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Das Darwinsche Optimierungsprinzip baut auf drei Voraussetzungen auf.

1. Reproduktion von Organismen durch Vermehrung der Phéinotypen

Die Reproduktionseffizienz wird gemessen als Zahl der fruchtbaren
Nachkommen oder Fitness.

2. der Genotypen durch Kopierfehler und Rekombination

Die Genotypen oder Genome sind der Triger der genetischen Information.

3. Selektion durch Unterschiede in der Fitness der Phianotypen

Zwei zusiatzlichen Voraussetzungen

4. Eine hinreichend grof3e Zahl unterschiedlicher Genotypen und eine
hinreichend grof3e Vielfalt an Phanotypen

5. Eine fir die Optimierung unterstiitzende Beziehung zwischen den
Genotypen und den Phéanotypen

Die Beziehung zwischen Genotypen und Phinotypen wird als eine Abbildung von
einem Raum der Genotypen in einen Raum der Phianotypen verstanden.



Die Ursache fiir den Erfolg und die universelle Anwendbarkeit
des Darwinschen Optimierungsprinzips bildet gleichzeitig den
Grund fiir seine einscheidende Beschrankung:

Die inneren Strukturen der sich reproduzierenden Einheiten gehen
nur in Form der Fitnessparameter ein. Es ist gleichgiiltig, ob
Molekiile, nicht-autonome oder autonome Organismen, Kolonien,
Vielzeller oder Gesellschaften vermehrt werden.

In dieser Form bietet die biologische Evolutionstheorie nur eine
rein ordnende makroskopische Beschreibung der beobachtbaren
Phanomene an.



Optimierung durch Variation und Selektion in Populationen

Neutrale Netzwerke in Genotype-Phinotyp-Abbildungen

Optimierung im RNA-Modell

Evolutionsexperimente mit Molekiilen im Laboratorium



Das Darwinsche Optimierungsprinzip ist im Fall von null verschiedener
Mutationsraten (q<I oder p>0) nur als eine Optimierungsheuristik zu verstehen.
Es gilt nur in einem Teil des Simplex der relativen Konzentrationen. Mit
steigender Mutationsrate p wird der Teil des Konzentrationsraumes, in welchem
das Optimierungsprinzip gilt, immer kleiner.

Analog gilt fiir das Selektions-Rekombinationsmodell, dass das Fishersche
Optimierungskriterium nur eingeschrankt auf das Ein-Gen-Modell (Single locus
model) gliltig ist.
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The Darwinian principle of optimization is built on three prerequisites:

1. Reproduction of organisms through multiplication of phenotypes

Efficiency of reproduction is measured as fitness being tantamount to the number
of fertile descendants which are brought into the next generation.

2. of genotypes though copying errors and recombination

The genotypes or genomes are the carriers of genetic information.

3. Selection through differences in the fitness of phenotypes

Two additional prerequisites

4. A large enough number of genotypes and a sufficiently large reservoir of
diversity of phenotypes

5. A relation between genotypes and phenotypes that supports optimization
through variation and selection

The relation between genotypes and phenotypes is understood as a mapping from
a space of genotypes onto a space of phenotypes.



The basis for success and universal applicability of the Darwinian
priciple of optimization represents, at the same time, also its most
serious limitation:

The internal structures of the reproducing units are addressed only
in terms of fitness parameters. Therefore, it does not matter
whether multiplication concerns molecules, non-autonomous or
autonomous cells, colonies, multicellular organisms or societies.

The theory of biological evolution in this form can provide only a
macroscopic description and classification as well as ordering
relations of the observed phenomena.
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Complementarity is determined by
Watson-Crick base pairs:

GIC and A=U



(A)

(A)

(A)

(A)

(A)

dXi/dt = fiXi - XiCD =Xi(fi-CD)

O = Zj fi Xj , Zj Xj =1 5 1,] :1,2,...,11

[Ii] = Xi/E 0 ; i=1,2,...,n;

[A] = a = constant
f;, = max {t}; 1=1,2,....,n}

xp() A1 for t A

Reproduction of organisms or replication of molecules as the basis of selection



Selection equation: [L.]=x;£0, f/,>0

dx,
dt
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Mean fitness or dilution flux, ¢ (t), is a non-decreasing function of time,

Solutions are obtained by integrating factor transformation
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Point Mutation

GAAUCCCGAA —> GAAUCCCGUCCCGAA

Insertion

GAAUCCCGAA —> GAAUCC{A

Deletion

Mutations in nucleic acids represent the mechanism of variation of genotypes.



Theory of molecular evolution
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Chemical kinetics of replication and mutation as parallel reactions

dx; / dt =ZJ %QJIX] - x; @

CDIijj’Xi; ZijZI; ziQijzl

[;]1=x;£0; 1=1,2,..n;

[A] = a = constant

| Error rate per digit

. Chain length of the
polynucleotide

d(i,j) .... Hamming distance
between I; and Ij



I\
|\
\
\
\ 1o
\
1 \ min
7io SJ( ) Quasispecies > '€ Uniform distribution ——>
=1

21(25‘,

/ 2 Flizel
// Elea)=l(27)
= (710 B
—Z1(21)Zl(29)

0 1 e — — — -~ E1(20,=1(30)
1.00 0.95 0.90

- q A s
0.00 0.05 0.10

—— Errorrate p=1-q——>

Quasispecies as a function of the replication accuracy q



Master sequence

Mutant cloud
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The molecular quasispecies in sequence space



Mutation-selection equation: [I.]=x.£0, £.>0,0.£E0
l l l I

dxl. n . . n . " r
dt:Zj=1ijjixj_xi¢’ i=12,-,n; Zi=1xi:1’ ¢:Z:j=1 jxj:f

Solutions are obtained after integrating factor transformation by means of an
eigenvalue problem

% (1) = Ezk -¢,(0)- exp(4,7)
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In the case of non-zero mutation rates (p>0 or q<l) the Darwinian principle of
optimization of mean fitness can be understood only as an optimization heuristic.
It is valid only on part of the concentration simplex. There are other well defined
areas were the mean fitness decreases monotonously or were it may show non-
monotonous behavior. The volume of the part of the simplex where mean fitness is
non-decreasing in the conventional sense decreases with inreasing mutation rate p.

In systems with recombination a similar restriction holds for Fisher‘s ,,universal
selection equation®. Its global validity is restricted to the one-gene (single locus)
model.
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Genotype-phenotype relations are highly complex and only the most
simple cases can be studied. One example is the folding of RNA sequences
into RNA structures represented in course-grained form as secondary
structures.

The RNA genotype-phenotype relation 1s understood as a mapping from
the space of RNA sequences into a space of RNA structures.



5'-End 3'-End
Sequence GCGGAUUUAGCUCAGDDGGGAGAGCMCCAGACUGAAYAUCUGGAGMUCCUGUGTPCGAUCCACAGAAU UCGCACCA

.
.'..5'-E1’1d v

70

Secondary structure [ aa 10, |' m : Tertiary structure

S8 I ((C( O (((ER))) M ((((CRREY))) MO (((EEE)))) 8))))) HESRE 2

Symbolic notation

The RNA secondary structure is a listing of GC, AU, and GU base pairs. It is understood in contrast to the full 3D-
or tertiary structure at the resolution of atomic coordinates. RNA secondary structures are biologically relevant.
They are, for example, conserved in evolution.



RNA Minimum Free Energy Structures

Efficient algorithms based on dynamical programming are
available for computation of secondary structures for given
sequences. Inverse folding algorithms compute sequences
for given secondary structures.

M.Zuker and P.Stiegler. Nucleic Acids Res. 9:133-148 (1981)

Vienna RNA Package: http:www.tbi.univie.ac.at (includes
inverse folding, suboptimal structures, kinetic folding, etc.)

I.L.Hofacker, W. Fontana, P.F.Stadler, L.S.Bonhoeffer,
M.Tacker, and P. Schuster. Mh.Chem. 125:167-188 (1994)



Minimum free energy

criterion
/7 UUUAGCCAGCGCGAGUCGUGCGGACGGGGUUAUCUCUGUCGGGCUAGGGCGC
éitd - GUGAGCGCGGGGCACAGUUUCUCAAGGAUGUAAGUUUUUGCCGUUUAUCUGG
3rd tria]l —— > UUAGCGAGAGAGGAGGCUUCUAGACCCAGCUCUCUGGGUCGUUGCUGAUGCG
Z—‘Iﬁ T CAUUGGUGCUAAUGAUAUUAGGGCUGUAUUCCUGUAUAGCGAUCAGUGUCCG
\> GUAGGCCCUCUUGACAUAAGAUUUUUCCAAUGGUGGGAGAUGGCCAUUGCAG

Inverse folding

The inverse folding algorithm searches for sequences that form a given
RNA secondary structure under the minimum free energy criterion.



UUUAGCCAGCGCGAGUCGUGCGGACGGGGUUAUCUCUGUCGGGCUAGGGCGC
GUGAGCGCGGGGCACAGUUUCUCAAGGAUGUAAGUUUUUGCCGUUUAUCUGG
UUAGCGAGAGAGGAGGCUUCUAGACCCAGCUCUCUGGGUCGUUGCUGAUGCG
CAUUGGUGCUAAUGAUAUUAGGGCUGUAUUCCUGUAUAGCGAUCAGUGUCCG

GUAGGCCCUCUUGACAUAAGAUUUUUCCAAUGGUGGGAGAUGGCCAUUGCAG

Criterion of
Minimum Free Energy

Sequence Space

Shape Space



The RNA model considers RNA sequences as genotypes and
simplified RNA structures, called secondary structures, as
phenotypes.

The mapping from genotypes into phenotypes 1s many-to-one.
Hence, it 1s redundant and not invertible.

Genotypes, 1.e. RNA sequences, which are mapped onto the
same phenotype, 1.¢. the same RNA secondary structure, form
neutral networks. Neutral networks are represented by graphs
In sequence space.



Si: CGTCGTTACAATTTAGGTTATGTGCGAATTCACAAATTGAAAATACAAGAG. . . ..

82: CGTCGTTACAATTTAAGTTATGTGCGAATTCCCAAATTAAAAACACAAGAG. .. ..

\ 4 \ 4 \ 4 \ 4

Hamming distance dy(S;,S;) =4

(1) dy(51,51)=0
(1) dy(S1,Sy) = dy(S,,51)
(111) dH(SbS3) ﬂ dH(Slvs2) + dH(827S3)

The Hamming distance induces a metric in sequence space



.. GCCAUC ....

... GCGAUC ....

.. GCGUUC ....

Single point mutations as moves in sequence space



Mutant class

/ 0\\ 0
1 2 4 8 16 1
Binary sequences are encoded
by their decimal equivalents:
2
</ C=0and G =1, for example,
3 "0" =00000=CCCCC,
"14" = 01110 = CGGGC,
4 "29" = 11101 = GGGCQG, ete.

Sequence space of binary sequences of chain lenght n=>5
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Non-negative
numbers

Sequence space Phenotype space

The pre-image of the structure S, in sequence space is the neutral network G,



Neutral networks are sets of sequences forming the same structure.
G, 1s the pre-image of the structure S, in sequence space:

G, = y_l(sk) {yj | y(Ij) =S, }

The set 1s converted into a graph by connecting all sequences of
Hamming distance one.

Neutral networks of small RNA molecules can be computed by
exhaustive folding of complete sequence spaces, i.e. all RNA
sequences of a given chain length. This number, N=4" | becomes
very large with increasing length, and is prohibitive for numerical
computations.

Neutral networks can be modelled by random graphs in sequence
space. In this approach, nodes are inserted randomly into sequence
space until the size of the pre-image, 1.e. the number of neutral
sequences, matches the neutral network to be studied.



Step 00 Sketch of sequence space

Random graph approach to neutral networks



Step 01 Sketch of sequence space

Random graph approach to neutral networks



Step 02 Sketch of sequence space

Random graph approach to neutral networks



Step 03 Sketch of sequence space
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Random graph approach to neutral networks



Step 04 Sketch of sequence space
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Random graph approach to neutral networks



Step 05 Sketch of sequence space
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Random graph approach to neutral networks



Step 10 Sketch of sequence space

Random graph approach to neutral networks



Sketch of sequence space

Step 15
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Sketch of sequence space

Step 25
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Sketch of sequence space

Step 50
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Random graph approach to neutral networks



Sketch of sequence space

Step 75
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Sketch of sequence space

Step 100
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G =y 'S U{L|y(d) =S}

g (k)
N=12/27, = L
: TGy
Connectivity threshold: Aer=1- i 1/c-1)
Alphabet size k: AUGC n k=4 Kk I,
_ 2 0.5
A > Agp - ... network Gy is connected 3 0.4296
M <Ag - ... network Gy is not connected 4 | 03700

Mean degree of neutrality and connectivity of neutral networks



A multi-component neutral network



A connected neutral network



Compatibility of sequences with structures

A sequence 1s compatible with its minimum
free energy structure and all its suboptimal
structures.
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Neutral network

Gy a Cy

Compatible set Cy [ 5]
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The compatible set C, of a structure S, consists of all sequences which form
S, as its minimum free energy structure (neutral network G,) or one of its
suboptimal structures.



A sequence at the intersection of
two neutral networks is compatible
with both structures

’

4
G=C
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Suboptimal conformation S
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Optimization of RNA molecules in silico
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Fitness function:
f,=g/[a+ Ddg ®]
Ddg ® = ds(1,,I)

The flowreactor as a
device for studies of
evolution in vitro and
in silico



Master sequence

Mutant cloud

mutations
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in sequence space



Genotype-Phenotype Mapping
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Evolutionary dynamics
including molecular phenotypes
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Average structure distance to target Ddg
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In silico optimization in the flow reactor: Trajectory (physicists® view)



Endconformation of optimization

Average structure distance to target Ddg
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Transition inducing point mutations

Change in RNA sequences during the final five relay steps 39 A 44
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A random sequence of minor or continuous transitions in the relay series
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A random sequence of minor or continuous transitions in the relay series



| - | | - | \ ) / \ N /
) | | | I | |

| | ] ] —
_ > - 1 1

Shortening of Stacks Elongation of Stacks
\ /
A { Po— X\ *N
~ 4 \
Multi- \ ’

loop . y

¢~,~“"\"\¢s
~{, \}¢

—

Minor or continuous
transitions: Occur
frequently on single

point mutations Opening of Constrained Stacks



Relay steps

Uninterrupted presence

[T T e e T R T ]

Average structure distance to target Ddg

Evolutionary trajectory

T | T ' T
0 250 500 750 1000 1250

Time (arbitrary units)

In silico optimization in the flow reactor: Uninterrupted presence



Main transition leading to clover leaf

>
36 € 37 € 38

Reconstruction of a main transitions 36 A 37 (A 38)

Average structure distance to target Ddg

-
o

Relay steps

36

38

- 40

£
¢

.. 44

Evolutionary trajectory

1250 —Time—>

dajs Aejas jo JaquinN



Main transitions
Evolutionary trajectory

750

I
500

1250

1000

250

40

Spq 196.e) 0] @oUEB)SIP 84N)ONIS abelany

I I
o o o o
o ~

Time (arbitrary units)

In silico optimization in the flow reactor: Main transitions



77N /"\ 7/ 7/ 2N
\op—@’ Shift oo’ N Roll-Over
e > o9 —
| S
1 =9 )

\
«—Q—
&Q—>

Ve

7N\

V4
Flip ; A \ Double Flip
g —_— a a T T —
| | | 1‘ ‘i’

— T - —Q—>

! -9 @
2 T o—e@
I“ L b =@
' | oo
‘ *0—"? 24
B -~
\ |
Mai di . \ ] ,,,~——s¢\\}~
ain or discontinuous /7 ) AN Multi
- s , AR BN o \ s =~ 00
transitions: Structural . {l Q* \ o /
innovations, occur . 4 | , >

rarely on single point Closing of Constrained
mutations Stacks



Rl | o _ 3 |
|| Relay steps | | | Main transitions [ |
” 1L I I I NI
-8 i O | Uninterrupted presence ||| |
- 40| | o NI
oy I o |
[l | I
_9 i
e |
& 309, |
-
% I |
5 1|l I
o : :
3 |
B 20 |
-]
=
5 | |
) |
o)
® .
o 10- y
>
< Evolutionary trajectory ¥
|
0 . : , , L1l
0 250 500 750 1000 1250

Time (arbitrary units)

In silico optimization in the flow reactor



The one-error neighborhood of the neutral network G, corresponding to
the structure S, is defined by

S(S) = {81 8;= y(I) T d"(LL) .1, 4Gy}

Letg ik be the number of points, at which the two neutral networks G, and
Gj are in Hamming distance one contact, with 0y = Oy The probability of
occurrence of SJ. in the neighbothood of S, is then given by

r(S;Sy) = g, <& (lk-1§G,|)

We note that this probability is not symmetric, r(Sj;Sk) 1 r(Sk;Sj), except

the two networks are of equal size, |G, | = |Gj|. The definition of a statistical
e-neighborhood of the structure S, allows for precise distinction between
frequent and rare neighbors. Frequent neighbors are contained in the
statistical neighborhood

TS ={S,aS(S) | r(S;S) Ee} .
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Statistics of evolutionary trajectories

Population Number of Number of Number of main
size replications transitions transitions
N < Nrep > < Ny > < Ngyr >

1000 (5.5 + [6.9,3.1]) x 107 92.7 + [80.3,43.0] 8.8 £ [2.4,1.9]

2 000 (6.0 + [11.1,3.9]) x 107 55.7 £ [30.7,19.8] 8.9 +[2.8,2.1]

3 000 (6.6 + [21.0,5.0]) x 10’ 44.2 + [25.9,16.3] 8.1 +£[2.3,1.8]
10 000 (1.2 £ [1.3,0.6]) x 108 35.9 £ [10.3,8.0] 10.3 £ [2.6,2.1]
20 000 (1.5 + [1.4,0.7]) x 108 28.8 + [5.8,4.8] 9.0 +[2.8,2.2]
30 000 (2.2 + [3.1,1.3]) x 108 29.8 +[7.3,5.9] 8.7 + [2.4,1.9]

100 000 (3+[2,1]) x 108 24 + [6,5] 9+2

The number of main transitions or evolutionary innovations is constant.



Transition probabilities determining the presence of phenotype S, in the population
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Three important steps in the formation of the tRNA clover leaf from a randomly chosen
initial structure corresponding to three main transitions.



Stable tRNA clover leaf structures built from
binary, GC-only, sequences exist. The
corresponding sequences are readily found
through inverse folding. Optimization by
mutation and selection in the flow reactor
has so far always been unsuccessful.

3"-End
S.End )
70
60
. N
The neutral network of the tRNA clover R m: L 50 ~0r
leaf in GC sequence space is not o0

. 20
connected, whereas to the corresponding
neutral network in AUGC sequence space 30 40

N .

1s very close to the critical connectivity
threshold, 1, . Here, both inverse folding
and optimization in the flow reactor are
successful.

i
e

N &

The success of optimization depends on the connectivity of neutral networks.



Main results of computer simulations of molecular evolution

* No trajectory was reproducible in detail. Sequences of target structures were always
different. Nevertheless solutions of the same quality are almost always achieved.

» Transitions between molecular phenotypes represented by RNA structures can be
classified with respect to the induced structural changes. Highly probable minor
transitions are opposed by main transitions with low probability of occurrence.

* Main transitions represent important innovations in the course of evolution.

* The number of minor transitions decreases with increasing population size.

* The number of main transitions or evolutionary innovations is approximately
constant for given start and stop structures.

* Not all known structures are accessible through evolution in the flow reactor. An
example is the tRNA clover leaf for GC-only sequences.



Optimization through variation and selection in populations

Neutral networks in genotype-phenotype mappings

Optimization in the RNA model

Evolution experiments with molecules in the laboratory



RNA molecules

Bacteria

Higher multicelluar

organisms

Generation time

10 sec
1 min

20 min
10h

10d
20a

10 000 generations

27.8h=1.16d

6.94d

138.9d
1140 a

274 a
20 000 a

Generation times and evolutionary timescales

10% generations

115.7d
1.90 a

38.03 a
1140 a

27380a
2x107a

107 generations

3.17a
19.01 a

380 a
11408 a

273800 a
2x10%a



Evolution of RNA molecules based on Q3 phage

D.R.Mills, R,L,Peterson, S.Spiegelman, An extracellular Darwinian experiment with a
self-duplicating nucleic acid molecule. Proc.Natl.Acad.Sci.USA 58 (1967), 217-224

S.Spiegelman, An approach to the experimental analysis of precellular evolution.
Quart.Rev.Biophys. 4 (1971), 213-253

C.K.Biebricher, Darwinian selection of self-replicating RNA molecules. Evolutionary
Biology 16 (1983), 1-52

C.K.Biebricher, W.C. Gardiner, Molecular evolution of RNA in vitro. Biophysical
Chemistry 66 (1997), 179-192

G.Strunk, T. Ederhof, Machines for automated evolution experiments in vitro based on
the serial transfer concept. Biophysical Chemistry 66 (1997), 193-202
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Stock solution: Qb RNA-replicase, ATP, CTP, GTP and UTP, buffer

The serial transfer technique applied to RNA evolution in vitro



Reproduction of the original figure of the
serial transfer experiment with Qf RNA

D.R.Mills, R,L,Peterson, S.Spiegelman,
An extracellular Darwinian experiment
with a self-duplicating nucleic acid
molecule. Proc.Natl.Acad.Sci.USA

58 (1967), 217-224
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Fig. 9. Scrial transfer experiment. Each o-25 ml standard reaction mixture
contained 40 xg of Q/f replicase and **P-UTP, The first reaction (o transfer)
was initiated by the addition of o2 pug ts-1 (temperature-sensitive RNA)
and incubated at 35 °C for 20 min, whereupon o002 ml was drawn for
counting and 0'02 ml was used to prime the second reaction (first transfer),
and so on. After the first 13 reactions, the incubation periods were reduced
to 1§ min (transfers 14-29). Transfers 30-38 were incubated for 10 min.
Transfers 39-52 were incubated for 7 min, and transfers 53-74 were incu-
bated for § min. The arrows above certain transfers (o, 8, 14, 29, 37, 53,and
%3) indicate where o'co1-o0'1 ml of product was removed and used to prime re-
actions for sedimentation annlysis on sucrose. The insct examines both infec-
tious and total RNA. The rcsults show that biologically competent RNA ceases
to appear ufter the 4th transfer (Mills ez al. 1967).
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Evolutionary design of RNA molecules

D.B.Bartel, J.W.Szostak, In vitro selection of RNA molecules that bind specific ligands.
Nature 346 (1990), 818-822

C.Tuerk, L.Gold, SELEX - Systematic evolution of ligands by exponential enrichment:
RNA ligands to bacteriophage T4 DNA polymerase. Science 249 (1990), 505-510

D.P.Bartel, J.W.Szostak, Isolation of new ribozymes from a large pool of random
sequences. Science 261 (1993), 1411-1418

R.D.Jenison, S.C.Gill, A.Pardi, B.Poliski, High-resolution molecular discrimination by
RNA. Science 263 (1994), 1425-1429
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The SELEX technique for the evolutionary design of aptamers
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Formation of secondary structure of the tobramycin binding RNA aptamer

=27 A 4'=1.801C 10! possible different sequences

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, Chemistry & Biology 4:35-50 (1997)



The three-dimensional structure of the
tobramycin aptamer complex

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel,
Chemistry & Biology 4:35-50 (1997)




A ribozyme switch

E.A.Schultes, D.B.Bartel, One sequence, two ribozymes: Implication for the emergence of
new ribozyme folds. Science 289 (2000), 448-452
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GENERIC PROPERTIES OF COMBINATORY
MAPS: NEUTRAL NETWORKS OF RNA
SECONDARY STRUCTURES!

B CHRISTIAN REIDYS*,, PETER F. STADLER*,}
and PETER SCHUSTER*,,8§,>
*Santa Fe Institute,
Santa Fe, NM 87501, U.S.A.
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Random graph theory is used to model and analyse the relationships between sequences and
secondary structures of RNA molecules, which are understood as mappings from sequence
space into shape space. These maps are non-invertible since there are always many orders of
magnitude more sequences than structures. Sequences folding into identical structures form
neutral networks. A neutral network is embedded in the set of sequences that are compatible
with the given structure. Networks are modeled as graphs and constructed by random choice
of vertices from the space of compatible sequences. The theory characterizes neutral
networks by the mean fraction of neutral neighbors (A). The networks are connected and
percolate sequence space if the fraction of neutral nearest neighbors exceeds a threshold
value (A > A*). Below threshold (A < A*), the networks are partitioned into a largest “giant”
component and several smaller components. Structures are classified as “common” or
“rare” according to the sizes of their pre-images, i.e. according to the fractions of sequences
folding into them. The neutral networks of any pair of two different common structures
almost touch each other, and, as expressed by the conjecture of shape space covering
sequences folding into almost all common structures, can be found in a small ball of an
arbitrary location in sequence space. The results from random graph theory are compared to
data obtained by folding large samples of RNA sequences. Differences are explained in
terms of specific features of RNA molecular structures. © 1997 Society for Mathematical
Biology

THEOREM 5. INTERSECTION-THEOREM. Let s and s' be arbitrary secondary
structures and C[s). C[s'] their corresponding compatible sequences. Then,

Cls]InC[s'] # 2.

Proof. Suppose that the alphabet admits only the complementary base pair [XY] and we
ask for a sequence x compatible to both s and s'. Then j(s,s') = D,, operates on the set of
all positions {x,,...,x,}. Since we have the operation of a dihedral group, the orbits are
either cycles or chains and the cycles have even order. A constraint for the sequence
compatible to both structures appears only in the cycles where the choice of bases is not
independent. It remains to be shown that there is a valid choice of bases for each cycle,
which is obvious since these have even order. Therefore, it suffices to choose an alternating
sequence of the pairing partners X and Y. Thus, there are at least two different choices for
the first base in the orbit. |

Remark. A generalization of the statement of theorem 5 to three differ-
ent structures is false.

Reference for the definition of the intersection
and the proof of the intersection theorem



A sequence at the intersection of
two neutral networks is compatible
with both structures
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Barrier tree of a sequence which
switches between two conformations
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Two ribozymes of chain lengths n = 88 nucleotides: An artificial ligase (A) and a natural cleavage
ribozyme of hepatitis-d-virus (B)



The sequence at the intersection:

HDV fold

Ligase fold

An RNA molecules which is 88

nucleotides long and can form both

structures
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From sequences to shapes and back: a case study in
RNA secondary structures

PETER SCHUSTER"?3 WALTER FONTANA?, PETER F.STADLER??
aNDp IVO L. HOFACKER?

! Institut fiir Molekulare Biotechnologie, Beutenbergstrasse 11, PF 100813, D-07708 Jena, Germany
* Institut fiir Theoretische Chemie, Universitdt Wien, Austria
8 Santa Fe Institute, Santa Fe, U.S.A.

SUMMARY

RNA folding is viewed here as a map assigning secondary structures to sequences. At fixed chain length
the number of sequences far exceeds the number of structures. Frequencies of structures are highly non-
uniform and follow a generalized form of Zipf’s law: we find relatively few common and many rare ones.
By using an algorithm for inverse folding, we show that sequences sharing the same structure are
distributed randomly over sequence space. All common structures can be accessed from an arbitrary
sequence by a number of mutations much smaller than the chain length. The sequence space is percolated
by extensive neutral networks connecting nearest neighbours folding into identical structures. Implications
for evolutionary adaptation and for applied molecular evolution are evident: finding a particular
structure by mutation and selection is much simpler than expected and, even if catalytic activity should
turn out to be sparse in the space of RNA structures, it can hardly be missed by evolutionary processes.

Proc. R. Soc. Lond. B (1994) 255, 279284 279
Printed in Great Britain
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Figure 4. Neutral paths. A neutral path is defined by a series
of nearest neighbour sequences that fold into identical
structures. Two classes of nearest neighbours are admitted:
neighbours of Hamming distance 1, which are obtained by
single base exchanges in unpaired stretches of the structure,
and neighbours of Hamming distance 2, resulting from base
pair exchanges in stacks. Two probability densities of
Hamming distances are shown that were obtained by
searching for neutral paths in sequence space: (i) an upper
bound for the closest approach of trial and target sequences
(open circles) obtained as endpoints of neutral paths
approaching the target from a random trial sequence (185
targets and 100 trials for each were used); (ii) a lower bound
for the closest approach of trial and target sequences (open
diamonds) derived from secondary structure statistics
(Fontana et al. 1993a; see this paper, §4); and (iii) longest
distances between the reference and the endpoints of
monotonously diverging neutral paths (filled circles) (500
reference sequences were used).

© 1994 The Royal Society

Reference for postulation and in silico verification of neutral networks
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Replications

Variation in genotype space during optimization of phenotypes



,...variations neither useful not injurious would
not be affected by natural selection, and would
be left either a fluctuating element, as perhaps
we see in certain polymorphic species, or would
ultimately become fixed, owing to the nature of
the organism and the nature of the conditions.

(13

Charles Darwin, Origin of species (1859)
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Evolution in genotype space sketched as a non-descending walk in a fitness landscape
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The "hammerhead" ribozyme

The smallest known
catalytically active
RNA molecule
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UC-|GACUCCCAUUAGACUGG
UC-IGACUCCCAUUAGACUGG
UCHGACUCCCAUUAGACUGE
Ug-<GACUC
UCIHGACUCGGAUUAGACUGG
UC-GACUCIGGIAUUAGACUGG
UCHGACUC|IGGIAUUAGACUGG
GGCUCIGGAUUVAGACUGG
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C NC J GIGGIUGGGGAGUIGCCUA
CHAC GIGGIUGGGGAGUGCCUR
CAC GGGIUGGGGAGUGCCUA
CHAC GIGGIUGGGGAGUIGCCUA
CANC GlGGIUGGGGAGUGCCUA
CHNC GIGGIUGGGGAGUGCCUA
C AC GIGGIUGGGGAG CCUA
C ANC GIUGGGGAGUU|CCUA
CAC GGIGIUGGGGAGUUICCURA
CAC GIGIGIUEGGGAGUUCCUA
C AC GlEIGIUGGGGAGUU|CCUA
CACGCCUCCUIGCGIVEGGGAGU
CACGCCUCCU|IGGCGIUGEGEGGAGUUGICUA
CACGCCUCCU|GGCGIUGGGGAGUUGGIUA

CGCCUCCUGGCGIUEAGGEGGAGUUGGUC

CGCCUCCUIGGCGUCGGGAGUUGGUC
GIACGCCUCCU|GGCGUCGGGAGUUGGGC
GCCGCCQ GCGGCGQEGAGUUGGG
GCcCcGcC GCGGCGGOAGUUGGGC

GCCGcC
GCcCGC
GCcCcecce
GCcececCccucey

uccu
cuccu
GCCGCcCcuUCCU
cuccu
cuccu

uccu

UCCCAUUAGACUGGGCCGECCUCCUCGCGGCGGGAG
GAACCAGUCGGACUCCCAUUAGACUGGBGCCGBCCUCCUCBCGGCGGGAG
hACChGUCQGﬂCUCCCAUUAGACUGGGCCGCCUCCUCGCGGCGGGAGUUGGGCUAGGGAGGAACAGCCUUU
UCwGACUCCCAUURG&CUGGGCCGCCUCCUCGCGGCGGG&GUUGGGCUAGGGAGGAACRGCCUUU
CCGCCUCCUCGCGGCGGGAGUUGGGCUAGGGAGGAACAGCCUUU|
CCGCCUCCUCGCGCECGEGAGUUGGGCUAGGGAGGAACAGCCUUL
CCGCCUCCUCGCGGCEGGAGUUGGGCUAGGGAGGAACAGeCcUYfcojcuaAGGCUAA -Gala
cCe

cc

ccuccucgGcCcae
GCCcUcCcCcUucCceEeCceGa

GCGGCCGGAGUUGGG
GCGGCGGGAGUUGGGC
GCGGCGGGAGUUGGG
GCGGCGGRAGUUGGGClg
GCGGCGGGAGUUGGGCUAGGGAGGAACAGCCUVUUUCUAGGCUAA-GGCCCA
UUGGGCUAGGGAGGAACAGCCUUUUCUAGGCUAA-GGCCCA
UUGGGCUAGGGAGGRAACAGCCUUDU

cQ

naooaoooaoOnNon

AGGGAGGAACAGCCUUUUCUAGGCUAA-|CGCCCA

Qoo n

Sequence of mutants from the intersection to both reference ribozymes

AGCCUUUUCUAGGCUAA
AGCCUUUUCUAGGCUAA
AGCCUUUUCUAGGCUAA
AGCCUUUUCUAGGCUAA

GiUC U U U Ui+ U A GlAIC -lcuAaAGgGgCCiUGP
GIUCUUUUI-UAG|AIC LiG42
GUICU U U U4 U A G|A] AA-ICUAGGC Cf LGaos
GIUICU U U U« U A GlA| A A ~-ICUAGGC C|LIGIDA
GlUIC U U U Ul U A G|A] AA-ICUAGGCClUGI
GIUIC U U U UL U A GIA AA-CUAGGC
GUICUUUUCUAG|A AA-
GUICUUUUCUAGA AA-|CUAGGIA
AGIUCUUUUCUAGIAICUAA -ICUAGG|A
AGIUCUUUUCUAGRAICUAA-ICUAGG|A

BREgBERES

55555

LGa
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uaGt

CUAGGCURAA-GGCCCA INT
CUAGGCUAA-GGCCCA HDW
CUAGGCUAA-GGCCCA HDW
ICUAGGCUAA-GGCCCA HDV4
CUAGGCUAA-GGIAICCA HDVe
cCa HoOw

AICCA  HOVe
AGGCUAR-GGIAICCA HDVIY
IGGCUAA-GGAICCA HDV1I3
ICGCUAA-GGACCA HDVIS
GGCUAA-GGACCA HOWT
GGCUAA-GGAICCA HOVI®
GGCUAA - GGla HOV21
IGGCUAA -G G{A HOv23
IGGCUAA-GG HOVzs
GGCUAA-GG|A HOV27
GGCUAA-GGIAGICA HDV2O
GGCUAA|GIGGA HDV30
GGCUAR|GIGG|AGICA HDVa2
IGGCUAAIGIGGIAGICA HDVS3
GGCUARAIGIGGAGCA HDOVM
GGCUAAGGG HOV38
IGGCUA HDV3s
UGGCUAAGGGAG HOV40
GGCUAAGGGCAGAG HDOV4e
G CUAA HovP
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