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1. Mathematics and the life sciences in the 21st century

2. Selection dynamics

3. RNA evolution in silico and optimization of structure and properties
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Reactions in the continuously stirred tank reactor (CSTR)
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Reversible first order reaction in the flow reactor
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Autocatalytic second order and uncatalyzed reaction in the flow reactor



0.100.080.060.040.02 0.12 0.14 0.16 0.18

Flow rate   r [t ] -1

1.0

0.8

0.6

1.2
C

on
ce

nt
ra

tio
n 

   
  a

  [
a

] 0

A +2 B 

A 

3B 

B 

a = 0
a = 0.001
a = 0.0025
a = 0.007

a ¸ = 

Autocatalytic third order and uncatalyzed reaction in the flow reactor



Autocatalytic third order reactions

A + 2 X  3 XÁDirect,    , or hidden
in the reaction mechanism
(Belousow-Zhabotinskii reaction).

Multiple steady states

Oscillations in homogeneous solution

Deterministic chaos

Turing patterns

Spatiotemporal patterns (spirals)

Deterministic chaos in space and time 

Pattern formation in autocatalytic third order reactions

G.Nicolis, I.Prigogine. Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through 
Fluctuations. John Wiley, New York 1977



Autocatalytic second order reactions

A + I    2 IÁDirect,  , or hidden in
the reaction mechanism

Chemical self-enhancement

Selection of laser modes

Selection of molecular species competing for common sources

Combustion and chemistry 
of flames

Autocatalytic second order reactions are the basis of selection processes.

The autocatalytic step is formally equivalent to replication or reproduction.



Stock Solution   [A] = a0 Reaction Mixture:  A; I , k=1,2,...k  

A + I              2 I1 1

A + I              2 I2 2

A + I              2 I3 3

A + I              2 I4 4

A + I              2 I5 5
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Replication in the flow reactor
P.Schuster & K.Sigmund, Dynamics of evolutionary optimization, Ber.Bunsenges.Phys.Chem.
89: 668-682 (1985)
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Selection in the flow reactor:   Reversible replication reactions
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Selection in the flow reactor:   Irreversible replication reactions



G

G

G

G

C

C

C G

C

C

G

C

C

G

C

C

G

C

C

G

C

C

C

C

G

G

G

G

G

C

G

C

Plus Strand

Plus Strand

Minus Strand

Plus Strand

Plus Strand

Minus Strand

3'

3'

3'

3'

3'

5'

5'

5'

3'

3'

5'

5'

5'
+

Complex Dissociation

Synthesis

Synthesis

Complementary replication as the
simplest copying mechanism of RNA
Complementarity is determined by
Watson-Crick base pairs:

GÍC and A=U
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Reproduction of organisms or replication of molecules as the basis of selection



Selection equation:     [Ii] = xi Æ 0 ,  fi > 0

Mean fitness or dilution flux, φ (t), is a non-decreasing function of time, 

Solutions are obtained by integrating factor transformation
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s = ( f2-f1) / f1;  f2 > f1 ; x1(0) = 1 - 1/N ; x2(0) = 1/N 
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Selection of advantageous mutants in populations of N = 10 000 individuals



Changes in RNA sequences originate from replication 
errors called mutations.

Mutations occur uncorrelated to their consequences
in the selection process and are, therefore, commonly 
characterized as random elements of evolution.
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GAA AA   UCCCG

GAAUCC A   CGA

GAA AAUCCCGUCCCG

GAAUCCA

The origins of changes in RNA sequences are replication errors called mutations.
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Chemical kinetics of replication and mutation as parallel reactions
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City-block distance in sequence space 2D Sketch of sequence space

Single point mutations as moves in sequence space



Mutation-selection equation: [Ii] = xi Æ 0,  fi > 0, Qij Æ 0

Solutions are obtained after integrating factor transformation by means of an 
eigenvalue problem
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The molecular quasispecies in sequence space
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Error rate  p = 1-q
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Quasispecies as a function of the replication accuracy q
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