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Nothing in biology makes sense 
except in the light of evolution.

Theodosius Dobzhansky. 1973.
Am.Biol.Teach. 35:125-129.
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Three necessary conditions for Darwinian evolution are:

1. Multiplication,

2. Variation, and

3. Selection.

Biologists distinguish the genotype – the genetic information – and 
the phenotype – the organisms and all its properties. The genotype is 
unfolded in development and yields the phenotype.

Variation operates on the genotype – through mutation and 
recombination – whereas the phenotype is the target of selection. 
Without human intervention natural selection is based on the number 
of fertile progeny in forthcoming generations that is called fitness.



Pierre-François Verhulst, 
1804-1849
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Darwin

Generalization of the logistic equation to n variables yields selection
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Reproduction of organisms or replication of molecules as the basis of selection
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mean fitness or dilution flux,  (t), is a non-decreasing function of time,

solutions are obtained by integrating factor transformation

The mean reproduction rate or mean fitness,  (t), is optimized in populations.
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Selection equation:     [Xi] = xi  0 ,  fi  0
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Three necessary conditions for Darwinian evolution are:

1. Multiplication,

2. Variation, and

3. Selection.

All three conditions are fulfilled not only by cellular organisms 
but also by nucleic acid molecules – DNA or RNA – in suitable
cell-free experimental assays:

Darwinian evolution in the test tube

Charles Darwin, 1809-1882



The three-dimensional structure of a 
short double helical stack of B-DNA

1953 – 2003  fifty years double helix

James D. Watson, 1928-, and Francis H.C. Crick, 1916-2004

Nobel prize 1962



Template induced nucleic acid synthesis proceeds from 5‘-end to 3‘-end 

Accuracy of replication:   Q = q1 · q2 · q3 · … · qn



Evolution in the test tube:

G.F. Joyce, Angew.Chem.Int.Ed.
46 (2007), 6420-6436



Kinetics of RNA replication
C.K. Biebricher, M. Eigen, W.C. Gardiner, Jr.
Biochemistry 22:2544-2559, 1983

Christof K. Biebricher, 
1941-2009



RNA replication by Q-replicase

C. Weissmann, The making of a phage. 
FEBS Letters 40 (1974), S10-S18



C.K. Biebricher, R. Luce. 1992. In vitro recombination and terminal recombination of RNA 
by Q replicase. The EMBO Journal 11:5129-5135.

stable

does not replicate!

metastable

replicates!



Manfred Eigen
1927 -

Mutation and (correct) replication  as parallel chemical reactions
M. Eigen. 1971. Naturwissenschaften 58:465, 

M. Eigen & P. Schuster.1977. Naturwissenschaften 64:541, 65:7 und 65:341
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Mutation-selection equation: [Ii] = xi  0,  fi > 0, Qij  0

Solutions are obtained after integrating factor transformation by means 
of an eigenvalue problem
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The ‚no-mutational-backflow‘ or zeroth order approximation



quasispecies

The error threshold in replication and mutation

driving virus populations through threshold
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The paradigm of structural biology



A symbolic notation of RNA secondary structure that is equivalent to the conventional graphs

Criterion:   Minimum free energy (mfe)

Rules:     _ ( _ ) _    {AU,CG,GC,GU,UA,UG}

N = 4n

NS < 3n



The inverse folding algorithm searches for sequences that form a given 
RNA secondary structure under the minimum free energy criterion.



Inversion of genotype-phenotype mapping



Neutral networks in sequence space



Degree of neutrality of neutral networks and the connectivity threshold



Realistic fitness landscapes

1.Ruggedness: nearby lying genotypes may 
unfold into very different phenotypes

2.Neutrality: many different genotypes give rise to 
phenotypes with identical selection behavior 



Complexity in molecular evolution

W =        G  F

0   ,  0   largest eigenvalue and eigenvector

diagonalization of matrix  W
„ complicated but not complex “

fitness landscapemutation matrix

„ complex “( complex )

sequence  structure

„ complex “

mutation selection
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Make things as simple as possible, 
but not simpler !

Albert Einstein

Albert Einstein‘s razor, precise refence is unknown.





Model fitness landscapes I

single peak landscape

step linear landscape



Error threshold on the 
single peak landscape



Error threshold on the 
step linear landscape



Model fitness landscapes II

linear and
multiplicative

hyperbolic



The linear fitness landscape shows no error threshold
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Rugged fitness landscapes
over individual binary sequences 

with n = 10

single peak landscape

„realistic“ landscape



Error threshold: Individual sequences

n = 10,  = 2, s = 491 and d = 0, 0.5, 0.9375 



Case I:   Strong quasispecies

n = 10,  f0 = 1.1, fn = 1.0, s = 919

d = 0.5

d = 1.0



Case III:   multiple transitions

n = 10,  f0 = 1.1, fn = 1.0, s = 637

d = 0.995

d = 1.0



1. Darwin and evolutionary optimization

2. Evolution as an exercise in chemical kinetics 

3. Sequences and structures in biopolymers

4. Evolution on simple model landscapes

5. Evolution on realistic landscapes

6. Neutrality in evolution

7. Perspectives



Motoo Kimuras population genetics of 
neutral evolution. 

Evolutionary rate at the molecular level. 
Nature 217: 624-626, 1955.

The Neutral Theory of Molecular Evolution. 
Cambridge University Press. Cambridge, 
UK, 1983.



Motoo Kimura

Is the Kimura scenario correct for frequent mutations?



Pairs of neutral sequences in replication networks

P. Schuster, J. Swetina. 1988. Bull. Math. Biol. 50:635-650
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A fitness landscape including neutrality



Neutral network: Individual sequences

n = 10,  = 1.1, d = 0.5



Neutral network: Individual sequences

n = 10,  = 1.1, d = 0.5



Consensus sequence of a 
quasispecies with strongly 
coupled sequences of 
Hamming distance
dH(Xi,,Xj) = 1 and 2. 



N = 7

Computation of sequences in the core of a neutral network 
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(i) Fitness landscapes for the evolution of molecules 
are obtainable by standard techniques of physics 
and chemistry.

(ii) Fitness landscapes for evolution of viroids and 
viruses under controlled conditions are accessible   
in principle.

(iii) Systems biology can be carried out for especially 
small bacteria and an extension to bacteria of 
normal size is to be expected for the near future.

(iv) The computational approach for selection on known 
fitness landscapes – ODEs or stochastic processes –
is standard.

(v) The efficient description of migration and splitting 
of populations in sequence space requires new 
mathematical techniques.



Consideration of multistep and nonlinear replication 

mechanisms as well as accounting for epigenetic 

phenomena is readily possible within the molecular 

approach.
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