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Fig, 2.2 ELECTRICAL STRUCTURE OF A CABLE (A) Idealized cylindrical axon or dendrite at the
heart of one-dimensional cable theory. Almost all of the current inside the cylinder is longitudional
due to geometrical (the radius is much smaller than the length of the cable) and electrical factors
(the membrane covering the axon or dendrite possesses a very high resistivity compared to the
intracellular cytoplasm). As a consequence, the radial and angular components of the current can
be neglected, and the problem of determining the potential in these structures can be reduced from
three spatial dimensions to a single one. On the basis of the bidomain approximation, gradients in the
extracellular potentials are neglected and the cable problem is expressed in terms of the transmembrane
potential V,, (x, t) = V;(x, t) — V,. (B) Equivalent electrical structure of an arbitrary neuronal process.
The intracellular cytoplasm is modeled by the purely ohmic resistance R. This tacitly assumes that
movement of carriers is exclusively due to drift along the voltage gradient and not to diffusion. Here and
in the following the extracellular resistance is assumed to be negligible and V, is set to zero. The current
per unit length across the membrane, whether it is passive or contains voltage-dependent elements,
is described by i,, and the system is characterized by the second-order differential equation, Eq. 2.5.

Christof Koch, Biophysics of Computation. Information Processing in single neurons.
Oxford University Press, New York 1999.



im(xxt)

Fig. 2.3 A SINGLE PassiveE CABLE Equivalent lumped electrical circuit of an elongated neuronal
fiber with passive membrane. The intracellular cytoplasm is described by an ohmic resistance per unit
length r, and the membrane by a capacitance c,, in parallel with a passive membrane resistance 7,
and a battery Vies. The latter two components are frequently referred to as leak resistance and leak
battery. An external current inj(x, t) is injected into the cable. The associated linear cable equation
(Eq. 2.7) describes the dynamics of the electrical potential V,, = V; — V, along the cable.

Christof Koch, Biophysics of Computation. Information Processing in single neurons.
Oxford University Press, New York 1999.
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Fig. 6.2 ELECTRICAL CIRCUIT
FOR A PATCH OF SQUID AXON
Hodgkin and Huxley modeled the
membrane of the squid axon us-
ing four parallel branches: two
passive ones (membrane capaci-
tance C,, and the leak conductance
G, = 1/R,) and two time- and
voltage-dependent ones represent-
ing the sodium and potassium con-
ductances.

Christof Koch, Biophysics of Computation. Information Processing in single neurons.

Oxford University Press, New York 1999.
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Gating functions of the Hodgkin-Huxley equations
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Temperature dependence of the Hodgkin-Huxley equations
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Simulation of space independent Hodgkin-Huxley equations:
Voltage clamp and constant current
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Hodgkin-Huxley equations describing pulse propagation along nerve fibers
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Propagating wave solutions of the Hodgkin-Huxley equations




FitzHugh-Nagumo Equations
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¢(a,b) < ¢(e,0) Front slows down to shape the back of the pulse

The good news: The pulse, stationary in the frame of (, is now described by
an ordinary third order differential equation. The bad news is that the result
is a structurally unstable homoclinic orhit, which is why calculations take a
bit of care. We have found an analytic expression for ¢(a,b).

Connection to Hodgkin-Huxley: [h,n] are relatively slow variables, so keep
them at resting values. This results in a contracted two-dimensional Hodgkin-
Huxley [V, m] system which describes the pulse front at the full speed € to
very close approximation. The two descriptions are now equivalent under the

transformations
r cm? Gk (0)
D= 236 1 T = g BN T Bgme 1
2R, C, [ sec ] il | el
v 20}
Vf:m,ENa:115 mv, C:FZ, C:ﬁ [PD:4903 @

Advantage: Provides a bridge between between detailed Hodgkin-Huxley
based conductance models and formal spiking models which dispense with
such details [a pulse is regarded as a delta-function-like spike|.
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FitzHugh-Nagumo model of the Hodgkin-Huxley equations

V... potential ; Y ...... refractory variable
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FitzHugh-Nagumo model and ist approximations
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FitzHugh-Nagumo equation: reduced model
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FitzHugh-Nagumo equation: reduced model
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FitzHugh-Nagumo equation: broken linear model
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Close-up of the relaxation oscillation as used in the calculations of period
and pulse amplitude in the Reduced Broken-Linear Model
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Reduced Hodgkin-Huxley equations

V,m.... fast variables, n, h ...... slow variables
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