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1. Mathematics and the life sciences in the 21st century

2. Selection dynamics

3. RNA evolution in silico and optimization of structure and properties
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Binary sequences are encoded
by their decimal equivalents:
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Population and population support in 
sequence space:  The master sequence
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Decrease in mean fitness
due to quasispecies formation

The increase in RNA production rate during a serial transfer experiment



Sk I.   = ( )ψ
fk f Sk   = ( )

Sequence space Structure space Real  numbers

Mapping from sequence space into structure space and into function
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Hamming distance  d (S ,S ) = H 1 2 4

d (S ,S ) = 0H 1 1

d (S ,S ) = d (S ,S )H H1 2 2 1

d (S ,S )  d (S ,S ) + d (S ,S )H H H1 3 1 2 2 3¶

(i)

(ii)

(iii)

The Hamming distance between  structures in parentheses notation forms a metric 
in structure space
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Replication rate constant:

fk = g / [a + DdS
(k)]

DdS
(k) = dH(Sk,St)

Evaluation of RNA secondary structures yields replication rate constants



Stock Solution Reaction Mixture

Replication rate constant:

fk = g / [a + DdS
(k)]

DdS
(k) = dH(Sk,St)

Selection constraint:

# RNA molecules is 
controlled by the flow

NNtN ±≈)(

The flowreactor as a 
device for studies of 
evolution in vitro and 
in silico
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The molecular quasispecies
in sequence space
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In silico optimization in the flow reactor: Trajectory (biologists‘ view)

Time  (arbitrary units)
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In silico optimization in the flow reactor: Trajectory (physicists‘ view)
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Movies of optimization trajectories over the AUGC and the GC alphabet



Runtime of trajectories
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Statistics of the lengths of trajectories from initial structure to target (AUGC-sequences)



44
A

ve
ra

ge
 s

tr
uc

tu
re

 d
is

ta
nc

e 
to

 ta
rg

et
  

d S
   

D

Evolutionary trajectory

1250

10

0

44

42

40

38

36
Relay steps N

um
ber of relay step

Time 

Endconformation of optimization



4443
A

ve
ra

ge
 s

tr
uc

tu
re

 d
is

ta
nc

e 
to

 ta
rg

et
  

d S
   

D

Evolutionary trajectory

1250

10

0

44

42

40

38

36
Relay steps N

um
ber of relay step

Time 

Reconstruction of the last step 43 Á 44
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Reconstruction of last-but-one step 42 Á 43 (Á 44)
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Reconstruction of step 41 Á 42 (Á 43 Á 44)
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Reconstruction of step 40 Á 41 (Á 42 Á 43 Á 44)
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Evolutionary process

Reconstruction
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Transition inducing point mutations Neutral point mutations

Change in RNA sequences during the final five relay steps 39 Á 44



In silico optimization in the flow reactor: Trajectory and relay steps
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Calculation of transition probabilities by means of a birth-and-death process with immigration



10
08

12
14

Time  (arbitrary units)

Av
er

ag
e 

st
ru

ct
ur

e 
di

st
an

ce
 

to
 ta

rg
et

  
d S

   
D

5002500

20

10

Uninterrupted presence

Evolutionary trajectory

N
um

ber of relay step

28 neutral point mutations during 
a long quasi-stationary epoch

Transition inducing point mutations Neutral point mutations

Neutral genotype evolution during phenotypic stasis 
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In silico optimization in the flow reactor: Main transitions

Main  transitionsRelay steps

Time  (arbitrary units)
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Three important steps in the formation of the tRNA clover leaf from a randomly chosen 
initial structure corresponding to three main transitions.



Number of transitions
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Statistics of the numbers of transitions from initial structure to target (AUGC-sequences)



 Alphabet Runtime Transitions Main transitions  No. of runs 
     

AUGC 385.6 22.5 12.6 1017 
GUC 448.9 30.5 16.5 611 
GC 2188.3 40.0 20.6 107 

 

Statistics of trajectories and relay series (mean values of log-normal distributions)
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Statistics of evolutionary trajectories

Population 
size

N

Number of 
replications
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Number of 
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The number of main transitions or evolutionary innovations is constant.  
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Variation in genotype space during optimization of phenotypes

Mean Hamming distance within the population and drift velocity of the population center
in sequence space. 



Spread of population in sequence space during a quasistationary epoch:  t = 150



Spread of population in sequence space during a quasistationary epoch:  t = 170



Spread of population in sequence space during a quasistationary epoch:  t = 200



Spread of population in sequence space during a quasistationary epoch:  t = 350



Spread of population in sequence space during a quasistationary epoch:  t = 500



Spread of population in sequence space during a quasistationary epoch:  t = 650



Spread of population in sequence space during a quasistationary epoch:  t = 820



Spread of population in sequence space during a quasistationary epoch:  t = 825



Spread of population in sequence space during a quasistationary epoch:  t = 830



Spread of population in sequence space during a quasistationary epoch:  t = 835



Spread of population in sequence space during a quasistationary epoch:  t = 840



Spread of population in sequence space during a quasistationary epoch:  t = 845



Spread of population in sequence space during a quasistationary epoch:  t = 850



Spread of population in sequence space during a quasistationary epoch:  t = 855
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Mapping from sequence space into structure space and into function
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Sequence space Structure space Real  numbers

The pre-image of the structure Sk in sequence space is the neutral network Gk



Neutral networks are sets of sequences forming the same structure. 
Gk is the pre-image of the structure Sk in sequence space:

Gk = y-1(Sk) π {Ij | y(Ij) = Sk}

The set is converted into a graph by connecting all sequences of 
Hamming distance one.

Neutral networks of small RNA molecules can be computed by 
exhaustive folding of complete sequence spaces, i.e. all RNA 
sequences of  a given chain length. This number, N=4n , becomes 
very large with increasing length, and is prohibitive for numerical  
computations. 

Neutral networks can be modelled by random graphs in sequence 
space. In this approach, nodes are inserted randomly into sequence 
space until the size of the pre-image, i.e. the number of neutral 
sequences, matches the neutral network to be studied.
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A connected neutral network



Giant Component

A multi-component neutral network
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Reference for postulation and in silico verification of neutral networks



Structure
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GkNeutral Network

Structure S  k

Gk  Cà k

Compatible Set  Ck

The compatible set Ck of a structure Sk consists of all sequences which form 
Sk as its minimum free energy structure (the neutral network Gk) or one of its
suboptimal structures.



Structure S  0

Structure S  1

The intersection of two compatible sets is always non empty:  C0 Ú C1 â Ù



Reference for the definition of the intersection 
and the proof of the intersection theorem
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A ribozyme switch

E.A.Schultes, D.B.Bartel, Science 
289 (2000), 448-452



Two ribozymes of chain lengths n = 88 nucleotides: An artificial ligase (A) and a natural cleavage 
ribozyme of hepatitis-d-virus (B)



The sequence at the intersection: 

An RNA molecules which is 88 
nucleotides long and can form both 
structures



Two neutral walks through sequence space with conservation of structure and catalytic activity
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Examples of rugged landscapes on Earth Bryce Canyon
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Evolutionary optimization in absence of neutral paths in sequence space



Genotype Space

Fi
tn

es
s

Start of Walk

End of Walk

Random Drift Periods

Adaptive Periods

Evolutionary optimization including neutral paths in sequence space



Grand Canyon

Example of a landscape on Earth with ‘neutral’ 
ridges and plateaus



Neutral ridges and plateus
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