# Some Mathematical Challenges from Life Sciences 

## Part II

Peter Schuster, Universität Wien<br>Peter F.Stadler, Universität Leipzig<br>Günter Wagner, Yale University, New Haven, CT<br>Angela Stevens, Max-Planck-Institut für Mathematik in den<br>Naturwissenschaften, Leipzig<br>and<br>Ivo L. Hofacker, Universität Wien

Oberwolfach, GE, 16.-21.11.2003

# Web-Page for further information: 

http://www.tbi.univie.ac.at/~pks

1. Mathematics and the life sciences in the $21^{\text {st }}$ century
2. Selection dynamics
3. RNA evolution in silico and optimization of structure and properties


Reactions in the continuously stirred tank reactor (CSTR)


Reversible first order reaction in the flow reactor


Autocatalytic second order and uncatalyzed reaction in the flow reactor


Autocatalytic third order and uncatalyzed reaction in the flow reactor

Autocatalytic third order reactions

Direct, $\mathbf{A}+\mathbf{2 X} \mathbf{X} \mathbf{X}$, or hidden in the reaction mechanism (Belousow-Zhabotinskii reaction).


Pattern formation in autocatalytic third order reactions
G.Nicolis, I.Prigogine. Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations. John Wiley, New York 1977

Autocatalytic second order reactions
Direct, $\mathbf{A}+\mathbf{I} \square \mathbf{2 I}$, or hidden in the reaction mechanism


Chemical self-enhancement Combustion and chemistry of flames

Selection of laser modes

Selection of molecular species competing for common sources

Autocatalytic second order reactions are the basis of selection processes.
The autocatalytic step is formally equivalent to replication or reproduction.

$$
\begin{aligned}
& \mathrm{A}+\mathrm{I}_{1} \underset{\mathrm{~d}_{1}}{\stackrel{\mathrm{k}_{1}}{\rightleftarrows}} 2 \mathrm{I}_{1} \\
& \mathrm{~A}+\mathrm{I}_{2} \underset{\mathrm{~d}_{2}}{\stackrel{\mathrm{k}_{2}}{\rightleftarrows}} 2 \mathrm{I}_{2} \\
& \mathrm{~A}+\mathrm{I}_{3} \underset{\mathrm{~d}_{3}}{\stackrel{\mathrm{k}_{3}}{\rightleftarrows}} 2 \mathrm{I}_{3} \\
& \mathrm{~A}+\mathrm{I}_{4} \underset{\mathrm{~d}_{4}}{\stackrel{\mathrm{k}_{4}}{\rightleftarrows}} 2 \mathrm{I}_{4} \\
& \mathrm{~A}+\mathrm{I}_{5} \underset{\mathrm{~d}_{5}}{\stackrel{\mathrm{k}_{5}}{\rightleftarrows}} 2 \mathrm{I}_{5}
\end{aligned}
$$



Replication in the flow reactor
P.Schuster \& K.Sigmund, Dynamics of evolutionary optimization, Ber.Bunsenges.Phys.Chem. 89: 668-682 (1985)


$$
\begin{aligned}
& \mathrm{A}+\mathrm{I}_{1} \rightleftarrows 2 \mathrm{I}_{1} \\
& \mathrm{~A}+\mathrm{I}_{2} \rightleftarrows 2 \mathrm{I}_{2} \\
& \mathrm{~A}+\mathrm{I}_{3} \rightleftarrows 2 \mathrm{I}_{3} \\
& \mathrm{~A}+\mathrm{I}_{4} \rightleftarrows 2 \mathrm{I}_{4} \\
& \mathrm{~A}+\mathrm{I}_{5} \rightleftarrows 2 \mathrm{I}_{5} \\
& \mathrm{k}_{1}>\mathrm{k}_{2}>\mathrm{k}_{3}>\mathrm{k}_{4}>\mathrm{k}_{5}
\end{aligned}
$$

Selection in the flow reactor: Reversible replication reactions


Selection in the flow reactor: Irreversible replication reactions



Complementary replication as the simplest copying mechanism of RNA Complementarity is determined by Watson-Crick base pairs:
$G \square C$ and $A=U$
(A) $+\mathrm{I}_{1} \longrightarrow \mathrm{f}_{1}+\mathrm{I}_{1}$
(A) $+\mathrm{I}_{2} \longrightarrow \mathrm{f}_{2} \longrightarrow \mathrm{I}_{2}$
$(A)+I_{i} \longrightarrow I_{i} \begin{aligned} & I_{i} \\ & +\end{aligned}$

$$
\begin{aligned}
& \mathrm{dx}_{\mathrm{i}} / \mathrm{dt}=\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}} \Phi=\mathrm{x}_{\mathrm{i}}\left(\mathrm{f}_{\mathrm{i}}-\Phi\right) \\
& \Phi=\Sigma_{\mathrm{j}} \mathrm{f}_{\mathrm{j}} \mathrm{x}_{\mathrm{j}} ; \quad \Sigma_{\mathrm{j}} \mathrm{x}_{\mathrm{j}}=1 ; \quad \mathrm{i}, \mathrm{j}=1,2, \ldots, \mathrm{n} \\
& {\left[\mathrm{I}_{\mathrm{i}}\right]=\mathrm{x}_{\mathrm{i}} \square 0 ; \mathrm{i}=1,2, \ldots, \mathrm{n} ;} \\
& {[\mathrm{A}]=\mathrm{a}=\mathrm{constant}} \\
& \mathrm{f}_{\mathrm{m}}=\max \left\{\mathrm{f}_{\mathrm{j}} ; \mathrm{j}=1,2, \ldots, \mathrm{n}\right\} \\
& \mathrm{x}_{\mathrm{m}}(\mathrm{t}) \square 1 \text { for } \mathrm{t} \square \mathrm{z}
\end{aligned}
$$

Reproduction of organisms or replication of molecules as the basis of selection

Selection equation: $\quad\left[\mathrm{I}_{i}\right]=x_{i} \square 0, f_{i}>0$

$$
\frac{d x_{i}}{d t}=x_{i}\left(f_{i}-\phi\right), \quad i=1,2, \cdots, n ; \quad \sum_{i=1}^{n} x_{i}=1 ; \quad \phi=\sum_{j=1}^{n} f_{j} x_{j}=\bar{f}
$$

Mean fitness or dilution flux, $\phi(\mathrm{t})$, is a non-decreasing function of time,

$$
\frac{d \phi}{d t}=\sum_{i=1}^{n} f_{i} \frac{d x_{i}}{d t}=\overline{f^{2}}-(\bar{f})^{2}=\operatorname{var}\{f\} \geq 0
$$

Solutions are obtained by integrating factor transformation

$$
x_{i}(t)=\frac{x_{i}(0) \cdot \exp \left(f_{i} t\right)}{\sum_{j=1}^{n} x_{j}(0) \cdot \exp \left(f_{j} t\right)} ; \quad i=1,2, \cdots, n
$$

$$
\mathbf{s}=\left(f_{2}-f_{1}\right) / f_{1} ; f_{2}>f_{1} ; x_{1}(0)=1-1 / \mathrm{N} ; x_{2}(0)=1 / \mathrm{N}
$$



Selection of advantageous mutants in populations of $\mathrm{N}=10000$ individuals

Changes in RNA sequences originate from replication errors called mutations.

Mutations occur uncorrelated to their consequences in the selection process and are, therefore, commonly characterized as random elements of evolution.


The origins of changes in RNA sequences are replication errors called mutations.

$$
\begin{aligned}
& \mathrm{dx}_{\mathrm{i}} / \mathrm{dt}=\Sigma_{\mathrm{j}} \mathrm{f}_{\mathrm{j}} \mathrm{Q}_{\mathrm{ji}} \mathrm{x}_{\mathrm{j}}-\mathrm{x}_{\mathrm{i}} \Phi \\
& \Phi=\Sigma_{\mathrm{j}} \mathrm{f}_{\mathrm{j}} \mathrm{x}_{\mathrm{i}} ; \quad \Sigma_{\mathrm{j}} \mathrm{x}_{\mathrm{j}}=1 ; \Sigma_{\mathrm{i}} \mathrm{Q}_{\mathrm{ij}}=1 \\
& {\left[\mathrm{I}_{\mathrm{i}}\right]=\mathrm{x}_{\mathrm{i}} \square 0 ; \mathrm{i}=1,2, \ldots, \mathrm{n} \text {; }} \\
& \text { [A] }=\mathrm{a}=\text { constant } \\
& \mathrm{Q}_{\mathrm{ij}}=(1-\mathrm{p})^{\ell-\mathrm{d}(\mathrm{i}, \mathrm{j})} \mathrm{p}^{\mathrm{d}(\mathrm{i}, \mathrm{j})} \\
& \text { p .......... Error rate per digit } \\
& \ell \text {........... Chain length of the } \\
& \text { polynucleotide } \\
& \text { d(i, j) .... Hamming distance } \\
& \text { between } I_{i} \text { and } I_{j}
\end{aligned}
$$

Chemical kinetics of replication and mutation as parallel reactions


City-block distance in sequence space


2D Sketch of sequence space

Single point mutations as moves in sequence space

Mutation-selection equation: $\left[\mathrm{I}_{i}\right]=x_{i} \square 0, f_{i}>0, Q_{i j} \square 0$

$$
\frac{d x_{i}}{d t}=\sum_{j=1}^{n} f_{j} Q_{j i} x_{j}-x_{i} \phi, \quad i=1,2, \cdots, n ; \quad \sum_{i=1}^{n} x_{i}=1 ; \quad \phi=\sum_{j=1}^{n} f_{j} x_{j}=\bar{f}
$$

Solutions are obtained after integrating factor transformation by means of an eigenvalue problem

$$
x_{i}(t)=\frac{\sum_{k=0}^{n-1} \ell_{i k} \cdot c_{k}(0) \cdot \exp \left(\lambda_{k} t\right)}{\sum_{j=1}^{n} \sum_{k=0}^{n-1} \ell_{j k} \cdot c_{k}(0) \cdot \exp \left(\lambda_{k} t\right)} ; \quad i=1,2, \cdots, n ; \quad c_{k}(0)=\sum_{i=1}^{n} h_{k i} x_{i}(0)
$$

$W \div\left\{f_{i} Q_{i j} ; i, j=1,2, \cdots, n\right\} ; L=\left\{\ell_{i j} ; i, j=1,2, \cdots, n\right\} ; L^{-1}=H=\left\{h_{i j} ; i, j=1,2, \cdots, n\right\}$

$$
L^{-1} \cdot W \cdot L=\Lambda=\left\{\lambda_{k} ; k=0,1, \cdots, n-1\right\}
$$



The molecular quasispecies in sequence space


The quasispecies on the concentration simplex $S_{3}=\left\{x_{i} \geq 0, i=1,2,3 ; \sum_{i=1}^{3} x_{i}=1\right\}$


Quasispecies as a function of the replication accuracy q

