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RNA sequence

RNA structure
of minimal free 

energy

RNA folding:

Structural biology,
spectroscopy of 
biomolecules, 
understanding 

molecular function
Empirical parameters

Biophysical chemistry: 
thermodynamics and 

kinetics

One sequence – one structure problem
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RNA sequence

RNA structure
of minimal free 

energy

RNA folding:

Structural biology,
spectroscopy of 
biomolecules, 
understanding

molecular function

Inverse Folding
Algorithm

Iterative determination
of a sequence for the

given secondary
structure

Sequence, structure, and design

Inverse folding of RNA:

Biotechnology,
design of biomolecules

with predefined 
structures and functions
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Minimum free energy
criterion

Inverse folding of RNA secondary structures

1st
2nd
3rd  trial
4th
5th

The inverse folding algorithm searches for sequences that form a given RNA 
secondary structure under the minimum free energy criterion. 
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Binary sequences are encoded
by their decimal equivalents:

 = 0 and  = 1, for example,

"0"    00000 = 

"14"  01110 = ,

"29"  11101 = , etc.

≡
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≡
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Hypercube of dimension n = 5 Decimal coding of binary sequences

Sequence space of binary sequences of chain lenght n = 5



CGTCGTTACAATTTA GTTATGTGCGAATTC CAAATT AAAA ACAAGAG.....

CGTCGTTACAATTTA GTTATGTGCGAATTC CAAATT AAAA ACAAGAG.....

G A G T

A C A C

Hamming distance  d (I ,I ) = H 1 2 4

d (I ,I ) = 0H 1 1

d (I ,I ) = d (I ,I )H H1 2 2 1

d (I ,I )  d (I ,I ) + d (I ,I )H H H1 3 1 2 2 3

(i)

(ii)

(iii)

The Hamming distance between sequences induces a metric in sequence space



Mapping from sequence space into structure space and into function



Hamming distance  d (S ,S ) = H 1 2 4

d (S ,S ) = 0H 1 1

d (S ,S ) = d (S ,S )H H1 2 2 1

d (S ,S )  d (S ,S ) + d (S ,S )H H H1 3 1 2 2 3

(i)

(ii)

(iii)

The Hamming distance between  structures in parentheses notation forms a metric 
in structure space







The pre-image of the structure Sk in sequence space is the neutral network Gk





Properties of RNA sequence to secondary structure mapping

1. More sequences than structures

2. Few common versus many rare structures

3. Shape space covering of common structures

4. Neutral networks of common structures are connected
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Variation of the RNA sequence through copying errors
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Chemical kinetics of replication and mutation as parallel reactions



Replication rate constant:

fk = / [ + dS
(k)]

dS
(k) = dH(Sk,S )

Selection constraint:

Population size, N = # RNA 
molecules, is controlled by 

the flow

Mutation rate:

p = 0.001 / site replication 

NNtN ±≈)(

The flowreactor as a 
device for studies of 
evolution in vitro and 
in silico
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The molecular quasispecies in sequence space



In silico optimization in the flow reactor: Evolutionary trajectory
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Element in example 1:  The RNA molecule
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The molecular quasispecies in sequence space



Evolutionary trajectory

Spreading of the population 
through diffusion on a neutral 
network

Drift of the population center 
in sequence space



Spread of population in sequence space during a quasistationary epoch:  t = 150



Spread of population in sequence space during a quasistationary epoch:  t = 170



Spread of population in sequence space during a quasistationary epoch:  t = 200



Spread of population in sequence space during a quasistationary epoch:  t = 350



Spread of population in sequence space during a quasistationary epoch:  t = 500



Spread of population in sequence space during a quasistationary epoch:  t = 650



Spread of population in sequence space during a quasistationary epoch:  t = 820



Spread of population in sequence space during a quasistationary epoch:  t = 825



Spread of population in sequence space during a quasistationary epoch:  t = 830



Spread of population in sequence space during a quasistationary epoch:  t = 835



Spread of population in sequence space during a quasistationary epoch:  t = 840



Spread of population in sequence space during a quasistationary epoch:  t = 845



Spread of population in sequence space during a quasistationary epoch:  t = 850



Spread of population in sequence space during a quasistationary epoch:  t = 855



Element in example 2:  The ant worker



Ant colony                                 Random foraging      Food source

Foraging behavior of ant colonies



Ant colony                              Food source detected                           Food source

Foraging behavior of ant colonies



Ant colony                          Pheromone trail laid down                        Food source

Foraging behavior of ant colonies



Ant colony                         Pheromone controlled trail                        Food source

Foraging behavior of ant colonies



 Evolution of RNA  Foraging ants 

Element RNA nucleotide Individual worker ant 

Genotype RNA sequence Worker ant collective 

Phenotype RNA structure Foraging path 

Learning entity Population of molecules Ant colony 

Relation between elements Mutation Reorientation of path segment 

Search process Optimization of structure Optimization of path 

Search space Sequence space Three-dimensional space 

Random step Mutation Segment of ant walk 

Self-enhancing process Replication Secretion of pheromone 

Measure of activity Mean replication rate Mean pheromone concentration 

Goal of the search Target structure Richest food source 

Temporary memory Sequence distribution Pheromone trail 
 

Learning at population or colony level by trial and error

Two examples: (i) RNA model and (ii) ant colony
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RNA secondary structures derived from a single sequence



Kinetic Folding of RNA Secondary Structures

Christoph Flamm, Walter Fontana, Ivo L. Hofacker, Peter Schuster. RNA folding kinetics at 
elementary step resolution. RNA 6:325-338, 2000

Christoph Flamm, Ivo L. Hofacker, Sebastian Maurer-Stroh, Peter F. Stadler, Martin Zehl. 
Design of multistable RNA molecules. RNA 7:325-338, 2001

Christoph Flamm, Ivo L. Hofacker, Peter F. Stadler, Michael T. Wolfinger. Barrier trees of 
degenerate landscapes. Z.Phys.Chem. 216:155-173, 2002

Michael T. Wolfinger, W. Andreas Svrcek-Seiler, Christoph Flamm, Ivo L. Hofacker, Peter 
F. Stadler. Efficient computation of RNA folding dynamics. 
J.Phys.A: Math.Gen. 37:4731-4741, 2004



Mean folding curves for three small RNA molecules with different folding behavior

I1 = ACUGAUCGUAGUCAC
I2 = AUUGAGCAUAUUCAC
I3 = CGGGCUAUUUAGCUG

S0 =  • • ( ( ( ( • • • • ) ) ) ) •
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I1 = ACUGAUCGUAGUCAC
S0
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Example of an unefficiently folding small RNA molecule with n = 15



I2 = AUUGAGCAUAUUCAC
S0

S1

S4
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Example of an easily folding small RNA molecule with n = 15



I3 = CGGGCUAUUUAGCUG

S0

S1

S2

S3

O

Example of an easily folding 
and especially stable small
RNA molecule with n = 15



open chain

A nucleic acid molecule folding in two dominant conformations



Folding dynamics of the sequence  GGCCCCUUUGGGGGCCAGACCCCUAAAAAGGGUC
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GkNeutral Network

Structure S  k

Gk  Ck

Compatible Set  Ck

The compatible set Ck of a structure Sk consists of all sequences which form 
Sk as its minimum free energy structure (the neutral network Gk) or one of its
suboptimal structures.



Structure S  0

Structure S  1

The intersection of two compatible sets is always non empty:  C0 C1



The barrier tree 
connecting S1 and S0







A ribozyme switch

E.A.Schultes, D.B.Bartel, Science 
289 (2000), 448-452



Two ribozymes of chain lengths n = 88 nucleotides: An artificial ligase (A) and a natural cleavage 
ribozyme of hepatitis- -virus (B)



The sequence at the intersection: 

An RNA molecules which is 88 
nucleotides long and can form both 
structures



Two neutral walks through sequence space with conservation of structure and catalytic activity
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C. W. A. Pleij. Structural parameters affecting the kinetic competition of RNA hairpin 
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Conclusions

I. The Darwinian mechanism of optimization through variation and 
selection operates equally well on simple and complex repoducing
elements because only the number of fertile offspring counts.

II. Darwinian learning through trial and error takes place on the level 
of populations. It does not require sophisticated elements and 
occurs even with self-replicating molecules.

III. Even simple molecules have the capacity for a rich repertoire of 
properties and interactions. For example, they can have multiple 
structures and functions.
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