Different kinds of robustness in genetic and metabolic networks

Peter Schuster

Institut für Theoretische Chemie und Molekulare Strukturbiologie der Universität Wien

Seminar lecture

Linz, 15.12.2003

transistors

Genomics and proteomics

Large scale data processing, sequence comparison ...

Evolutionary biology

Optimization through variation and selection, relation between genotype, phenotype, and function, ... Mathematics in 21st Century's Life Sciences

Developmental biology

Gene regulation networks, signal propagation, pattern formation, robustness ...

Neurobiology

Neural networks, collective properties, nonlinear dynamics, signalling, ...

Cell biology

Regulation of cell cycle, metabolic networks, reaction kinetics, homeostasis, ... **Genomics and proteomics**

Large scale data processing, sequence comparison ...

E. coli:Length of the Genome 4×10^6 NucleotidesNumber of Cell Types1Number of Genes4 000Man:Length of the Genome 3×10^9 NucleotidesNumber of Cell Types200Number of Genes30 000 - 100 000

Growth of GenBank

Source: NCBI

Fully sequenced genomes

• Organisms 751 projects

153 complete (16 A, 118 B, 19 E)

(*Eukarya* examples: mosquito (pest, malaria), sea squirt, mouse, yeast, homo sapiens, arabidopsis, fly, worm, ...)

598 ongoing (23 A, 332 B, 243 E)

(*Eukarya* examples: chimpanzee, turkey, chicken, ape, corn, potato, rice, banana, tomato, cotton, coffee, soybean, pig, rat, cat, sheep, horse, kangaroo, dog, cow, bee, salmon, fugu, frog, ...)

• Other structures with genetic information

68 phages 1328 viruses 35 viroids 472 organelles (423 mitochondria, 32 plastids, 14 plasmids, 3 nucleomorphs)

> Source: Integrated Genomics, Inc. August 12th, 2003

Die Zunahme der Komplexität ist ein wesentlicher Aspekt der biologi-4.10 schen Evolution, wobei höhere Komplexität sowohl durch Vergrößerung der Zahl von miteinander in Wechselwirkung stehenden Elementen als auch durch Differenzierung der Funktionen dieser Elemente entstehen kann. In dieser Abbildung wird zwischen drei Phasen oder Strategien der Evolution von Komplexität unterschieden. Untere Kurve: Zunahme der Genomgröße; logarithmische Auftragung der Zahl der Basenpaare im Genom von Zellen seit Beginn der biologischen Evolution (Daten aus Abbildung 2.3). Mittlere Kurve: Zunahme der Zahl der Zelltypen in der Evolution der Metazoa (Daten aus Abbildung 4.8). Obere Kurve: Zunahme des relativen Gehirngewichts (bezogen auf die Körperoberfläche) bei Säugetieren (Daten aus Wilson 1985). Für die Abszisse wurden zwei Skaleneinteilungen verwendet, eine für den Zeitraum >109 Jahre, eine andere für den Zeitraum <109 Jahre vor der Gegenwart. Oberhalb der Abszisse sind die Namen einiger wichtiger taxonomischer Einheiten angeführt, deren Evolution in etwa beim jeweiligen Wortbeginn einsetzt.

Wolfgang Wieser. Die Erfindung der Individualität oder die zwei Gesichter der Evolution. Spektrum Akademischer Verlag, Heidelberg 1998.

A.C.Wilson. The Molecular Basis of Evolution. Scientific American, Oct. 1985, 164-173.

The gene is a stretch of DNA which after transcription gives rise to a mRNA

The same section of the microarray is shown in three independent hybridizations. Marked spots refer to: (1) protein disulfide isomerase related protein P5, (2) IL-8 precursor, (3) EST AA057170, and (4) vascular endothelial growth factor

Gene expression DNA microarray representing 8613 human genes used to study transcription in the response of human fibroblasts to serum

V.R.Iyer et al., Science 283: 83-87, 1999

Elimination of introns through splicing

The gene is a stretch of DNA which after transcription and processing gives rise to a mRNA

Sex determination in Drosophila through alternative splicing

The process of protein synthesis and its regulation is now understood but the notion of the gene as a stretch of DNA has become obscure. The gene is essentially associated with the sequence of unmodified amino acids in a protein, and it is determined by the nucleotide sequence as well as the dynamics of the the process eventually leading to the m-RNA that is translated.

Number of genes in the human genome

The number of genes in the human genome is still only a very rough estimate

Developmental biology

Gene regulation networks, signal propagation, pattern formation, robustness ...

Three-dimensional structure of the complex between the regulatory protein **cro-repressor** and the binding site on `-phage **B-DNA**

Development of the fruit fly drosophila melanogaster: Genetics, experiment, and imago

Network

Processing of information in cascades and networks

Figure 11.1 Paul Baran's Networks. In 1964, Paul Baran began thinking about the optimal structure of the Internet. He suggested that there were three possible architectures for such a network—centralized, decentralized, and distributed—and warned that both the centralized and decentralized structures that dominated communications systems of the time were too vulnerable to attack. Instead, he proposed that the Internet should be designed to have a distributed, mesh-like architecture. (Reproduced with permission of Paul Baran.)

Figure 4.2 A Small and Clustered World. To model networks with a high degree of clustering, Duncan Watts and Steven Strogatz started from a circle of nodes, where each node is connected to its immediate and next-nearest neighbors (left). To make this world a small one, a few extra links were added, connecting randomly selected nodes (right). These long-range links offer the crucial shortcuts between distant nodes, drastically shortening the average separation between all nodes.

Figure 6.1 Random and Scale-Free Networks. The degree distribution of a random network follows a bell curve, telling us that most nodes have the same number of links, and nodes with a very large number of links don't exist (top left). Thus a random network is similar to a national highway network, in which the nodes are the cities, and the links are the major highways connecting them. Indeed, most cities are served by roughly the same number of highways (bottom left). In contrast, the power law degree distribution of a scale-free network predicts that most nodes have only a few links, held together by a few highly connected hubs (top right). Visually this is very similar to the air traffic system, in which a large number of small airports are connected to each other via a few major hubs (bottom right).

Albert-László Barabási, Linked – The New Science of Networks Perseus Publ., Cambridge, MA, 2002

Analysis of nodes and links in a step by step evolved network

links

 # nodes

Structures in **Directed Networks**

Albert-László Barabási, Linked – The New Science of Networks. Perseus Publ., Cambridge, MA, 2002

Figure 12.1 The Continents of a Directed Network. Directed networks such as the World Wide Web naturally break down into several easily identifiable continents. In the central core each node can be reached from every other node. Nodes in the IN continent are arranged such that following the links eventually brings you back to the central core, but starting from the core doesn't allow you to return to the IN continent. In contrast, all nodes of the OUT continent can be reached from the core, but once you've arrived, there are no links taking you back to the core. Finally, tubes directly connect the IN to the OUT continent; some nodes form tendrils, attached only to the IN and OUT continents; and a few nodes form isolated islands that can't be accessed from the rest of the nodes.

Cell biology

Regulation of cell cycle, metabolic networks, reaction kinetics, homeostasis, ...

The bacterial cell as an example for the simplest form of autonomous life

The human body:

 10^{14} cells = 10^{13} eukaryotic cells + ^a 9£10¹³ bacterial (prokaryotic) cells, and ^a 200 eukaryotic cell types

	Α	B	С	D	E	F	G	Н	Ι	J	K	L
1	Bio	ochem	ical F	Pathwa	ays							
2												
3												
4												
5	F						H.C.					
6												original and the second s
7												
8					R				A LOO L			
9												
10												

The reaction network of cellular metabolism published by Boehringer-Ingelheim.

The citric acid or Krebs cycle (enlarged from previous slide).

The forward-problem of chemical reaction kinetics

Neurobiology

Neural networks, collective properties, nonlinear dynamics, signalling, ...

A single neuron signaling to a muscle fiber

The human brain

 10^{11} neurons connected by ^a 10^{13} to 10^{14} synapses

Evolutionary biology

Optimization through variation and selection, relation between genotype, phenotype, and function, ...

	Generation time	10 000 generations	10 ⁶ generations	10 ⁷ generations
RNA molecules	10 sec	27.8 h = 1.16 d	115.7 d	3.17 a
	1 min	6.94 d	1.90 a	19.01 a
Bacteria	20 min	138.9 d	38.03 a	380 a
	10 h	11.40 a	1 140 a	11 408 a
Higher multicelluar	10 d	274 a	27 380 a	273 800 a
organisms	20 a	20 000 a	2×10^7 a	2×10^8 a

Time scales of evolutionary change

5'-end GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA 3'-end

Definition of RNA structure

James D. Watson, 1928- , and Francis Crick, 1916- , Nobel Prize 1962

1953 – 2003 fifty years double helix

The three-dimensional structure of a short double helical stack of B-DNA

Complementary replication as the simplest copying mechanism of RNA Complementarity is determined by Watson-Crick base pairs:

GC and A=U

$$dx_{i} / dt = f_{i} x_{i} - x_{i} \Phi = x_{i} (f_{i} - \Phi)$$

$$\Phi = \Sigma_{j} f_{j} x_{j} ; \quad \Sigma_{j} x_{j} = 1 ; \quad i, j = 1, 2, ..., n$$

$$[I_{i}] = x_{i} C 0 ; \quad i = 1, 2, ..., n ;$$

$$[A] = a = constant$$

$$f_{m} = max \{f_{j}; j = 1, 2, ..., n\}$$

$$x_{m}(t) \S 1 \text{ for } t \S '$$

Reproduction of organisms or replication of molecules as the basis of selection

Selection equation: $[I_i] = x_i \notin 0$, $f_i > 0$

$$\frac{dx_i}{dt} = x_i (f_i - \phi), \quad i = 1, 2, \dots, n; \quad \sum_{i=1}^n x_i = 1; \quad \phi = \sum_{j=1}^n f_j x_j = \overline{f}$$

Mean fitness or dilution flux, $\phi(t)$, is a **non-decreasing function** of time,

$$\frac{d\phi}{dt} = \sum_{i=1}^{n} f_i \frac{dx_i}{dt} = \overline{f^2} - \left(\overline{f}\right)^2 = \operatorname{var}\{f\} \ge 0$$

Solutions are obtained by integrating factor transformation

$$x_i(t) = \frac{x_i(0) \cdot \exp(f_i t)}{\sum_{j=1}^n x_j(0) \cdot \exp(f_j t)}; \quad i = 1, 2, \cdots, n$$

 $\mathbf{s} = (f_2 - f_1) / f_1; f_2 > f_1; x_1(0) = 1 - 1/N; x_2(0) = 1/N$

Selection of advantageous mutants in populations of N = 10000 individuals

Mutations in nucleic acids represent the mechanism of variation of genotypes.

Theory of molecular evolution

M.Eigen, *Self-organization of matter and the evolution of biological macromolecules*. Naturwissenschaften **58** (1971), 465-526

C.J. Thompson, J.L. McBride, *On Eigen's theory of the self-organization of matter and the evolution of biological macromolecules*. Math. Biosci. **21** (1974), 127-142

B.L. Jones, R.H. Enns, S.S. Rangnekar, *On the theory of selection of coupled macromolecular systems.* Bull.Math.Biol. **38** (1976), 15-28

M.Eigen, P.Schuster, *The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercycle*. Naturwissenschaften **58** (1977), 465-526

M.Eigen, P.Schuster, *The hypercycle. A principle of natural self-organization. Part B: The abstract hypercycle*. Naturwissenschaften **65** (1978), 7-41

M.Eigen, P.Schuster, *The hypercycle. A principle of natural self-organization. Part C: The realistic hypercycle*. Naturwissenschaften **65** (1978), 341-369

J. Swetina, P. Schuster, *Self-replication with errors - A model for polynucleotide replication*. Biophys.Chem. **16** (1982), 329-345

J.S. McCaskill, *A localization threshold for macromolecular quasispecies from continuously distributed replication rates*. J.Chem.Phys. **80** (1984), 5194-5202

M.Eigen, J.McCaskill, P.Schuster, The molecular quasispecies. Adv.Chem.Phys. 75 (1989), 149-263

C. Reidys, C.Forst, P.Schuster, *Replication and mutation on neutral networks*. Bull.Math.Biol. 63 (2001), 57-94

$$dx_i / dt = \sum_j f_j Q_{ji} x_j - x_i \Phi$$

$$\Phi = \sum_j f_j x_i; \quad \sum_j x_j = 1; \quad \sum_i Q_{ij} = 1$$

$$[I_i] = x_i \notin 0; \quad i = 1, 2, ..., n;$$

$$[A] = a = \text{constant}$$

$$Q_{ij} = (1-p)^{\ell-d(i,j)} p^{d(i,j)}$$

$$p \dots \text{Error rate per digit}$$

$$\ell \dots \text{Chain length of the polynucleotide}$$

$$d(i,j) \dots \text{Hamming distance between } I_i \text{ and } I_j$$

Chemical kinetics of replication and mutation as parallel reactions

City-block distance in sequence space

2D Sketch of sequence space

Single point mutations as moves in sequence space

Mutant class

0

1

2

3

4

5

Binary sequences are encoded by their decimal equivalents:

C = 0 and G = 1, for example,

 $"0" \equiv 00000 = \mathsf{C}\mathsf{C}\mathsf{C}\mathsf{C}\mathsf{C}\mathsf{C},$

 $"14" \equiv 01110 = \mathsf{CGGGC},$

 $"29" \equiv 11101 = GGGCG$, etc.

Sequence space of binary sequences of chain lenght n=5

 I_1 : CGTCGTTACAATTTAGGTTATGTGCGAATTCACAAATTGAAAATACAAGAG.... I_2 : CGTCGTTACAATTTAAGTTATGTGCGAATTCCCAAATTAAAAACACAAGAG....

Hamming distance $d_H(I_1,I_2) = 4$

(i) $d_{H}(I_{1},I_{1}) = 0$ (ii) $d_{H}(I_{1},I_{2}) = d_{H}(I_{2},I_{1})$ (iii) $d_{H}(I_{1},I_{3}) < d_{H}(I_{1},I_{2}) + d_{H}(I_{2},I_{3})$

The Hamming distance between sequences induces a metric in sequence space

Mutation-selection equation: $[I_i] = x_i \notin 0, f_i > 0, Q_{ij} \notin 0$

$$\frac{dx_i}{dt} = \sum_{j=1}^n f_j Q_{ji} x_j - x_i \phi, \quad i = 1, 2, \dots, n; \quad \sum_{i=1}^n x_i = 1; \quad \phi = \sum_{j=1}^n f_j x_j = \overline{f}$$

Solutions are obtained after integrating factor transformation by means of an eigenvalue problem

$$x_{i}(t) = \frac{\sum_{k=0}^{n-1} \ell_{ik} \cdot c_{k}(0) \cdot \exp(\lambda_{k}t)}{\sum_{j=1}^{n} \sum_{k=0}^{n-1} \ell_{jk} \cdot c_{k}(0) \cdot \exp(\lambda_{k}t)}; \quad i = 1, 2, \dots, n; \quad c_{k}(0) = \sum_{i=1}^{n} h_{ki} x_{i}(0)$$

$$W \div \{f_i Q_{ij}; i, j=1,2,\cdots,n\}; \ L = \{\ell_{ij}; i, j=1,2,\cdots,n\}; \ L^{-1} = H = \{h_{ij}; i, j=1,2,\cdots,n\}$$

$$L^{-1} \cdot W \cdot L = \Lambda = \{\lambda_k; k = 0, 1, \dots, n-1\}$$

Quasispecies as a function of the replication accuracy q

The molecular quasispecies in sequence space

The quasispecies on the concentration simplex $S_3 = \{x_i \ge 0, i = 1, 2, 3; \sum_{i=1}^3 x_i = 1\}$

Replication rate constant:

 $f_{k} = [/ [U + 8d_{S}^{(k)}]$ $8d_{S}^{(k)} = d_{H}(S_{k},S_{h})$

Evaluation of RNA secondary structures yields replication rate constants

Hamming distance $d_H(S_1, S_2) = 4$

(i) $d_{H}(S_{1},S_{1}) = 0$ (ii) $d_{H}(S_{1},S_{2}) = d_{H}(S_{2},S_{1})$ (iii) $d_{H}(S_{1},S_{3}) < d_{H}(S_{1},S_{2}) + d_{H}(S_{2},S_{3})$

The Hamming distance between structures in parentheses notation forms a metric in structure space

Replication rate constant: $f_k = [/ [U + 8d_S^{(k)}]$ $8d_S^{(k)} = d_H(S_k, S_h)$

Selection constraint:

RNA molecules is controlled by the flow

$$N(t) \approx \overline{N} \pm \sqrt{\overline{N}}$$

The flowreactor as a device for studies of evolution *in vitro* and *in silico*

The molecular quasispecies in sequence space

Evolutionary dynamics including molecular phenotypes

In silico optimization in the flow reactor: Trajectory (biologists' view)

In silico optimization in the flow reactor: Trajectory (physicists' view)

44

Endconformation of optimization

Reconstruction of the last step 43 \pm 44

Reconstruction of last-but-one step 42 š 43 (š 44)

Reconstruction of step 41 š 42 (š 43 š 44)

Reconstruction of step 40 š 41 (š 42 š 43 š 44)

Evolutionary process

Reconstruction of the relay series

entry	GGGAUACAUGUGGCCCCUCAAGGCCCUAGCGAAACUGCUGCUGAAACCGUGUGAAUAAUCCGCACCCUGUCCCCGA
39	((((((()(((())))).(((((())))))
\mathbf{exit}	GGGAUA <mark>U</mark> ACGAGGCCC <mark>G</mark> UCAAGGCC <mark>G</mark> UAGCGAA <mark>C</mark> C <mark>GA</mark> CUG <mark>U</mark> UGAAAC <mark>U</mark> GUG <mark>C</mark> GAAUAAUCCGCACCCUGUCCC <mark>G</mark> GG
entry	GGGAUAUACGGGGCCCGUCAAGGCCGUAGCGAACCGACUGUUGAAACUGUGCGAAUAAUCCGCACCCUGUCCCGGG
40	((((((((((((((((((((((((((((((((((((
exit	GGGAUAUACGGGGCCCGUCAAGGCCGUAGCGAACCGACUGUUGA <mark>G</mark> ACUGUGCGAAUAAUCCGCACCCUGUCCCGGG
entry	GGGAUAUACGGGCCCGUCAAGGCCGUAGCGAACCGACUGUUGAGACUGUGCGAAUAAUCCGCACCCUGUCCCGGG
41	(((((((,((((,))))),((((((,)))))),,((((((,)))))),))))))))
exit	GGGAUAUACGGGCCCC <mark>U</mark> UCAAG <mark>G</mark> CC <mark>A</mark> UAGCGAACCGACUGUUGA <mark>A</mark> ACUGUGCGAAUAAUCCGCACCCUGUCCCGG <mark>A</mark>
entry	GGGAUAUACGGGCCCCUUCAAGCCAUAGCGAACCGACUGUUGAAACUGUGCGAAUAAUCCGCACCCUGUCCCGGA
42	((((((((((((((((((((((((((((((((((((
\mathbf{exit}	GGGA <mark>UGAUA</mark> GGGC <mark>GUG</mark> UGAUAGCCCAUAGCGAACC <mark>CCC</mark> GCUGA <mark>GCU</mark> UGUGCGA <mark>CGUU</mark> UGUGCACCCUGUCCCG <mark>CU</mark>
entry	GGGAAGAUAGGGCGUGUGAUAGCCCAUAGCGAACCCCCGCUGAGCUUGUGCGACGUUUGUGCACCCUGUCCCGCU
43	((((((((((((((((((((((((((((((((((((
exit	GGGAAGAUAGGGCGUGUGAUAGCCCAUAGCGAACCCCCGCUGAGCUUGUGCGACGUUUGUGCACCCUGUCCCGCU
entry	GGGCAGAUAGGGCGUGUGAUAGCCCAUAGCGAACCCCCGCUGAGCUUGUGCGACGUUUGUGCACCCUGUCCCGCU
44	((((((((((((((((((((((((((((((((((((

Transition inducing point mutations

Neutral point mutations

Change in RNA sequences during the final five relay steps 39 š 44

In silico optimization in the flow reactor: Trajectory and relay steps

28 neutral point mutations during a long quasi-stationary epoch

Time (arbitrary units)

entry	GGUAUGGGCGUUGAAUAGUAGGGUUUAAACCAAUCGGCCAACGAUCUCGUGUGCGCAUUUCAUAUCCCGUACAGAA
8	.((((((((((((((((((((((((((((((((((((
exit	GGUAUGGGCGUUGAAUAAUAGGGUUUAAACCAAUCGGCCAACGAUCUCGUGUGCGCAUUUCAUAUCCAUAUCAGAA
entry	GGUAUGGGCGUUGAAUAAUAGGGUUUAAACCAAUCGGCCAACGAUCUCGUGUGCGCAUUUCAUAUACCAUACAGAA
9	.((((((((((((((((((((((((((((((((((((
exit	UGGAUGGACGUUGAAUAACAAGGUAUCGACCAAACAACCAAC
entry	UGGAUGGACGUUGAAUAACAAGGUAUCGACCAAACAACCAAC
10	.((((((((((((((((((((((((((((((((((((
exit	UGGAUGGACGUUGAAUAACAAGGUAUCGACCAAACAACCAAC

Transition inducing point mutations

Neutral point mutations

Neutral genotype evolution during phenotypic stasis

In silico optimization in the flow reactor: Main transitions

Three important steps in the formation of the tRNA clover leaf from a randomly chosen initial structure corresponding to three **main transitions**.

AUGC

GC

Movies of optimization trajectories over the **AUGC** and the **GC** alphabet

Statistics of the lengths of trajectories from initial structure to target (AUGC-sequences)

Alphabet	Runtime	Transitions	Main transitions	No. of runs
AUGC	385.6	22.5	12.6	1017
GUC	448.9	30.5	16.5	611
GC	2188.3	40.0	20.6	107

Statistics of trajectories and relay series (mean values of log-normal distributions)

GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGACGGUCCCAUCGGUACUCCA

The idea of inverse folding algorithm is to search for sequences that form a given RNA secondary structure under the minimum free energy criterion.

Structure

Structure

Compatible sequence

Structure

Compatible sequence

Structure

Compatible sequence

Structure

Incompatible sequence

Approach to the target structure S_k in the inverse folding algorithm

The inverse folding algorithm searches for sequences that form a given RNA secondary structure under the minimum free energy criterion.

Theory of genotype – phenotype mapping

P. Schuster, W.Fontana, P.F.Stadler, I.L.Hofacker, *From sequences to shapes and back: A case study in RNA secondary structures*. Proc.Roy.Soc.London B 255 (1994), 279-284

W.Grüner, R.Giegerich, D.Strothmann, C.Reidys, I.L.Hofacker, P.Schuster, *Analysis of RNA sequence structure maps by exhaustive enumeration. I. Neutral networks*. Mh.Chem. **127** (1996), 355-374

W.Grüner, R.Giegerich, D.Strothmann, C.Reidys, I.L.Hofacker, P.Schuster, *Analysis of RNA sequence structure maps by exhaustive enumeration. II. Structure of neutral networks and shape space covering*. Mh.Chem. **127** (1996), 375-389

C.M.Reidys, P.F.Stadler, P.Schuster, *Generic properties of combinatory maps*. Bull.Math.Biol. **59** (1997), 339-397

I.L.Hofacker, P. Schuster, P.F.Stadler, *Combinatorics of RNA secondary structures*. Discr.Appl.Math. **89** (1998), 177-207

C.M.Reidys, P.F.Stadler, Combinatory landscapes. SIAM Review 44 (2002), 3-54

Sequence space

Structure space Real numbers

Mapping from sequence space into structure space and into function

Sequence space

Structure space Real numbers

The pre-image of the structure S_k in sequence space is the **neutral network** G_k

Neutral networks are sets of sequences forming the same structure. G_k is the pre-image of the structure S_k in sequence space:

 $G_k = m^{-1}(S_k) \quad \{m_j \mid m(I_j) = S_k\}$

The set is converted into a graph by connecting all sequences of Hamming distance one.

Neutral networks of small RNA molecules can be computed by exhaustive folding of complete sequence spaces, i.e. all RNA sequences of a given chain length. This number, $N=4^{n}$, becomes very large with increasing length, and is prohibitive for numerical computations.

Neutral networks can be modelled by **random graphs** in sequence space. In this approach, nodes are inserted randomly into sequence space until the size of the pre-image, i.e. the number of neutral sequences, matches the neutral network to be studied.

$$\mathbf{G}_{\mathbf{k}} = \mathsf{m}^{-1}(\mathbf{S}_{\mathbf{k}}) \cup \mathsf{OI}_{j} \mid \mathsf{m}(\mathsf{I}_{j}) = \mathbf{S}_{\mathbf{k}} \mathsf{C}$$

$$\lambda_{j} = 12 / 27 = 0.444$$
, $\bar{\lambda}_{k} = \frac{\hat{O}_{j \in |G_{k}|} j(k)}{|G_{k}|}$

Connectivity threshold: $\lambda_{cr} = 1 - \kappa^{-1/(\kappa-1)}$

Alphabet size _:AUGC í _ = 4_ cr $\bar{\lambda}_k > \lambda_{cr} \dots$ network G_k is connected20.5GC,AU $\bar{\lambda}_k < \lambda_{cr} \dots$ network G_k is not connected30.423GUC,AUG $\bar{\lambda}_k < \lambda_{cr} \dots$ network G_k is not connected40.370AUGC

Mean degree of neutrality and connectivity of neutral networks

A connected neutral network

A multi-component neutral network

Alphabet	Degree of neutrality \top				
AU				0.073 Ÿ 0.032	
AUG		0.217 Ÿ 0.051	0.207 ± 0.055	0.201 Ÿ 0.056	
AUGC	0.275 Ÿ 0.064	0.279 Ÿ 0.063	0.289 ± 0.062	0.313 Ÿ 0.058	
UGC	0.263 Ÿ 0.071	0.257 Ÿ 0.070	0.251 ± 0.068	0.250 Ÿ 0.064	
GC	0.052 Ÿ 0.033	0.057 Ÿ 0.034	0.060 ± 0.033	0.068 Ÿ 0.034	

Degree of neutrality of cloverleaf RNA secondary structures over different alphabets

From sequences to shapes and back: a case study in RNA secondary structures

PETER SCHUSTER^{1, 2, 3}, WALTER FONTANA³, PETER F. STADLER^{2, 3} and IVO L. HOFACKER²

¹ Institut für Molekulare Biotechnologie, Beutenbergstrasse 11, PF 100813, D-07708 Jena, Germany
² Institut für Theoretische Chemie, Universität Wien, Austria
³ Santa Fe Institute, Santa Fe, U.S.A.

SUMMARY

RNA folding is viewed here as a map assigning secondary structures to sequences. At fixed chain length the number of sequences far exceeds the number of structures. Frequencies of structures are highly nonuniform and follow a generalized form of Zipf's law: we find relatively few common and many rare ones. By using an algorithm for inverse folding, we show that sequences sharing the same structure are distributed randomly over sequence space. All common structures can be accessed from an arbitrary sequence by a number of mutations much smaller than the chain length. The sequence space is percolated by extensive neutral networks connecting nearest neighbours folding into identical structures. Implications for evolutionary adaptation and for applied molecular evolution are evident: finding a particular structure by mutation and selection is much simpler than expected and, even if catalytic activity should turn out to be sparse in the space of RNA structures, it can hardly be missed by evolutionary processes.

Figure 4. Neutral paths. A neutral path is defined by a series of nearest neighbour sequences that fold into identical structures. Two classes of nearest neighbours are admitted: neighbours of Hamming distance 1, which are obtained by single base exchanges in unpaired stretches of the structure. and neighbours of Hamming distance 2, resulting from base pair exchanges in stacks. Two probability densities of Hamming distances are shown that were obtained by searching for neutral paths in sequence space: (i) an upper bound for the closest approach of trial and target sequences (open circles) obtained as endpoints of neutral paths approaching the target from a random trial sequence (185 targets and 100 trials for each were used); (ii) a lower bound for the closest approach of trial and target sequences (open diamonds) derived from secondary structure statistics (Fontana et al. 1993a; see this paper, §4); and (iii) longest distances between the reference and the endpoints of monotonously diverging neutral paths (filled circles) (500 reference sequences were used).

Proc. R. Soc. Lond. B (1994) 255, 279–284 Printed in Great Britain 279

© 1994 The Royal Society

Reference for postulation and *in silico* verification of *neutral networks*

The compatible set C_k of a structure S_k consists of all sequences which form S_k as its minimum free energy structure (the neutral network G_k) or one of its suboptimal structures.

The intersection of two compatible sets is always non empty: $C_0 \ \ C_1 \ \ \mu$

Bulletin of Mathematical Biology, Vol. 59, No. 2, pp. 339-397, 1997 Elsevier Science Inc. © 1997 Society for Mathematical Biology 0092-8240/97 517.00 + 0.00

S0092-8240(96)00089-4

GENERIC PROPERTIES OF COMBINATORY MAPS: NEUTRAL NETWORKS OF RNA SECONDARY STRUCTURES¹

 CHRISTIAN REIDYS*, †, PETER F. STADLER*, ‡ and PETER SCHUSTER*, ‡, §,²
*Santa Fe Institute, Santa Fe, NM 87501, U.S.A.

†Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.

‡Institut für Theoretische Chemie der Universität Wien, A-1090 Wien, Austria

§Institut für Molekulare Biotechnologie, D-07708 Jena, Germany

(E.mail: pks@tbi.univie.ac.at)

Random graph theory is used to model and analyse the relationships between sequences and secondary structures of RNA molecules, which are understood as mappings from sequence space into shape space. These maps are non-invertible since there are always many orders of magnitude more sequences than structures. Sequences folding into identical structures form neutral networks. A neutral network is embedded in the set of sequences that are compatible with the given structure. Networks are modeled as graphs and constructed by random choice of vertices from the space of compatible sequences. The theory characterizes neutral networks by the mean fraction of neutral neighbors (λ). The networks are connected and percolate sequence space if the fraction of neutral nearest neighbors exceeds a threshold value $(\lambda > \lambda^*)$. Below threshold $(\lambda < \lambda^*)$, the networks are partitioned into a largest "giant" component and several smaller components. Structures are classified as "common" or "rare" according to the sizes of their pre-images, i.e. according to the fractions of sequences folding into them. The neutral networks of any pair of two different common structures almost touch each other, and, as expressed by the conjecture of shape space covering sequences folding into almost all common structures, can be found in a small ball of an arbitrary location in sequence space. The results from random graph theory are compared to data obtained by folding large samples of RNA sequences. Differences are explained in terms of specific features of RNA molecular structures. © 1997 Society for Mathematical Biology

THEOREM 5. INTERSECTION-THEOREM. Let s and s' be arbitrary secondary structures and C[s], C[s'] their corresponding compatible sequences. Then,

$C[s] \cap C[s'] \neq \emptyset.$

Proof. Suppose that the alphabet admits only the complementary base pair [XY] and we ask for a sequence x compatible to both s and s'. Then $j(s, s') \cong D_m$ operates on the set of all positions $\{x_1, \ldots, x_n\}$. Since we have the operation of a dihedral group, the orbits are either cycles or chains and the cycles have even order. A constraint for the sequence compatible to both structures appears only in the cycles where the choice of bases is not independent. It remains to be shown that there is a valid choice of bases for each cycle, which is obvious since these have even order. Therefore, it suffices to choose an alternating sequence of the pairing partners X and Y. Thus, there are at least two different choices for the first base in the orbit.

Remark. A generalization of the statement of theorem 5 to three different structures is false.

> Reference for the definition of the intersection and the proof of the **intersection theorem**

A sequence at the **intersection** of two neutral networks is compatible with both structures

Barrier tree for two long living structures

Kinetics of RNA refolding between a long living metastable conformation and the minmum free energy structure

Acknowledgement of support

Fonds zur Förderung der wissenschaftlichen Forschung (FWF)

Projects No. 09942, 10578, 11065, 13093 13887, and 14898

Jubiläumsfonds der Österreichischen Nationalbank

Project No. Nat-7813

European Commission: Project No. EU-980189

Siemens AG, Austria

The Santa Fe Institute and the Universität Wien

The software for producing RNA movies was developed by Robert Giegerich and coworkers at the Universität Bielefeld

Universität Wien

Coworkers

Universität Wien

Walter Fontana, Santa Fe Institute, NM

Christian Reidys, Christian Forst, Los Alamos National Laboratory, NM

Peter Stadler, Bärbel Stadler, Universität Leipzig, GE

Ivo L.Hofacker, Christoph Flamm, Universität Wien, AT

Andreas Wernitznig, Michael Kospach, Universität Wien, AT Ulrike Langhammer, Ulrike Mückstein, Stefanie Widder Jan Cupal, Kurt Grünberger, Andreas Svrček-Seiler, Stefan Wuchty

Ulrike Göbel, Institut für Molekulare Biotechnologie, Jena, GE Walter Grüner, Stefan Kopp, Jaqueline Weber Web-Page for further information:

http://www.tbi.univie.ac.at/~pks
