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Manfred Eigen-Lecture, Göttingen 09.05.2018 

Bridging from Chemistry to the Life Sciences – Evolution seen with the Glasses of a Physicista 

Peter Schuster, Institut für Theoretische Chemie, Universität Wien and Santa Fe Institute, Santa Fe 

It is a great honor and pleasure for me to present the first Manfred Eigen Award Lecture and I am 
thankful to the prize committee for having me selected. Fifty years ago I was PostDoc here in Göttingen 
and I remember well Manfred, who had been awarded the Nobel Prize in Chemistry the year before and 
who was working on his theory of molecular evolution, coming one day to my desk in a small office still 
in Bunsenstraße. He was looking for somebody who could compute solutions to differential equations. I 
had brought a box of punch cards with me from Vienna that contained also a package for numerical 
integration of ODEs and it was straightforward to fulfill Manfred’s task. This was the beginning of a 
wonderful scientific cooperation, which changed and determined further my entire scientific life, and 
which lasted for several decades. 

At the beginning of my lecture I make two statements that are common place for scientists and would 
not have been necessary ten years ago. First, biological evolution is a scientific fact like gravitation and 
others, and second, the theory of evolution is a living scientific discipline. Like all science it is under 
construction, it becomes more and more complete over the years and will never be finished unless no 
new ideas are developed and no new experiments are made. What has changed in recent years? I 
mention only two issues, which apparently seem to require engagement in the fight for science: 
Biological evolution has been taken off the schedule of schools in a fairly large country near Europe, and 
to great dismay of the National Academies of the United States intelligent design and creationism see a 
revival overseas. 

The lecture will consist of five parts: (i) a brief introduction to biological thinking exemplified by means of 
mathematical concepts before Darwin, (ii) theory and mathematics of molecular evolution, (iii) the 
influence of stochastic phenomena on evolutionary processes, (iv) the role of fitness landscapes in 
understanding evolution, and (v) a few sentences on the current state of the art of evolutionary theory in 
the light of modern molecular genetics. 

 

1. Mathematical concepts before Darwin 

People were aware of the special properties of reproduction already in medieval times, Fibonacci’s 
multiplying rabbits may serve as an example. The English economist Reverend Thomas Robert Malthus 
was the first to analyze and discuss the consequences of multiplication on the population level. In his 
very influential book entitled “An Essay on the Principle of Population”1 published 1798 he pointed out 
that population growth without birth control will readily consume any increase in a nation’s food 
production. Reproduction without constraint leads to a geometric progression or exponential growth 
and will outgrow any finite resource and accordingly the struggle for resources is preprogrammed. 
Malthus thoughts were heavily debated but, nevertheless, very influential, in particular for the early 
development of the theory of evolution: Both, Charles Darwin and Alfred Russel Wallace were familiar 
with Malthus’ book. The Belgian mathematician Pierre François Verhulst was prompted to conceive a 

                                                           
a This review has been presented on May 09, 2018 as the first Manfred Eigen Award Lecture at the Max Planck-
Institute for Biophysical Chemistry in Göttigen, GE. 
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mathematical model for growth in a finite world by reading Malthus’ “Essay”. At first Verhulst’s work 
found little response in the scientific community but seventy years later it saw many so-called 
“rediscoveries”.2,3,4,5 The logistic equation as Verhulst himself called his expression became particularly 
popular after the publication of a work by Raymond Pearl and Lowell Reed in 1920. Pearl and Reed 
applied the logistic curve to the growth of the population of the United States. It is remarkable that Pearl 
and Reed did not even mention the name Verhulst in their publication.b Despite its simplicity, which also 
caused some criticism in population theory, the Verhulst or logistic differential equation is still in use, for 
example in population ecology in order to develop models of microbial growth.6 

Figure 1: Exponential growth, logistic growth, and selection of the fittest. 

Verhulstc conceived a differential equation for growth on limited resources7,8,9, 
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where N is the number of individuals X, and called it “logistic equation” without giving an explanation for 
this particular choice of notion. The logistic equation describes the growth of a homogeneous population 
of size N(t) where all individuals X have the same fitness f = r with r being the so-called Malthus 
parameter and K being the carrying capacity of the ecosystem. Verhulst models reproduction – the 
positive term in the differential equation – simply as an autocatalytic process X  2X. The negative term, 
-r N 2/K, takes care of overpopulation: the growth rate decreases when the population size becomes too 
large and approaches the value zero for N = K. In other words the population stops growing when the 
carrying capacity of the ecosystem is reached. 

A minor generalization, which consists in substituting the homogeneous population, Π = {X}, by a 
structured population with a distribution of subspecies, Π = {X1,X2,…,Xn} with the particle numbers 
subsumed in the vector N = (N1, N2,…, Nn), provides already a mathematical model for “selection of the 
fittest”, which allows for a straightforward proof of fitness optimization during selection (figure 1). 
Solutions to this generalized Verhulst equation 
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are readily obtained in terms of normalized variables:  i = Ni /C with Σ i  i = 1 : 
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b For a historical survey of the logistic equation and its multiple rediscoveries see, for example, P. J. Lloyd (Lloyd, 
1967). Often people try to find explanations for names that were given to equations and other objects in science. 
Sometimes no explanations can be found and the logistic equation seems to be such a case. 
c According to Sharon Kingsland (Kingsland, 1982, p.30) Verhulst was instigated by his mentor Adolphe Quetelet to 
work on the problem of population growth. In 1835 Quetelet had proposed that the resistance to population 
growth was proportional to the square of the speed with which the population size increases in analogy to the 
resistance a body experiences when it travels in a medium (Quetelet, 1835, volume 2 p.277). 
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The solution makes use of an integrating factor transformation.10 

The fittest variant, Xm with fm = max{ f1,f2,…,fn} is picked out of the collection of initially present n 
subspecies and selected. The time dependence of the mean fitness of the population, φ(t), can be readily 
calculated and turns out to be the variance of the fitness values, 
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and hence φ(t) is a non-decreasing function of time. Accordingly (t) approaches an optimum for long 
time: Π(t) = {X1,X2,…,Xn}  {Xm} = Π(∞). Then the population becomes homogeneous and contains only 
the fittest variant. The fact that this simple access to an early mathematics of evolution remained 
unnoticed, although all mathematics needed was available already known twenty years before the 
publication of Darwin’s “Origin of Species”11 is remarkable or even puzzling. The principle of selection as 
a consequence of reproduction was and is easy to understand but nevertheless caused many debates. 
On the other hand, there were also more serious problems in evolutionary theory at Darwin's time. 
Among other things problems concerned inheritance and mutation, processes that are basic for 
understanding evolution, but no convincing concepts for explanations of these processes were at hand. 

Figure 2: Mutation in the Neo-Darwinian scenario. 

In contrast to the theory of evolution Isaac Newton’s concept of gravity was pervaded by mathematics 
from the very beginnings. Although no contemporary of Newton has seen apples, sheets of paper and 
feathers falling at the same speed, the abstraction from multiple perturbations was readily accepted. 
One might ask why simplifying models are received so differently by the scientific audience in biology 
and in physics. Biologists are predominantly interested in field observations and single cases and not so 
much in generalizations. The concept of natural selection conceived independently by Charles Darwin 
and Alfred Russel Wallace12 is rather an exception. Apart from others there is also a second reason for 
the enthusiastic welcome of Newton’s mathematical theory by the scientific community: There is 
celestial mechanics where the laws of gravity can be seen in action without perturbation but there is no 
celestial biology. 

Natural selection was not the only scientific achievement of Darwin. He made five fundamental 
contributions to the theory of evolution which are:13,14  
(i)   evolution is a historical fact, species have a finite lifetime and are subjected to change, 
(ii)  multiplication of species led to biological diversity, 
(iii) all life had a common ancestor,d 
(iv) all change happened gradually, and 
(v)  natural selection. 
So far we were focusing on item (v), natural selection, and it will remain the major subject throughout 
the whole lecture. As we have seen natural selection follows immediately from multiplication through 
reproduction and finiteness of resources. In other words it is the question, "Does evolution optimize the 
reproduction relevant traits?", we shall be concerned with. 

Figure 3: From Malthus to the modern synthesis 

                                                           
d The tree of life is a central issue of Darwin’s „Origin of Species“ and indeed the only illustration in Darwin’s 
centennial book shows a sketch of a phylogenetic tree. 
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Charles Darwin’s theory of evolution augmented by August Weismann’s concept of the separation 
between germline and somatic cells is commonly denoted as the Neo-Darwinian theory, which 
dominated evolutionary thinking in the first two decades of the twentieth century. Mendel’s laws of 
inheritance were “rediscovered” around 1900, became a discipline in its own right in the form of 
genetics, and did not seem to be reconcilable with Neo-Darwinism. The unification of the two concepts 
succeeded first only twenty years later in the theoretical, mathematical approach of the three famous 
population geneticists Ronald Fisher,15 J.B.S. Haldane,16 and Sewall Wright17 and was achieved and 
completed later in form of the “Modern Synthesis” by several experimental evolutionary biologists.12 A 
sketch of the “Growth of Biological Thought” during the first half of the twentieth century is shown in 
figure 3. The characteristic view of evolutionary processes at the end of the “Modern Synthesis” is 
characterized best as “strong selection – weak mutation” scenario. Mutations are considered as rare 
events and populations are almost always in a quasi-stationary state at which in the sense of selection of 
the fittest only the temporarily fittest variant is present. The role of genes was seen more or less in 
Ronald Fisher’s view: Individual genes are largely independent and epistatic interactions between genes 
have the nature of perturbations. 

 

2. Theory and mathematics of molecular evolution 

Before the advancement of molecular biology no satisfactory mechanism of mutation was known. 
Indeed the pioneering work of James Watson and Francis Crick on the structure of DNA was a true 
milestone. It marked not only the beginning of the merger of chemistry and biology it demonstrated also 
impressively the explanatory power of structural biology. Watson and Crick expressed the first success of 
structural biology in the explanation of a biological process in their famous sentence: “It has not escaped 
our notice that the specific pairing we have postulated immediately suggests a possible copying 
mechanism for the genetic material.”18 The Watson-Crick structure at the same time provided a 
molecular mechanism for point mutations (figure 4): Assuming the incorporation of a wrong nucleotide 
through a base mismatch causes a change in the DNA sequence in the next generation and in all future 
generations, and thus establishes a mutant. The biochemistry of processing DNA, RNA, and protein was 
soon discovered and explored, the concept of genetic information and its dominant role in cellular 
biology was established. An enormous number of complex biological processes found a natural 
explanation on the molecular level. Genotypes were no longer abstract objects but concrete DNA 
molecules whose nucleotide sequences could be determined and analyzed. 

Figure 4: A molecular mechanism for mutation. 

Manfred Eigen’s theory of evolution19 combines evolutionary thinking with the insights gained from 
molecular biology. Correct reproduction and mutation are seen as parallel chemical reactions (figure 3), 
and in this way it becomes possible to analyze the “weak selection – strong mutation” scenario. 
Polynucleotide sequencing provided information on sequence heterogeneity of populations and 
established the fundamentals of virus and bacterial evolution. It is interesting to compare Eigen’s 
replication-mutation process with a mutation model published by James Crow and Motoo Kimura about 
the same time:20 Mutation and selection are considered as completely independent processes (figure 5), 
and in other words, mutations occur in Eigen’s model during the replication process whereas they are 
caused in the Crow-Kimura approach by other events during the whole lifetime of the organism. 
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Remarkable is the fact that both mechanisms give rise to exactly the same mathematics in the analysis of 
the kinetic equations. What is different is the interpretation of the kinetic rate parameters. 

Figure 5: Mutation in Eigen’s and in Crow-Kimura’s mechanism of evolution. 

Evolution in Darwin’s sense and likewise at the molecular level boils down to three basic requirements: 
(i) competition through reproduction or multiplication, (ii) variation of the inheritable traits of 
individuals, and (iii) finite resources. Variation in nature comes essentially in two forms: mutation and 
recombination. Mutation creates new biopolymer sequences (Figure 4) whereas recombination leaves 
individual parts of DNA sequences unchanged but combines them anew according to Mendelian rules. 
The inevitable result of (i), (ii), and (iii) is natural selection or, in other words, if the conditions are such 
that all three requirements are fulfilled, selection will happen, and the efficient combination of variation 
and selection leads to adaptation to the environmental conditions. Changing environments drive 
adaptive populations and lead to Darwinian evolution. 

Natural selection alone and changing environments, however, are not sufficient to explain all periods of 
biological evolution on Earth. The occurrence of symbiosis frequently observed in nature, for example, 
requires the cooperation between competitors for which Darwinian evolution has no mechanistic 
explanation. Simple models may lead to cooperation through mutual dependence preferentially in the 
reproduction process. In biological evolution from the origin of life to our present day world there is 
clear evidence that the novel organisms originating during certain periods cannot be interpreted 
plausibly without the assumption of cooperation between species or subspecies.21,22,23 Eörs Szathmáry 
and John Maynard Smith created the notion major evolutionary transitions for these periods and they 
define eight such major transitions.21,24 A straightforward way to introduce cooperation at the molecular 
level is catalyzed reproduction as it is postulated in hypercycles.15 Catalyzed replication involves two 
catalytic biopolymer molecules: One acts as template and the second one is a replication catalyst. 
Examples of catalyzed replication are found, for example, with RNA molecules.25,26,27 Cooperation 
requires mutual support in the sense A helps B and B helps A. In order to form a hypercyclic organization 
mutual dependence has to form a closed loop, e.g., A helps B, B helps C, and C helps A. For a fixed 
number of members, n, hypercyles are the smallest catalytic networks that lead to cooperation. 

All terrestrial systems are bound by finite resources and thus we remain with three classes of basic 
evolutionary processes: 1. competition, 2. cooperation, and 3. variation. Figure 6 shows an illustrative 
sketch of a three-dimensional Cartesian parameter space.28,29 An intensity parameter is plotted on each 
coordinate axis. Fitness f is a measure for the success in evolutionary competition, the effectiveness of 
cooperation is expressed in terms of a cooperation parameter h, and the intensity of variation is 
expressed here by a mutation rate parameter p.e The three processes together shape evolution and, as 
sketched in figure 6 the triplet ( f, h, p) defines a particular condition for evolution. Finally, we mention 
that evolution can be understood exclusively in the context of an environment, which is part of the 
evolving system. In the logistic equation the environment consisted only in the assumption of a constant 
carrying capacity of the ecosystem. A simple but structured environment is the flow reactor that will be 
used below in the more detailed discussion of a model for molecular evolution. 

                                                           
e Here we consider only mutation for two reasons: (i) In higher organisms recombination is directly coupled with 
reproduction and (ii) only mutation creates novel biopolymer sequences. The introduction of recombination gives 
rise to the equations of conventional population genetics, which lead to similar results, although the mathematical 
analysis is substantially more complicated. 
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Figure 6: The parameter space of molecular evolution. 

Each coordinate axis in figure 6 is representative for one particular process: natural selection and survival 
of the fittest on axis 1 ( f, 0,0), formation of symbiotic complexes on axis 2 (0, h, 0), and genetic drift or 
neutral evolution propelled by random mutation on axis 3 (0,0, p). The coordinate planes spanned by 
pairs of elementary processes give rise to specific evolutionarily relevant processes: 
(i) Plane A:  Axes 1 and 3 together combine reproduction driven by fitness (f ) and mutation (p). In the 
simplest case the corresponding equations model evolution of molecules in vitro, virus evolution and 
bacterial evolution without recombination. 
(ii) Plane B:  The combination of axes 1 and 2 yields a scenario that goes from competitive selection to 
symbiotic cooperation. Here the availability of resources (a0) determines evolutionary dynamics apart 
from fitness (f ) and the cooperation parameter (h). 
(iii) Plane C:  Cooperative dynamics of four and more species often leads to hard oscillations and 
stochastic extinction for small particle numbers. Mutation may reintroduce already extinguished 
subspecies and thus increase the lifetime of symbiotic systems. 

Figure 7: The flow reactor as a device for modeling evolution. 

A suitable environment of the evolving system can be modeled, for example, by a flow reactor in 
particular by a continuously fed stirred-tank reactor30 (CSTR, figure 7). The major advantage of a CSTR is 
its suitability for both theoretical analysis and straightforward experimental implementation (for in vitro 
evolution see, e.g., Joyce,31 Koltermann & Kettling32 and Strunk & Ederhof33). We choose the flow 
reactor for modeling reproduction with consumption of a resource A. Instead of degradation giving rise 
to finite lifetime of individuals or molecules19 we implement an unspecific dilution flow with a dilution 
rate d. A mean finite life time of molecules is then replaced by the mean residence time in the reactor, 
R = d -1. The reaction system comprises three classes of reactions and pseudoreactions:f 

inflow of resources, a0 d:   *   →   A 

(5)                      reproduction, fk:                    A + Xk   →   2 Xk  ;  k = 1,2,…,n 

dilution, d:                     A   →   ∅       and       Xk   →   ∅  ;  k = 1,2,…,n 

The deterministic system consists of  n + 1  simultaneous differential equations, one for the resource A 
and  n  for the subspecies  Xk, k = 1, 2,…, n: 

(6)                      ( ) daaxfa
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Concentrations are denoted by lower case letters, [A] = a , [Xk] = xk , d is the parameter of the dilution 
rate, and a0 is the concentration of the resource A in the stock solution (figure 7). The dynamical system 
in the flow reactor has two stationary states:34 (i) the state S0 , the “state of extinction” with S0 = (a = a0 
, xk = 0 k = 1 ,…, n) at which only the resource A is present in the reactor, and (ii) the state S1

(m)
 , the 

“state of selection”. In the deterministic system selection implies selection of the fittest with S1
(m)

  = (a = 
d/fm , xm = a0 – d/fm , xk = 0  k  m). Stability analysis yields asymptotic stability of S1

(m)
  or selection for 

                                                           
f Pseudoreactions are processes in chemistry that do not change the molecules involved but otherwise play the 
same role as reactions in reaction mechanisms. Inflow into and outflow from the reactor are pseudoreactions. 
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sufficiently small dilution rate parameters, d < a0 fm , and stability of S0 or extinction for d > a0 fm . The 
dilution rate determines the mean residence time of a reaction volume in the flow reactor, R = d -1, and 
if R is too short no reproduction can be completed before the volume element with the molecules 
leaves the reactor. In other words, when the flow is too fast or reproduction is too slow all autocatalytic 
molecules in the reactor are diluted out and the system goes extinct. 

In the following paragraphs we choose three examples for processes confined to one of the three 
coordinate planes. We start by quasispecies formation, the best understood process on the selection-
mutation plane A = ( f, 0, p), which combines reproduction and mutation is described by Manfred 
Eigen’s selection equation15 
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wherein the mutation factor Qji is the frequency at which subspecies X j is obtained as an error copy of 
X i, f i is the fitness of subspecies X i as before, and (t) is the mean fitness of the population. Equation (7) 
sustains only one asymptotically stable stationary state, which has been called the quasispecies,35 
because it represents the genetic reservoir of an asexually reproducing species as the species does in 
case of sexual reproduction with obligatory recombination. Applying some simplifications known as 
uniform error rate model36 all n2 mutation factors can be expressed by three parameters: (i) the mutation 
rate parameter p represented by the mutation rate per nucleotide and replication event, (ii) the chain 
length of the polynucleotide sequence l, and (iii) the Hamming-distance d ij = dH(X i,X j) between the two 
sequences X i and X j: 

(8)                                    pppppQ lddld
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In the non-neutral case – fitness values fi are different – a typical quasispecies consists of a most 
frequent master sequence Xm and a cloud of mutants. The stationary state is unique, and so is the 
quasispecies. Instead of selection of the fittest we are now dealing with selection of the fittest 
distribution of subspecies (figure 8). In the weak selection-strong mutation scenario the concept of 
selection of the fittest is weakened: What is selected is not a fittest subspecies but a fittest distribution 
of sequences.  

Figure 8: The quasispecies as a function of the mutation rate parameter p. 

Considering quasispecies as a function of the mutation rate parameter p provides a surprising result. At 
not too large mutation rates the mutant distribution as a function of p behaves as expected: In the no 
mutation limit at p = 0, selection of the fittest subspecies takes place and after sufficiently long time the 
population consists exclusively of Xm, Π = {Xm} ={m = 1, k = 0; k=1,…,n; k≠m}, for increasing p-
values, 0 < p ≤ p thr, the long-time population sustains the typical mutation distribution of quasispecies, 
which consists of a most frequent master genotype Xm and its mutants and becomes broader with larger 
mutation rates. This means the concentration of the master sequence goes down and the mutant cloud 
becomes larger with increasing p. At a critical mutation rate, the error threshold p = p thr, there exists a 
sharp transition from an ordered mutant distribution to a uniform distribution extending over sequence 
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space. With the assumption of the uniform error rate model27 an analytical approximation of the critical 
mutation rate parameter can be derived:19,37,38,g  

(9)                          lp mσlnthr ≈  with mmm ff −=σ  and )1(
,1 m

n

mkk kkm ff ξξ −=∑ ≠=− .  

A straightforward interpretation of the error threshold phenomenon makes use of a plausibility 
argument from error propagation: Too many errors block transmission through making messages 
unreadable. The discovery of the error threshold phenomenon was the initiator for the development of 
novel antiviral strategies based on the increase of mutation rates by application of mutagenic 
pharmaceutical compounds. Two different mechanisms and their interplay were discussed: virus entry 
into error catastrophe39 and lethal mutagenesis.40 A mechanism using the fraction of lethal variants to 
distinguish between direct extinction or crossing the error threshold before extinction has been 
proposed.41 Virus extinction is an excellent example where information on the local distribution of 
fitness values is required for definite conclusions on the mechanism (see section 4 and Schuster42). 

The coordinate plane B spanned by the two axes 1 ( f, 0,0) and 2 (0, h, 0) represents illustrative 
examples for transitions on the route from competition (h = 0) to cooperation ( f = 0). Abundance of 
resources23 is the most important prerequisite for the occurrence of these transitions and the evolution 
of cooperation is shown best along paths with increasing resources (a0). In simple cases the positions in 
parameter space where the transitions occur are given by bifurcations and can be calculated 
analytically.43 Formally the competition-cooperation transitions correspond to the major transitions in 
evolution of Maynard Smith and Szathmáry.22 Most major transitions, however, involve complex 
organisms and require often quite elaborate interactions. Symbioses may serve as examples44 and 
among symbiotic interaction the endosymbiosis integrating prokaryotic cells into eukaryotic organisms is 
particularly important.45  

Figure 9: Bifurcations along the path from competition to cooperation for three subspecies (n = 3). 

The cooperative unit built from three subspecies is a hypercycle with n = 3 in the simplest case with the 
catalytic interactions: …X3  X1  X2  X3… . Catalysis is introduced as an additional molecular factor in 
the rate equations: 

(10)            catalyzed reproduction, hk:           A + Xk + Xk+1   →   2 Xk + Xk+1 ;  k = 1, 2, 3; k mod 3. 

The kinetic differential equations contain now uncatalyzed (5) and catalyzed reproduction (10): 
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Equation (11) cannot be solved analytically but stationary states can be calculated and discussed by 
qualitative analysis. In principle there are 23 = 8 steady statesh We consider the sequence of stable 
stationary states as a function of increasing available resources represented by the inflow concentration 
                                                           
g We mention that on some smooth artificial fitness landscapes the transition from the quasispecies domain to the 
uniform distribution occurs without passing a sharp threshold (Wiehe, 1997; see also section 4). 
h The condition dxk/dt = 0 yields two possible solutions for each of the three subspecies and eight combinations are 
possible. For the cooperative state S3 the stationary concentration of A is obtained from a quadratic equation. 
Below the critical dilution rate d* we are dealing with two solutions, S3 and an unstable state S3’, and above d = d* 
the state S3 does not exist (for details see Schuster, 2018). 
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a0 and denote the states by Sm
(k) with sub- and superscripts. The subscript gives the number of 

subspecies present at the steady state: S0 implies extinction – no subspecies present, S1 stands for 
selection, S1

(1) implies selection of subspecies X1, S2
(2) is the exclusion state at which X2 is excluded and 

X1 and X3 are present, and S3 finally is the cooperative state – all three subspecies, X1, X2 and X3, are 
present. The sequence of states with increasing resources a0 then is 

extinction    selection    exclusion    cooperation . 

There are three selection and three exclusion states, which one of the three state is stable depends on 
the choice of the parameters f1, f2, f3, h1, h2, and h3, respectively. In the example presented here we 
choose f1 > f2 > f3 and h1 = h2 = h3 = h, and then the sequence of states is S0  S1

(1)  S2
(2)  S3. In 

table 1 analytical expressions are given for the individual states.  

Table 1: Asymptotically stable stationary states in the competition-cooperation system with n = 3. The four stable 
stationary states are ordered with respect to increasing a0 values of their asymptotically stable regimes. The 
relations f1 > f2 > f3 and h1 = h2 = h3 = h between the rate parameters were assumed. For the cooperative state S3 
the stationary concentration of A is obtained as from the quadratic equation  a2 + (a0 + ) a + d  = 0  with the 
two sums  =  i f i/h and  =  i f i/h i = 3/h, where the negative root, ( ) 24)( 2

00 φψψα daa −+−+= , represents the 

stable solution. The existence of the cooperative state S3 requires a sufficiently small dilution rate: d  
(a0+)2/(4). The expressions with slightly modified notation are taken from ref.28. 

 

 
name 

 
symbol 

stationary values  
stability range ā  x1̄  x2̄  x3̄  

extinction S0 a0 0 0 0 0  a0  d/f1 

selection S1
(1) d/f1 a0  d/f1  0 0 d/f1  a0  d/f1  (f1-f3)/h 

exclusion S2
(2) d/f1 (f1-f3)/h 0 a0  d/f1  (f1-f3)/h d/f1   (f1-f3)/h  a0  d/f1  (2f1-f2-f3)/h 

cooperation S3  (d – f3)/(h) (d – f1)/(h) (d – f2)/(h) d/f1  (2f1-f2-f3)/h  a0 

 
The transitions S0  S1

(1)  S2
(2)  S3 occur at transcritical bifurcations.i,46 The bifurcation point 

indicates in each case the endpoint of the stability range (table 1): (i) S0  S1
(1) at a0 = d/f1, (ii) S1

(1) 
 S2

(2) at a0 = d/f1 + (f1-f3)/h, and (iii) S2
(2)  S3 at a0 = d/f1 + (2f1-f2-f3)/h. In addition, there is 

an unstable point '
3S  that correspond to the second root of the quadratic equation  

( ) 24)()( 2
00

'
3 φψψ daaSa −+++= . In the (d,a0)-plane the two stationary points S3 and S3’ originate from 

a saddle-node bifurcation at the critical dilution rate d* = (a0+)2/(4). The coordinates of the stationary 
points Sk(ā ,  x1̄ , x2̄ ,  x3̄ ) are either constants or linear functions of the two external parameters a0 and d. 
The only exception is S3, where ā  is obtained from a quadratic equation. From the initially discussed 
general properties of the flow reactor follows that every state except extinction can be destabilized by 
raising the dilution rate parameter d above a critical value d*. For the states S1

(1) and S2
(2) one 

coordinate becomes negative beyond d*; the cooperative state S3 passes the saddle-node bifurcation and 
vanishes. Generalization to arbitrary numbers of subspecies n is easily possible: The number of summands 
                                                           
i Transcritical bifurcations belong to the simplest class of bifurcations: Two fixed points, for example a stable and an 
unstable one, “collide” in parameter space and exchange their properties. At the bifurcation point the unstable 
point becomes stable and the stable point unstable. 
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in  and  increases from 3 to n and the number of stable states goes up from 2 to n-1. The dynamics on 
the simplex S3

j
 can be sketched by diagrams showing only the fixed points and their stability (figure 9). In 

our example, n=3, the simplices are equilateral triangles, extinction is characterized by three unstable 
points at the three corners, selection shows one stable point at one corner, exclusion one stable point at 
one edge, and cooperation finally one stable point in the interior. Further unstable points may occur at 
the boundary of or outside the simplex. 

Figure 10: The mutation threshold in hypercycles with five members. 

The third and last coordinate plane combines cooperation and mutation.29 We dispense here from all 
details and mention only that the lifetime of short-lived oscillating symbiotic systems can be extended 
when the mutation frequency exceeds a certain critical value. This threshold phenomenon is entirely 
stochastic – extinction of hypercycles does not occur in the deterministic system. In addition stochastic 
scatter is rather large and accordingly experimental detection will be rather hard. An example of such a 
mutation threshold in the mean lifetime of hypercycles with five members is shown in figure 10.  

3. Stochasticity in evolution 

The majority of biological and chemical models are formulated in the language of differential equations 
but applications to situations where small particle numbers are important and then stochasticity may 
lead to large errors. As an illustrative example we consider selection in a population of reproducing 
individuals. Two major effects of small numbers dominate: (i) Stochastic delay and (ii) the undermining 
of selection of the fittest. The first effect is very general and results from the discretization of the 
continuous variables in autocatalytic processes. It depends on the number of initially present 
autocatalytic particles and is largely independent of the total population size. The second effect is 
biologically more relevant, because the condition of selection of the fittest is seriously weakened. The 
deterministic system modeled by ODE (2) has only one asymptotically stable solution, the state )(

1
mS , 

that describes selection of the fittest: limt m(t) = mξ  = 1 and limt k(t) = 0 for k = 1,2,…; k  

m. To phrase it in popular language: All initially present subspecies, Xi with i(0) > 0, take part in the 
contest and the fittest always wins. Since the variables can become arbitrarily small they do not vanish at 
finite times. In stochastic processes the smallest values, which the variables for particle numbers can 
take on, are zero and one and therefore the variables Nk can vanish at all times. Then there is no reason 
why the fittest subspecies Xm could not disappear, although such an event might have quite low 
probability. In our simple system we have no mutation and then once a variant has disappeared, it is 
gone and it would never ever come back. This stochastic effect gives rise to Muller’s ratchet named after 
the American geneticist Hermann Joseph Muller:47,48 Asexually reproducing populations may lose their 
most advantageous genotypes by series of random events, whereas sexual recombination allows for 
keeping the best genes in the population. As a matter of fact Muller has used the ratchet as an argument 
for the advantage of sex. Returning to the outcome of selection we conclude that the prediction of 
survival of the fittest has to be replaced by a probabilistic result. 

Stochastic selection is properly analyzed in the flow reactor for reproduction (figure 7, equations 5,6). 
Several models used for the deterministic simulations have marginal stability and the corresponding 
stochastic systems are unstable because of random drift. Examples are the linear birth and death process 

                                                           
j A simplex Sk = {x  Rk: x1+x2+x3=1, xi0, i=1,…,k} is the set of all positive unit vectors of dimension k. 
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with equal birth and death rate parameters (see, e.g., Goel & Richter-Dyn49 and Schuster50). The model 
equations (2) and (7) fall into the same class51 as does the Wiener process but implementation in the 
flow reactor fixes the problem and leads to quasistationarity.k In the stochastic selection model 
implemented in the flow reactor (5) every pure state )(

1
kS is a quasistationary state and the state of 

extinction S0 is the only absorbing state of the system. The situation can be illustrated straightforwardly: 
If a giant fluctuation pushes the system sufficiently far away from the quasistationary state, it progresses 
further either to another quasistationary state or to an absorbing state. Only in the latter case the 
process has come to a definite end. Since the occurrence of giant fluctuations has extremely low 
probability, it may take very long time before such a large fluctuation happens.  

Table 2: Probability of selection of three subspecies with initial particle numbers X1(0)=X2(0)=X3(0)=1. 
The values are selection probabilities times 100 for the three subspecies X1(te), X2(te), and X3(te); A(te) is 
the probability of extinction X1(te) = X2(te) = X3(te) = 0. Choice of parameters: f = f1 – f3, f = 0.1 [M 1t 

1], f1 = f + f /2 [M 1t 1], f2 = f [M 1t 1], f3 = f  f /2 [M 1t 1], and te is the computer time of the 
simulation.l The external parameters of the flow reactor are d = 0.5 [V t 1], and a0 = N / 2 . 

 

At small discrete particle numbers individual subspecies may become extinct and each one, which was 
present initially, may be selected. The principle of selection of the fittest becomes obsolete and has to be 
replaced by a distribution of probabilities of selection, which are also known as fixation probabilities of 
genotypes in populations.m We illustrate by means of a simple example considering three competing 
subspecies in table 2: Probabilities of long-time appearance were calculated for the four states, 0S , )1(

1S , 
)2(

1S , and )3(
1S , and compared for different population sizes and selection coefficients   f / f = ( f1-f3) / f. 

                                                           
k In stochastic processes absorbing states are distinguished from quasistationary states. When a trajectory of the 
system has reached an absorbing state it remains there forever. Trajectories approach also quasistationary states 
and fluctuate around them. Systems may stay in or near quasistationary states for very long even arbitrarily long 
times but in the limit t   all trajectories must converge to one of the absorbing states. 
l Unambiguous counting of selection scores requires the choice of a final time at which all selection processes have 
come to an artificial end. 
m It is important to distinguish genotypes and genes: The genotype or genome contains the complete genetic 
information. It comes in different variants or subspecies and is the target of selection in asexual reproduction. 
Fixation is the process of selection that leads from distribution of genotypes to a homogeneous population of the 
selected variant. Genes are best visualized here as pieces of the genome, which have a defined function. Alleles are 
variants of genes and fixation of a given allele implies that all other variants have disappeared in the population. 
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At the state 0S  all three species X1, X2, and X3 are extinct and only the resource A is present, at )1(
1S  the 

particle numbers of X2 and X3 have vanished and subspecies X1 has been selected, and at the other two 
selection states, )2(

1S  and )3(
1S , X2 and X3 are selected, respectively. The probability of selection depends 

in essence on three factors: (i) the fitness of the variant relative to the rest of the population as 
expressed by the selection coefficient  f / f (table 2), (ii) the numbers of initially present individuals, 
X(0), (table 3), and (iii) the total population size N (table 4). Table 2 covers also the neutral case in the 
sense of Motoo Kimura52 where all fitness parameters are equal: f1 = f2 = f3 = f. Then we expect to find 
and obtain almost equal probabilities for all subspecies and the deviations from the uniform distribution 
provide insight into the population size dependent natural fluctuations. As expected fitness differences 
are most strongly reflected by the distributions of selection probabilities. In table 3 we make a closer 
look on the dependence of selection probabilities on initial conditions Recalling that mutations start 
always from a single copy we conclude that the probability of selection of Xk from a single initial copy, 
Xk(0) = 1, is the relevant quantity for the fixation of mutants. As expected the dependence on initial 
conditions is strong and the largest difference is found between X(0) = 1 and 2. For a typical medium 
selection coefficient as applied here, f / f = 0.1, the probability of selection of the fittest goes up to 
about 85% when the initial values are raised to X(0) = 10. 

Table 3: Dependence of selection probabilities on initial conditions X1(0), X2(0), and X3(0). The values 
are selection probabilities times 100 for the three subspecies X1(te), X2(te), and X3(te); A(te) is the 
probability of extinction X1(te) = X2(te) = X3(te) = 0. Choice of selection coefficient:  f / f = 0.1,.and f = 
0.1 [M 1t 1]. Further parameters see caption of table 2. 

X1(0)=X2(0)=X3(0) te N A(te) X1(te) X2(te) X3(te) 

1 400 100 2.1  1.7 59.8  5.5 28.0  4.1 10.0  2.9 

2 400 100 0.1  0.3 73.5  4.2 22.4  4.4 4.0  1.4 

3 400 100 0 77.0  4.5 20.7  4.1 2.3  1.6 

4 400 100 0 79.7  3.1 18.2  4.1 2.1  1.3 

5 600 100 0 83.2  4.8 14.5  4.6 2.3  1.8 

10 600 100 0 85.8  3.8 13.4  3.7 0.8  0.8 
 

The population size dependence is summarized in table 4. The probability of selection of the fittest 
increases from 72% to 91% for a selection coefficient f / f = 0.4 and from 81% to 94% for f / f = 1.8. A 
population size of N = 800 is sufficient to reduce the “misselection” to about 6%. Nevertheless, 
considering random effects shows appreciable deviation from selection of the fittest in the stochastic 
approach to evolution at small numbers. 

Another important stochastic feature of evolution concerns the structure of “discrete quasispecies” as 
occurring in reality. The solution of the kinetic differential equation is given by the largest eigenvector of 
the selection-mutation or value matrix, W = Q F, which extends over the entire sequence space. Such a 
wide spreading is, of course, not possible in real systems since particle numbers have to be integers and 
the largest populations in test tube experiments with RNA molecules are about 1015. This has the striking 
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implication that even large stationary populations hardly contain genotypes that are more than five 
mutations away from the master sequence.n What happens at the error threshold in finite populations? 
Certainly real populations can’t fill sequence spaces uniformly. In a snapshot they will occupy only small 
connected areas. Then mutation creates new sequences whereas some of the old sequences become 
extinct. Above threshold populations are expected to migrate randomly through sequence space. 
Specific predictions on random drift are very difficult and commonly quite uncertain without detailed 
knowledge on the distribution of fitness values in sequence space (see section 4). Illustrative examples of 
computer simulation of RNA evolutions are found in the literature.53,54,55 Fluctuating environments may 
impose additional random effects on quasispecies dynamics. 

Table 4: Dependence of selection probabilities on population size N. The values are selection 
probabilities times 100 for the three subspecies X1(te), X2(te), and X3(te); A(te) is the probability of 
extinction, which implies X1(te) = X2(te) = X3(te) = 0. Initial conditions: X1(0) = X2(0) = X3(0) = 1; mean 
fitness f = 0.1 [M 1t 1]. Further parameters see caption of table 2. 

 f / f te N A(te) X1(te) X2(te) X3(te) 

0.4 400 100 2.3  1.8 71.7  6.0 20.8  5.2 5.2  2.4 

0.4 400 200 0.9  0.6 82.0  4.2 13.8  3.8 3.3  1.7 

0.4 200 400 0.1  0.3 86.3  4.6 12.4  4.0 1.2  1.2 

0.4 100 800 0 90.6  2.3 8.5  2.0 0.9  1.0 

1.0 200 100 2.7  2.4 78.4  4.7 15.8  3.3 3.1  1.5 

1.0 200 200 0.9  0.9 83.6  4.0 12.6  3.2 2.9  1.5 

1.0 200 400 0.2  0.4 88.9  3.3 9.5  2.4 1.4  1.0 

1.0 100 800 0 91.8  2.4 7.5  2.0 0.7  0.7 

1.8 200 100 4.3  1.1 80.8  2.9 13.6  3.1 1.3  1.2 

1.8 200 200 1.5  1.3 83.8  3.3 12.7  2.5 2.0  1.7 

1.8 200 400 0.6  0.7 88.8  3.1 9.0  3.2 1.6  1.5 

1.8 100 800 0.1  0.3 93.7  2.5 5.7  2.4 0.5  0.7 
  

                                                           
n For sequences of chain length 1000 in the natural alphabet we find 4.49 × 109 sequences up to Hamming distance 
three from a central master sequence. Hamming distance five requires 2 × 1015 molecules, which is about 3000 
times larger than the pools of random sequences used in aptamer selection experiment (Keefe and Szostak, 2001).  
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4. Fitness landscapes and evolution 

No theory of evolution is complete as long as it does not comprise a possibility to derive the fitness of a 
genotype within the method itself. Evolutionary dynamics as such is fairly simple but the relations 
between genotypes, phenotypes, and fitness values are highly involved and represent the source of 
complexity in evolution. This relation is often addressed as fitness landscape and commonly attributed to 
species. It is important to realize that fitness values and accordingly also fitness landscapes are strongly 
dependent on environments.56 The idea of a fitness landscape has been conceived by the American 
population geneticist Sewall Wright.57 In his illustration he considered different alleles at one locus of a 
diploid organism with sexual reproduction and recombination in the sense of Gregor Mendel, and he 
constructed a landscape by assigning a fitness value to every allele. Combining n alleles yields n2 
combinations out of which only n(n+1)/2 are different because in case of autosomeso it does – in a first 
approximation – not matter, which chromosome, the maternal or the paternal, carries the allele. Fitness 
landscapes for asexual reproduction are much more easily interpreted and modeled. Therefore, in the 
forthcoming discussion we shall restrict our model to asexual species although the generalization to 
sexual recombination is straightforward. 

The concept of fitness landscapes was originally developed for the purpose of illustration only and most 
fitness landscapes are sketched in 3D-space, although all realistic sequence spaces are high-dimensional. 
Indeed, the support of a fitness landscape is sequence or genotype space Q (figure 11), which is a point 
space with dimension M = |Q| = 2l for binary or M = |Q| = 4l for natural four-letter sequences, and the 
appropriate metric upon sequence space is the Hamming distance dH. The cardinality of sequence space 
is enormousn and exceeds all imagination, although distances are rather small (For a toy example that is 
illustrative see figure 11). In general many genotypes give rise to the same phenotype or, in other words, 
the relation of genotypes to phenotypes is many to one. The number of distinct phenotypes is still very 
large, although it is much smaller than the number of genotypes. The fact that many genotypes are 
related to a few phenotypes is the basis of Motoo Kimura’s neutral theory of evolution.48 The enormous 
size of the mappings and the complexity of phenotypes seem to be prohibitive for modeling and analysis 
of the landscape problem in real systems. Nevertheless, fitness landscapes and evolutionary landscapes 
for small RNA molecules were studied in detail58,59,60,61 and led to the development of methods for 
computational analysis.62 The fast development of new techniques, in particular polynucleotide 
sequencing and massively parallel screening and analysis, however, made it possible to deal with natural 
fitness landscapes and led to especially well studied cases of RNA viruses63. I mention here also an 
impressive example dealing with HIV-1 fitness,64 a study where the environment is included in form of 
host species,65 and a large scale study of adaptive landscapes.66 Here I refrain from presenting and 
discussing extensive fitness landscapes. Instead we shall consider an illustrative toy example of a 
biopolymer fitness landscape and some computer simulations of evolution on model landscapes derived 
from RNA sequences and structures. As said before basic to the study of fitness landscapes is the relation 
between genotype and fitness that is visualized as a sequel of two mappings: (i) the genotype-phenotype 
mapping (figure 11) and (ii) a mapping from phenotypes into fitness values (figure 12). This combination 
of mappings is tantamount to the paradigm of structural biology. Biopolymer sequences – the genotypes 
– are folded into 3D molecular structures – the phenotypes, which in turn are evaluated, for example by 
evolution, to yield quantitative molecular properties like fitness. 

                                                           
o An autosome is a chromosome that is not a sex chromosome. In a diploid organism all autosomes are present in 
two copies. 
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Figure 11: The mapping from RNA sequence space into RNA shape space. 

Figure 12: Fitness as the result of a mapping from RNA shape space into the real numbers. 

RNA-folding into secondary structures can be calculated fairly reliable by means of fast dynamic 
programming algorithms that are based on empirical thermodynamic and other data derived from RNA 
oligomers.67,68,69,70,71,72 The relations between RNA sequences and RNA structures has been studied for 
small RNAs – GC-alphabet up to chain length l = 30 and AUGC-alphabet up to chain length l = 15 – by 
exhaustive folding of whole sequence space and enumeration.73,74 Several results of exhaustive 
enumeration are particularly relevant for evolution: (i) Typical environments in sequence space are 
rugged in the sense that nearby neighboring sequences may form identical or very different minimum 
free energy structures. (ii) Folding sequences into minimum free energy structures yields relatively few 
common and many rare structures. (iii) The pre-images of common structures in sequence space are 
neutral networks,p which span large parts of sequence space or even whole sequence space. (iv) In a 
defined neighborhood of every sequence sequences are found for all common structures, which form 
them as their minimum free energy structure (shape space covering). Apart from few exceptional cases 
evolution is dealing exclusively with common structures. 

Landscapes are constructed from shape space trough assigning a quantifiable property in form of a value 
to every shape. Landscapes derived from small polynucleotide structures and properties reveal two 
properties that are shared by all larger and more complex examples: (i) biopolymer landscapes are 
rugged in the sense that small changes in the sequences like point mutations may have no, small or 
drastic effects, and (ii) there is a relatively high fraction of neutral mutations. Neutral variants are 
different genotypes, which form the same structures or have indistinguishable fitness. Ruggedness is at 
least in part the result of non-locality of interactions. This is most clearly seen in case of polynucleotides: 
The stems in secondary structures combine stretches of nucleotides from distant regions and mutations 
may shift optimal combinations of base pairs to entirely different positions along the sequence. The 
combination of ruggedness and neutrality makes it possible to find optima or near optimal solution in 
highly irregular fitness landscapes.53,54 Irregularity and neutrality in a natural fitness landscapes is 
illustrated by means of a simple example, a small four letter RNA sequence of chain length l = 17: 
AGCUUAACUUAGUCGCU and its 51 one error mutants (figure 13). The free energy of folding into the 
minimum free energy structure, G0, is chosen as a typical property. The fraction of neutral sequences is 
near 30% and the appearance of the landscape is highly rugged (figure 14). 

Figure 13: Minimum free energy structures of an RNA sequence and its 51 one error mutants. 

Figure 14: Free energy of folding (G0) of an RNA sequence and its 51 one error mutants. 

Finally, we discuss computer simulations of evolutionary optimization in populations. Two different 
evolutionary scenarios are considered: (i) the optimization of a property – here the reproduction rate 
parameter or fitness value, which is calculated as the difference between a replication and a degradation 
rate parameter – in a logistic scenario (2) with the carrying capacity K and (ii) the approach to a 
predefined structure – here a tRNA cloverleaf – through minimization of the mean structure distance dS 
between population and target in the flow reactor (figure 7). Despite different environments the 
individual simulation trajectories have a characteristic appearance in common: The optimization target is 

                                                           
p A neutral network is a graph in sequence space, which has all sequences folding into the same structure as nodes. 
All connections of Hamming distance one within this set are the edges of the neutral network. 
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approached in steps built by short periods of large progress, which are separated by long quasi-static 
stretches or plateaus with little improvement (figure 15). The stepwise approach towards the optimum 
in the result of population sizes that are tiny compared to the possible numbers of genotypes (figure 16). 

Figure 15: Evolutionary optimization in steps. 

In scenario (i) an evolving population of binary (GC) sequences takes place in a logistic environment with 
carrying capacity K in the sense of equation (2). The fitness of a sequence is calculated as the difference 
of a replication and a degradation rate parameter.75 The replication rate is obtained from a model 
equation that relates it to the free energy of structure opening and the degradation rate parameter 
assumes attack of degrading agents in single-stranded regions of the molecule. Fastest degradation is 
assigned to the open chain. Long stretches of base paired regions so-called stacks require large energies 
for opening and give rise to slow replication. The optimal structures shown in figure 16 illustrate the 
evolutionary compromise: The structures contain many small stacks and as few unpaired nucleotides as 
possible. The origin of the complexity of the fitness landscape can be traced back to two opposite 
optimization goals: (i) a maximal replication rate parameter is achieved by the open chain and (ii) a 
minimal degradation rate parameter results from the structure with the longest hairpin. Each of the 
three optimization runs ends up with a quasispecies-like distribution of sequences.q All three trajectories 
lead to different structural solutions with respect to the compromise mentioned above. The three 
quasispecies are pairwise disjoint in the sense that they contain no common member. In other words 
and as shown in figure 16 the three independent optimization trajectories (A,B, and C) progress in three 
different regions of sequence space and are orthogonal to each other: The initial genotype – the open 
chain – and the three master sequences resulting from optimization span an almost regular tetrahedron. 

Figure 16: Evolutionary optimization of mean excess productivity in RNA populations. 

A typical trajectory of scenario (ii) is shown in figure 17 and reveals the stepwise approach of a 
population of RNA molecules towards a predefined target structure. The population is penalized by 
lower fitness values for increased mean structure distancer from the target structure and consequently 
evolution optimizing fitness migrates towards target. The population consists of one thousand RNA 
molecules in the flow reactor (figure 7) and it approaches the target in steps interrupted by rather 
extended plateaus. The steps are characterized by large shifts in shape space towards the target 
structure. On the plateau the population spreads in sequence space, the genotype sequences change 
without substantial alterations of the structure that dominates the population temporarily. A typical 
sequel of snapshots describing the migration of the population in sequence space shows extension, 
further spreading through splitting in several clones, jumping some distant position in sequence space 
and population size contraction at the new location (figure 18). 

Figure 17: Minimization of the distance between an RNA population and a target structure. 

Figure 18: Images of an RNA population during evolutionary optimization. 

                                                           
q The distribution is not a quasispecies in the conventional sense, because the stochastic process has not come to 
an end and we are not dealing with a (quasi)stationary state. Sequence space is so large that random drift goes on 
for all finite times. 
r There are several definitions of the distance between pairs of structures, dS(Si,Sj). The one we apply here counts 
the number of base pairs that have to be changed in order to convert structure Si into structure Sj. 
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The sequence of images of an evolving population in sequence space has been analyzed in great detail 
together with an evaluation of the shapes along the trajectories and the development of a formal 
topological theory of evolutionary change.50,76,77 Along the plateaus populations are migrating in essence 
on a neutral network or on a family of neutral networks belonging to closely related structures. 
Transitions from one structure to the next involve minor changes in the sequences and have therefore 
reasonable probabilities. Nevertheless, the population size is small compared to size of the neutral 
network and the population breaks up into several clones, which spread in sequence space thereby 
increasing the diameter of the population. The probabilities for jumping from one structure to another 
that is closer to the target and has higher fitness are small but different on different position on the 
neutral network. They range from (i) extremely low, and hence have vanishingly small probabilities of 
realization, to (ii) sufficiently small for such an event to happen in reasonable time. Accordingly, the 
population drifts and spreads until one of its members has reached a point of class (ii). From there a 
jump in sequence space to a sequence of higher fitness may occur. If it happened the entire population is 
drawn by the favorable fitness difference, the population shrinks rapidly, and the next step is initiated on 
a neutral network, which is now closer to target. 

Coming back to our initial question of evolutionary optimization in nature we summarize our findings in 
table 5. Optimization of mean fitness during evolution is the exception rather than the rule in real 
systems. Small population sizes, small initial particle numbers in particular, cause the dominance of 
stochastic effects. In the beginning, every mutant – we should not forget – is present in a single copy 
only, and accordingly stochastic phenomena are inescapable. Manfred Eigen’s theory of molecular 
evolution is highlighted in table 5 underlining the fact that stochasticity is the major source preventing 
evolution from reaching optima. 

Table 5: Evolution and optimization 
scenario selection mutation population size initial values selected object optimum 

Darwinian strong weak large large single variant yes 

molecular strong or weak strong large large quasispecies yes 

stochastic strong or weak strong or weak large or small large or small single variant no 

random drift weak strong small large or small drifting clones no 

 

5. Mastering the complexity of present day molecular genetics 

Molecular genetics provided a fairly consistent picture in the nineteen-nighties. An apparent problem, 
however, was that most experimental data had been derived from prokaryotes, viruses and bacteria. 
Beginning about ten years earlier experimental molecular geneticists realized that eukaryotic cells are 
not giant bacteria. Other than prokaryotic regulation mechanisms of gene expression in higher organisms 
were discovered and many principles and notions taken for granted before became questionable. As an 
illustrative example we refer to the notion of the gene,78,79,80 which had a fascinating historical 
development: Starting out from an abstract unit of inheritance the gene became more and more 
concrete during the early development of molecular biology, it was seen as a kind of autonomous unit of 
inheritance represented by a piece of DNA encoding a protein with its own regulation, and finally within 
the last thirty years the clear notion was more and more blurred leaving only the coding property for 
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polypeptides in a certain often rather small fraction of the full DNA length. Many biologists think one 
should avoid the term gene, because its definition is often unclear and consider it as obsolete. 

The simplest conceivable evolutionary system based on processes in prokaryotes has been sketched in 
figure 6 and can be readily made more complex by introducing essential features of eukaryote evolution: 
(i) On the reproduction axis we may add recombination to competitive selection since it is inseparably 
related to sexual reproduction through meiosis, (ii) cooperation may involve a great variety of regulatory 
as well as structural interactions that give rise to much more complex dynamics than hypercycles, and 
(iii) point mutations are the simplest changes in genotypes and they can be expanded by more complex 
phenomena like more involved mutations, gene duplication, genome rearrangements and others.  

Today a rich repertoire of different regulatory mechanisms for gene expression is known, most of them 
subsumed under the general heading of epigenetics for which a operational definition was given at a 
Cold Spring Harbor-Symposium in December 2008: An epigenetic trait is a stably inheritable phenotype 
resulting from changes in a chromosome without alterations in the DNA sequence.81 Epigenetics covers a 
wide range of processes from covalent modifications of DNA nucleotides and histone proteins, which are 
altering gene expression patterns, to various forms of activities of transcribed RNAs, for example RNA 
silencing in which small RNAs interfere with transcription or translation. Evolutionarily relevant is the 
inheritance of epigenetic markers.82,83 In mammals epigenetic marks are commonly erased after 
fertilization and during the development of the primordial germ cells but some marks, particularly those 
coming from maternal DNA methylation may escape erasure and then constitute inheritable epigenetics. 
Among other mechanisms they are considered by some biologists to be responsible for soft inheritance 
of acquired traits that usually last only for a few generations. 

A presumably much more serious problem for the simple genetic view comes from gene interactions. 
The picture of essentially independent genes interacting weakly through epistasis is true only in a 
minority of cases. Monogenic diseases are well studied examples and the estimate is that about 10 000 
diseases are caused by a single gene. The majority of genes, however, operate in strongly coupled 
genetic networks. Then the “single gene view” is no longer helpful. The traits of phenotypes are created 
by the gene clusters rather than by single genes. 

How is efficient handling of the enormously complex genotype-phenotype maps possible when gene 
clusters instead of genes are the targets of selection? The answer, in principle, is simple: Neither the 
fitness landscapes discussed in section 4 nor the parameter spaces shown in figure 6 require genes. A 
gene network just involves a longer DNA sequence corresponding to a larger part of sequence space but 
the basic approach remains valid. Of course, there is no reduction in complexity but the formal 
considerations may help in classifications. Manfred Eigen put this aspect of the relation between theory 
and experiment in an illustrative sentence that I quote at the end of my talk: “Theory cannot remove 
complexity, but it shows what kind of regular behavior can be expected and what experiments have to be 
done to get a grasp on the irregularities”.84 

My profound thanks go to Manfred Eigen for decades of wonderful cooperation and friendship. I am 
thankful to the jury of the Manfred Eigen Award for having me selected. 

Thank you for your attention! 
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Figure captions 

Figure 1: Exponential growth, logistic growth, and selection of the fittest. The upper part of the figure 
compares solution curves for the logistic equation (1) (black) and exponential growth being a solution of 
the equation  dx/dt = r x  of the form  x(t) = x(0) exp(rt) (red). In the early phase the difference between 
the logistic and the exponential curve is small before the former levels off and converges to the carrying 
capacity K. The lower part of the figure shows logistic growth in a heterogeneous population consisting 
of four different subspecies, X1 (yellow), X2 (green), X3 (red), and X4 (blue). The total population (black) 
adapts fast to the carrying capacity K and the internal population shows selection of the fittest. 
Parameter values, upper part: N(0)/K = x(0) = 0.01, r = 0.2, and lower part: x1(0) = 9  10-5, x2(0) = 1  
10-5, x3(0) = 2  10-6, x4(0) = 4  10-7; f1 = 1.75, f2 = 2.25, f3 = 2.35, and f4 = 2.80 [t 1] where [t] is an 
arbitrary time unit. 

Figure 2: Mutation in the Neo-Darwinian scenario. Before the path-breaking discoveries of molecular 
structures in biology no mechanism of mutation was known. In the figure at time t = 6 an advantageous 
mutant appears in the system like a deus ex machina. We remark that in the Darwinian scenario a 
mutant with higher fitness will replace the previously selected subspecies no matter how small the 
injected quantity is. In reality stochastic phenomena as discussed in section 3 become important. Initial 
conditions and parameters: x1(0) = 0.90, x2(0) = 0.08, x3(0) = 0.02, x4(0) = 0; f1 = 1, f2 = 2, f3 = 3, and f4 
= 7 [t 1] where [t] is an arbitrary time unit. At time t = 6 a small quantity of X4 – x4(6) = 1  10-4 – is 
injected into the reactor and becomes instantaneously selected. 

Figure 3: From Malthus to the modern synthesis. The picture shows a sketch of the development of 
biological thinking from the beginning of the nineteenth century to the modern synthesis around the end 
of World War II. Robert Malthus was presumably the first to recognize the important role that is played 
in evolution by limited resources. In the second half of the nineteenth century two revolutionary ideas 
shaped biological thought: (i) natural selection introduced by Charles Darwin and Alfred Russel Wallace, 
and (ii) genetic variation and Mendelian inheritance initiated by Gregor Mendel but not immediately 
recognized in its importance. Later, around the end of the century came August Weismann’s 
fundamental discovery of the separation of the germline from the somatic cells. Natural selection and 
germline-soma separation were the two most important intellectual ingredients of the Neo-Darwinian 
theory. Two at first hostile lines of thought in evolution were put forward by the selectionists (red) and 
geneticists (blue). The Modern synthesis has been completed just a few years before molecular biology 
changed the biological view of the world again. 

Figure 4: A molecular mechanism for mutation. The centennial note by James Watson and Francis Crick 
in nature18 did not only show how genetic information can be copied (upper part of the sketch), it 
provided also a possible mechanism for mutation: Each misincorporation of a nucleotide – here a G 
instead of an A in the lower part of the figure – gives rise to an inheritable change of the nucleotide 
sequence. The enzyme (blue) symbolizes the DNA polymerase of Thermus aquaticus, which catalyzes a 
rather simple mechanism of plus-minus-DNA replication and which is used in PCR copying of 
polynucleotides. 
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Figure 5: Mutation in Eigen’s and in Crow-Kimura’s mechanism of evolution. In Manfred Eigen’s theory 
of molecular evolution correct replication and mutation are parallel reaction channels of one and the 
same replication mechanism (upper part). A replication event involving X j as template is initiated with a 

rate parameter f j and the probability to enter the channel leading to X i as product is Qij with 1
1

=∑ =

n

i ijQ
. Mutation is a replication error and occurs strictly together with the replication process. In the 
mechanism proposed in the monograph on population genetics by James Crow and Motoo Kimura20 
replication and mutation are completely independent processes (lower part). Replication is only a one 
channel mechanism with Qjj = 1 and mutation is an independent event and may occur at any instant 
during the lifetime of the organism. 

Figure 6: The parameter space of molecular evolution. Evolution is understood as the interplay of three 
basic process: (i) selection driven by fitness differences  f, (ii) cooperation regulated by one or more 
cooperation parameters h, and (iii) mutation controlled by a mutation parameter p as well as random 
events giving rise to neutral evolution. On the coordination planes we find characteristic evolutionary 
processes. Plane A: competition and mutation leading to quasispecies as longtime solutions, plane B: 
competition and cooperation as discussed in case of major evolutionary transitions,22,24 and plane C 
cooperation and mutation, where we find mutation driven reintroduction of extinguished species or 
subspecies. Further parameters contain also external factors imposed on evolution by the environment. 
In case of the flow reactor shown in figure 7 there are two external or environmental parameters: (i) the 
flow rate d and (ii) the availability of resources expressed by the concentration of A in the stock solution, 
a0. 

Figure 7: The flow reactor as a device for modeling evolution. The figure sketches a continuously fed 
stirred tank reactor (CFSTR or CSTR):30 A stock solution with a resource concentration [A] = a0 flows into 
a well-stirred reactor with a (volume) flow rate r  [V t-1]. The volume of the reactor is VR [V] and the 
inflow of stock solution is compensated by an outflow of reaction mixture of exactly the same volume. 
The reaction mixture contains the resource A and the reaction products here symbolized by Xk, k 
=1,…,5. Instead of the flow rate we shall use here the dilution rate  d = rVR

-1 [t-1] , which is the flow rate 
divided by the reactor volume and has the advantage of being independent of the size of the reactor. 
The mean residence time of a volume element in the reactor is the reciprocal dilution rate:   R = d -1 [t]. 
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Figure 8: The quasispecies as a function of the mutation rate parameter p. The stationary frequency of 
the master sequence Xm denoted by �̅� Rm is shown as a function of the mutation rate p. In the 
phenomenological approximation shown here in the upper part of the figures,19 the function �̅� Rm(p) is 
almost linear in the particular example shown here. In the insert the approximation (black) is shown 
together with the exact solution (red). The mutation rate parameter p has two limitations: (i) The 
physical accuracy limit of replication sets a lower bound, and (ii) the error threshold sets an upper bound 
to the mutation rate parameter p. At error rates above threshold the solution is close to the uniform 
distribution, which can’t exist in reality. Instead we observe joint or disjoint population clones migrating 
in sequence space (section 4). The sketch in the lower part considers lethal mutations40 occurring at 
certain positions, 𝜃 in number. Mutations at these positions lead to the extinction of the mutant. With 
increasing mutation rate the population may either go through the error threshold or become directly 
extinct because of accumulation of lethal variants. As expected a satisfactory description of the 
extinction phenomenon requires information on the distribution of fitness values in sequence space 
(section 4). Choice of parameters, upper part: l = 6, 𝜎 = 1.4131 and lower part: l = 20, 𝜎 = 5,   fm = 15, 
and D = 1.t 

Figure 9: Bifurcations along the path from competition to cooperation for three subspecies (n = 3). The 
stationary concentration values 𝑎� (black), �̅� R1 (red), �̅� R2 (yellow), and �̅� R3 (green) are shown a functions of 
the resource concentration a0. The stationary concentration values of the asymptotically stable points 
are drawn in full color as thick lines, those of unstable points as thin faint lines. On top we show sketches 
of the fixed point diagrams for the individual scenarios with increasing availability of resources expressed 
as the concentration of the stock solution a0 (stable points are shown as full circles, unstable points as 
open circles; analytical expressions see table 1):  

extinction ( 0S )  selection of X1 ( )1(
1S )  exclusion of X2 ( )2(

2S )  cooperation . 

Choice of parameters: d = 5.0 [t-1], f1 = 0.12 [M-1t-1], f2 = 0.10 [M-1t-1], f3 = 0.08 [M-1t-1], and                h = 
0.0006 [M-2t-1]. 

Figure 10: The mutation threshold in hypercycles with five members (n = 5). In the stochastic approach 
cooperative oscillatory systems may have a finite lifetime, because escalating oscillations can lead to 
extinction of individual components and entire systems. Mutations can increase the lifetimes through 
reintroducing extinguished subspecies into the system. The upper part of the figure shows a trajectory of 
a five-membered hypercycle (n = 5) where escalating oscillations lead to extinction around t0 = 800. In 
the lower part extinction are recorded as a function of the resource concentration a0 for four different 
mutation rate parameters p = 0.0 (red), 0.0005 (yellow), 0.0010 (green), and 0.0020 (blue). Increased 
mutation rates lead to a substantial increase in the lifetimes of the systems. Despite enormous scatter of 
the individual values it is possible to recognize threshold-like behavior. Initial conditions: a(0) = 0, x1(0) = 
10, x2(0) = x3(0) = x4(0) = x5(0) = 5. Choice of parameters: a0 = 200, d = 0.05, a0  d = 4000, h1 = h2 = h3 
= h4 = h5 = h = 0.1; color code, upper part: A black, X1 red, X2 yellow, X3 green, X4 blue, and X5 cyan. 

  

                                                           
s The phenomenological approximation is based on neglect of mutational backflow which, however, is not applied 
fully consistently. Nevertheless, is shows remarkably good agreement with the exact results for sufficiently long 
sequences.36,41 
t D is a degradation rate since the process is considered in a batch rather than in a flow reactor19,30. The conclusions 
drawn here are the same both reactor types. 
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Figure 11: The mapping from RNA sequence space onto RNA shape space. The relation between 
sequences and minimum free energy secondary structures of RNA molecules is sketched as a mapping 
from sequence space Q into shape space S.41 The sizes of sequence spaces escape all imagination: The 

possible number of sequences for a tiny RNA molecule with chain length l = 17 is    | )4(
17Q | = 417  17  

109 and already | )2(
17Q | = 217 = 131 072 in a two-letter alphabet, e.g. GC, whereas the number of 

different secondary structures with minimum free energy is only 516. Both spaces, Q and S, are metric 
spaces with the Hamming distance dH and a suitable structure distance dS playing the role of metrics. 
The mapping from genotype space onto phenotype space is many to one and accordingly many 
sequences form the same minimum free energy structure. A given RNA sequence, on the other hand, 
forms in general a great number of suboptimal structures, which may play a role at equilibrium in case 
they lie energetically close to the ground state. 

Figure 12: Fitness as the result of a mapping from RNA shape space into the real numbers. The fitness 
landscape is the result of a second mapping from shape space S into the real numbers R0. A non-
negative fitness value is assigned to every structure and the evolutionary process performs the 
evaluation on the level of populations. In general we are dealing with a mapping from a metric structure 
or shape space into a parameter space of non-negative parameter values. 

Figure 13: Minimum free energy structures of an RNA sequence and its 51 one error mutants. The 
figure sketches the 16 secondary structures Sk (k = 0,1,…,15) with minimum free energies of all 51 
single point mutations of the sequence X0 = (AGCUUAACUUAGUCGCU). The structure S0 in the center of 
the figure is the structure of the reference sequence X0, occurs 15 times in the one error mutant 
spectrum, and is with 15/51 = 0.294 also the most frequent mutant structure.u The structures at the 
periphery are ordered according to their first appearance in the series of consecutive mutations (figure 
14). Inserted in the arrows pointing from S0 to individual structures Sk are (i) the numbers of occurrence 
(color) and (ii) the structure distances dS from the reference structure (larger numbers in gray). All 
drawings of structures begin at the 5’-end of the RNA, which is always the left end of the graph or string 
(in upright positioning), nucleotides are shown as beads and base pairs are connected by colored thick 
lines. Colors encode the numbers of base pairs: red 7, black 6, green 5, blue 4, pink 3, and lavender 2.41 

Figure 14: Free energy of folding (G0) of an RNA sequence and its 51 one error mutants. The plot 
shows the folding free energies G0 at 0oC of the one-error mutants of X0. At each position from 1 to 15, 
the sequence of mutants is N  A, N  U, N  G, and N  C, where the trivial replacement      N  N 
leaving the sequence unchanged is omitted (N = {A,U,G,C}). The folding energy of the reference 
sequence is shown as dotted line, and the color code refers to the number of base pairs (see caption of 
figure 14).42 

Figure 15: Evolutionary optimization in steps. The figure sketches a typical trajectory of evolutionary 
optimization in a population. The target is approached in steps. Short periods of efficient optimization 
are interrupted by plateaus along which only little progress in optimization is achieved. The beginnings of 
eight optimization steps are marked by vertical broken black lines, three steps are indicated by black 
arrows, and three plateaus are marked by red arrows. 

                                                           
u A degree of neutrality of about 0.3 is typical for RNA minimum free energy secondary structures. 
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Figure 16: Evolutionary optimization of mean excess productivity in RNA populations.74 The figure 
shows three different RNA secondary structures that were obtained as master sequences of populations 
with optimized mean excess productivities, 𝐸� = f – D, of the populations. Here f is the fitness as before 
and D is a structure dependent degradation rate parameter.74 The average population size is 2000 
molecules of chain length l = 70, a homogeneous population of 2000 all-C open chain molecules is 
chosen as initial condition, and three trajectories with different seeds of the random number generator 
as the only difference are recorded until a predefined stopping time of the simulation is reached. A 
mutation rate parameter p = 0.001 was applied. The three trajectories led into orthogonally different 
directions in sequence space, the final populations consisted of quasispecies-like mutant distributions, 
which were centered around the master sequences A, B, C and had almost the same Hamming distance 
from the initial sequence 0, dH(0,K)  25 (K=A,B,C), and the final populations were pairwise disjoint with 
respect to their members. The three master sequences A, B, and C span an almost equilateral triangle 
and indicate that optimizations in the high dimensional sequence space occur in “maximally” different 
directions. 

Figure 17: Minimization of the distance between an RNA population and a target structure.53 The figure 
analyzes a typical trajectory of an evolutionary optimization of a population of 1000=N  RNA molecules 
of chain length l = 76. The population size is regulated by the flow through the reactor: parameter d and 

𝑁(𝑡) =  𝑁� ±�𝑁.��� The goal of the optimization is the approach towards a predefined target structure that 
was chosen to be a cloverleaf like t-RNA structure. The topmost plot presents the mean structure 
distance of the population from the target (black). The plot in the middle shows the width of the 
population expressed by the mean distance between sequences (blue), and the plot at the bottom 
contains a measure of the velocity with which the center of the population migrates through sequence 
space (green). Diffusion on neutral networks causes spreading of the population in the sense of neutral 
evolution.52 When the population size is not sufficient to support a coherent area in sequence space the 
population breaks up into several individual clones (figure 18). A remarkable synchronization is observed: 
At the end of every quasi-stationary plateau a new adaptive phase in the approach towards target is 
initiated that is accompanied by (i) a drastic reduction in the population width and (ii) a jump of the 
population center towards a new position (jumps are marked by green arrows; the jump near 12 × 106 
replications occurs with a velocity of dH ≅ 25 per time unit). The time is given by the number of 
replications that have occurred in the population. Choice of parameters: fitness 𝑓𝑘 =  𝛾/(𝛼 +
∆𝑑(𝑆𝑘,𝑆𝜏)) where 𝑆𝜏 is the target structure and 𝛼 and 𝛾 are two empirical parameters54; p = 0.001. 

Figure 18: Images of an RNA population during evolutionary optimization. Spreading, jump, and 
contraction of a population of RNA molecules during an evolutionary plateau and the following adaptive 
phase. Shown are the populations on a plane spanned by the two orthogonal directions of largest 
extension in sequence space. The red arrow at time t = 0 indicates the position of the population at the 
beginning of the plateau. The small population of 1000 molecules breaks up into clones between t = 150 
and t = 200. It is important to note that spreading is relatively slow – it takes 800 units of time to reach 
the maximum extension of the population – whereas jump and contraction occur in less than 30 units of 
time. 
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