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Everything should be made as simple as 
possible, but not simpler. 

Attributed to Albert Einstein 

Motto: Occam‘s razor in the twentieth century 



The three major processes driving evolution 



Three internal parameters driving evolution 



Competition and variation: error threshold 



Competition and cooperation: major transition 



Cooperation and variation: survival threshold 



The minimal model of evolution 



The continuously fed stirred tank reactor (CFSTR) 

two external parameters: 
 

resources A … a0 
 

time constraint … R = r -1 



chemical reaction equations:  ki, li … reaction rate parameters 
 

Qji … elements of the mutation matrix 
 



A molecular mechanism for mutation 



kinetic differential equations 

uniform error rate model 



master equation of the evolution model 

reactions  m  m´: 
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Competition and variation: error threshold 
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The error threshold in replication and mutation 
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Competition and cooperation: major transition 



A simple model for the analysis of competition and cooperation 



A simple model for the analysis of competition and cooperation 

n2 catalytic terms 



A still simpler model for the analysis of competition and cooperation 

n2 catalytic terms n catalytic terms 



A still simpler model for the analysis of competition and cooperation 



In case of compatibility and linearity the number of stationary solutions is 2n.  

Kinetic differential equations and stationary solutions 









increasing  a0-values 

k1 < k2  and  l1 > l2 



increasing a0-values 

k1 < k2 < k3 
 
l1 > l2 > l3 



increasing  a0-values 

k1 < k2 < k3  and  l1 > l2 > l3  



Hypercycle dynamics in the flow reactor 



Long-time behavior of hypercycles in the flow reactor 

P. Schuster, K. Sigmund. Dynamics of evolutionary optimization.  
Ber.Bunsenges.Phys.Chem. 89:668-682, 1985. 

barycentric transformation 



n = 2 
l1 = l2 = 2, r = 0.01, a0 = 1 
a(0) = 0, x1(0) = 0.05, x2(0) = 0.01 

n = 3 
l1 = l2 = l3 = 2, r = 0.01, a0 = 1 
a(0) = 0, x1(0) = 0.05,  
x2(0) = x3(0) = 0.01 



n = 5 
l1 = l2 = l3 = l4 = l5 = 3,  
r = 0.01, a0 = 1 
a(0) = 0, x1(0) = 0.011,  
x2(0) = x3(0) = x4(0) = x5(0) = 0.01 

n = 4 
l1 = l2 = l3 = l4 = 2, r = 0.01, a0 = 1 
a(0) = 0, x1(0) = 0.05,  
x2(0) = x3(0) = x4(0) = 0.01 



The master equation for competition and cooperation 



Gillespie simulation:  D.T. Gillespie, Annu.Rev.Phys.Chem. 58:35-55, 2007 

A 

X1 

X2 

X3 

I II III 

phase I: raise of [A] ; phase II: random choice of quasistationary state ;  

phase III: convergence to quasistationary state 



extinction and selection 



Choice of parameters: k1 = 0.11 [M-1t-1]; k2 = 0.09 [M-1t-1]; a0 = 200; r = 0.5 [Vt-1] 

Counting of final states 



quasistationary state of  
cooperation 

absorbing state of  
extinction 



Choice of other parameters:  a0 = 200; r = 0.5 [Vt-1] 

l1 = l2 = 0.002 [M-1t-1] 

l1 = l2 = 0.01 [M-1t-1] 

Stochastic cooperation with n = 2 



Competition and cooperation with  n = 2 



Random decision in the stochastic process 



Choice of parameters: k1 = 0.011 [M-1t-1];  k2 = 0.009 [M-1t-1];  

 l1 = 0.0050 [M-2t-1];  l2 = 0.0045 [M-2t-1];  

a0 = 200; r = 0.5 [Vt-1]; a(0) = 0 

Competition and cooperation with  n = 2 



expectation values and 1-bands 

a(0) = 0, x1(0) = x2(0) = 1 

a(0) = 0, x1(0) = x2(0) = 10 

choice of parameters: a0 = 200, r = 0.5 [Vt -1] 
k1 = 0.09 [M-1t -1], k2 = 0.11 [M-1t -1], 

l 1 = 0.0050 [M-2t -1], l2 = 0.0045 [M-2t -1] 



  stochastic hypercycles with n = 3 



n = 3, state of exclusion S2
(1) 

a0 = 220  

a0 = 2200  



n = 3, state of cooperation S3 
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Stochastic extinction of hypercycles 



Xn   X1  X2  X3  X4  ⋅⋅⋅ Xn-1  Xn   

Xn   X1  X2  X3  X4  ⋅⋅⋅ Xn-1    

Xn   X1  X2  X3  X4    

Xn   X1  X2  X3    

↓ 
↓ 

Xn   X1  X2   
Xn   X1     

Xn      

Stepwise consecutive extinction of a hypercycle 



stochastic hypercycles with n = 4 

stochastic hypercycles with n = 5 
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Cooperation and mutation: stochastic escape from extinction 



n = 4 

n = 5 

oscillatory hypercycles: ODE solutions 



n = 5 

n = 4 

oscillatory hypercycles: simulations 



Catalytic hypercycles 



mutation mechanism, N = 4: ‚sequence space‘ 



mutation mechanism, N = 5: ‚pentagram‘ 



mutation mechanism, N = 5: ‚pentagramvariant‘ 



Oscillatory hypercycles:simulation for n=4 



Oscillatory hypercycles:simulation for n=4, enlargement 



Oscillatory hypercycles:simulation for n=4, enlargement 



Oscillatory hypercycles: 
simulation for n = 5 



mutation rate:  p = 0.0000  

Oscillatory hypercycles:  simulation for n = 5 



mutation rate:  p = 0.0000  
 

Oscillatory hypercycles:  simulation for n = 5 



mutation rate:  p = 0.0005 
  

Oscillatory hypercycles:  simulation for n = 5‚‘pentagram‘  



mutation rate: p = 0.0000, p=0.0005, p = 0.0010 and  p = 0.0020 
  

Oscillatory hypercycles:  simulation for n = 5, ‚pentagram‘ 



mutation rate: p = 0.0000, p=0.0005, p = 0.0010 and  p = 0.0020 
  

Oscillatory hypercycles:  simulation for n = 5, ‚pentagramvariant‘ 



Oscillatory hypercycles: 
simulation for n = 4 



Oscillatory hypercycles: 
simulation for n = 4 



mutation rate:  p = 0.0000  

Oscillatory hypercycles:  simulation for n = 4 



mutation rate:  p = 0.0010  

Oscillatory hypercycles:  simulation for n = 4 



mutation rate:  p = 0.0020  

Oscillatory hypercycles:  simulation for n = 4 



mutation rate:  p = 0.0000, 0.0010 and 0.0020  

Oscillatory hypercycles:  simulation for n = 4 
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The model despite its simplicity illustrates and provides explanations 
for features observed in real biology. 

A Cartesian space with competition, cooperation, and variation 
plotted on the axes is used to classify processes that lead to 
transition phenomena. Commonly - but not always - these 
transitions are sharp in the sense of ‘phase transitions’ in finite 
systems or they are represented by bifurcations.  

These transitions are: 
i. A transition from ordered reproduction to random replication on 

the face constituted by differential fitness and mutation. 
ii. A transition from selection to cooperation in the sense of the 

initiation of a ‘major transition’ driven by the availability of 
resources on the face of differential fitness and cooperation. 

iii. A transition from stochastic extinction to survival on the face 
of cooperation and mutation.  

A conjecture states that all transitions smoothen out in the interior 
of the Cartesian space. 



Insofern sich Sätze der Mathematik auf die 
Wirklichkeit beziehen, sind sie nicht sicher, und 
insofern sie sicher sind, beziehen sie sich nicht 
auf die Wirklichkeit. 

As far as the laws of mathematics refer to 
reality, they are not certain, and as far as they 
are certain, they don‘t refer to reality. 

Albert Einstein. Geometrie und Erfahrung. Sitzungsberichte der 
Preussischen  Akademie der Wissenschaften, 1921 (1), 123-130 



Thank you for your attention! 
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