ or zeroth order approximation



Chain length and error threshold
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quasispecies

The error threshold in replication and mutation

driving virus populations through threshold
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Sewall Wright. 1931. Evolution in Mendelian populations. 
Genetics 16:97-159.

-- --. 1932. The roles of mutation, inbreeding, crossbreeding, 
and selection in evolution. In: D.F.Jones, ed. Proceedings of 
the Sixth International Congress on Genetics, Vol.I. Brooklyn 
Botanical Garden. Ithaca, NY, pp. 356-366.

-- --. 1988. Surfaces of selective value revisited. 
The American Naturalist 131:115-131.



Sewall Wrights fitness landscape as metaphor for Darwinian evolution

Sewall Wright. 1932. The roles of mutation, 
inbreeding, crossbreeding and selection in evolution.
In: D.F.Jones, ed. Int. Proceedings of the Sixth 
International Congress on Genetics. Vol.1, 356-366.
Ithaca, NY.



The landscape model



The simple landscape model



Model fitness landscapes I

single peak landscape

step linear landscape



Error threshold on the 
single peak landscape



Error threshold on the 
step linear landscape



Model fitness landscapes II

linear and
multiplicative

hyperbolic

both are often used in 
population genetics



The linear fitness landscape shows no error threshold



Error threshold on the 
hyperbolic landscape



The error threshold can be separated into three 
phenomena:

1. Steep decrease in the concentration of the 
master sequence to very small values.

2. Sharp change in the stationary concentration of 
the quasispecies distribuiton.

3. Transition to the uniform distribution at small 
mutation rates.

All three phenomena coincide for the quasispecies 
on the single peak fitness lanscape.
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Make things as simple as possible,
but not simpler !

Albert Einstein

Albert Einstein‘s razor, precise refence is unknown.



1. Complexity in molecular evolution

2. The error threshold

3. Simple landscapes and error thresholds

4. ‚Realistic‘ fitness landscapes

5. Quasispecies on realistic landscapes

6. Neutrality and consensus sequences



Realistic fitness landscapes

1.Ruggedness: nearby lying genotypes may 
develop into very different phenotypes

2.Neutrality: many different genotypes give rise to 
phenotypes with identical selection behavior 

3.Combinatorial explosion: the number of possible 
genomes is prohibitive for systematic searches

Facit: Any successful and applicable theory of molecular evolution 
must be able to predict evolutionary dynamics from a small or at 
least in practice measurable number of fitness values.



Rugged fitness landscapes
over individual binary sequences 

with n = 10

single peak landscape

„realistic“ landscape



Random distribution of fitness values: d = 0.5 and s = 919



Random distribution of fitness values: d = 1.0 and s = 919



Random distribution of fitness values: d = 1.0 and s = 637
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Error threshold: Individual sequences

n = 10,  = 2, s = 491 and d = 0, 0.5, 0.9375 



Do ‚realistic‘ landscapes sustain error thresholds?

Three criteria: 1. steep decrease of master concentration,
2. phase transition like behavior, and
3. transition to the uniform distribution.



d = 0 d = 0.5

d = 1.0

Error threshold on a ‚realistic‘ landscape

n = 10,  f0 = 1.1, fn = 1.0, s = 919
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s = 541

s = 919

s = 637

Error threshold on ‚realistic‘ landscapes

n = 10,  f0 = 1.1, fn = 1.0, d = 0.995



s = 919

s = 541 s = 637

Error threshold on ‚realistic‘ landscapes

n = 10,  f0 = 1.1, fn = 1.0, d = 1.0



Two questions:

1. Can we predict mutational behavior of 
quasispecies from fitness landscapes? 

2. What is the evolutionary consequence 
of the occurrence of mutationally stable 
and unstable quasispecies?  



Landscape analysis through the evaluation of  single point mutation neighborhoods
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Landscape analysis through the evaluation of  single point mutation neighborhoods



Landscape analysis through the evaluation of  single point mutation neighborhoods



Determination of the dominant mutation flow:  d = 1 , s = 637



Determination of the dominant mutation flow:  d = 1 , s = 919
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Motoo Kimuras population genetics of 
neutral evolution. 

Evolutionary rate at the molecular level. 
Nature 217: 624-626, 1955.

The Neutral Theory of Molecular Evolution. 
Cambridge University Press. Cambridge, 
UK, 1983.



Motoo Kimura

Is the Kimura scenario correct for frequent mutations?



Pairs of neutral sequences in replication networks

P. Schuster, J. Swetina. 1988. Bull. Math. Biol. 50:635-650
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A fitness landscape including neutrality



Neutral network: Individual sequences

n = 10,  = 1.1, d = 1.0



Consensus sequence of a quasispecies of two strongly coupled sequences of 
Hamming distance dH(Xi,,Xj) = 1. 



Neutral network: Individual sequences

n = 10,  = 1.1, d = 1.0



Consensus sequence of a quasispecies of two strongly coupled sequences of 
Hamming distance dH(Xi,,Xj) = 2. 



N = 7

Neutral networks with increasing :   = 0.10, s = 229

Adjacency matrix



Theory cannot remove complexity, but it 
shows what kind of „regular“ behavior can be 
expected and what experiments have to be 
done to get a grasp on the irregularities.

Manfred Eigen,
Preface to E. Domingo, 
C.R. Parrish, J.J.Holland, eds.
Origin and Evolution of Viruses. 
Academic Press 2008
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Thank you for your attention!
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