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3. RNA evolution in silico and optimization of structure and properties
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Mutant class

0 0
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Binary sequences are encoded
by their decimal equivalents:
2
</ 74 C =0 and G =1, for example,
3 "0" =00000=CCCCC,
"14" = 01110 = CGGGC,
4 "29" = 11101 = GGGCQG, ete.

Sequence space of binary sequences of chain lenght n=>5



Master sequence
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Population support

Population and population support in

sequence space: The master sequence
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Population and population support in
sequence space: The quasi-species
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The increase in RNA production rate during a serial transfer experiment
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Mapping from sequence space into structure space and into function



5’-end 3’-end
GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGACGGUCCCAUCGGUAcCuUcCccA

RNAStudio.Ink
GGCGCGCCCGGCGCC
GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGACGGUCCCAUCGGUACUCcA

UGGUUACGCGUUGGGGUAACGAAGAUUCCGAGAGGAGUUUAGUGACUAGAGG

Folding of RNA sequences into secondary structures of minimal free energy, DG,>%



Hamming distance dy(S,S,) =4

The Hamming distance between structures in parentheses notation forms a metric
in structure space



Replication rate constant:
f,=g/[a+ Ddq®] .
Ddg 0= dyy(S,.,Sy) v e

Evaluation of RNA secondary structures yields replication rate constants



Stock Solution —> Reaction Mixture ——>
e

Replication rate constant:
f,=g/[a+ Ddq®]
Ddg ®=dy(S,.Sp)

Selection constraint:

# RNA molecules is
controlled by the flow

N(@)~N +N

The flowreactor as a
device for studies of
evolution in vitro and
in silico




Master sequence

Mutant cloud

mutations
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The molecular quasispecies

in sequence space



Genotype-Phenotype Mapping
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Evolutionary dynamics
including molecular phenotypes



w
° |
o
o
'O 404
()
| .
=
O -
o . .
0 Evolutionary trajectory
IS 30
IS
c |
e
‘t
o 20
O
C
S
L2 1
©
%
© 10
2
< |
0 T T T I !
0 250 500 750 1000 1250

Time (arbitrary units)

In silico optimization in the flow reactor: Trajectory (biologists® view)
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Average structure distance to target Ddg
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In silico optimization in the flow reactor: Trajectory (physicists® view)
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Movies of optimization trajectories over the AUGC and the GC alphabet
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Statistics of the lengths of trajectories from initial structure to target (AUGC-sequences)



Endconformation of optimization

Average structure distance to target Ddg
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Reconstruction of the relay series
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GGGAUAUACGEGGCCCGUCAAGGCCGUAGCGAACCGACUGUUGAAACUGUGCGAAUAAUCCGCACCCUGUCCCGGG
COCCCC . o )DDA€ 4 € { UMM )DDDD IR CCCCC o).
GGGAUAUACGGGECCCGUCAAGGCCGUAGCGAACCGACUGUUGAGACUGUGCGAAUAAUCCGCACCCUGUCCCGGG
GGGAUAUACGGGECCCGUCAAGGCCGUAGCGAACCGACUGUUGAGACUGUGCGAAUAAUCCGCACCCUGUCCCGGG
CCCCCC L GO )))) . CCCCC s )DD DD I CCCCCo 22200 ..
GGGAUAUACGGGCCCCUUCAAGBCCAUAGCGAACCGACUGUUGAAACUGUGCGAAUAAUCCGCACCCUGUCCCGGA
GGGAUAUACGGGCCCCUUCAAGBCCAUAGCGAACCGACUGUUGAAACUGUGCGAAUAAUCCGCACCCUGUCCCGGA
CCCCCC . (O 3))  (CCCCa e D). CCCCCa oo e2220)..0000)) ...
GGGAMGAUAGGGCGUGUGAUAGCCCAUAGCGAACCCCCCGCUGAGCUUGUGCGACGUUUGUGCACCCUGUCCCGCU
GGGABGAUAGGGCGUGUGAUAGCCCAUAGCGAACCCCCCGCUGAGCUUGUGCGACGUUUGUGCACCCUGUCCCGCU
COCCCC . (00t )DDD I €€ € § GRS )DDDD I CCCCC. .o a2)2)).0) 0000 ..
GGGMAGAUAGGGCGUGUGAUAGCCCAUAGCGAACCCCCCGCUGAGCUUGUGCGACGUUUGUGCACCCUGUCCCGCU
GGGBAGAUAGGGCGUGUGAUAGCCCAUAGCGAACCCCCCGCUGAGCUUGUGCGACGUUUGUGCACCCUGUCCCGCU
COCCCC L 0 )0 OO )DBDD PN (et ))))ININI ...

Transition inducing point mutations

Change in RNA sequences during the final five relay steps 39 A 44
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In silico optimization in the flow reactor: Trajectory and relay steps
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Birth-and-death process with immigration
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Transition inducing point mutations

Neutral genotype evolution during phenotypic stasis
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A random sequence of minor or continuous transitions in the relay series
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A random sequence of minor or continuous transitions in the relay series
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In silico optimization in the flow reactor: Main transitions
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Three important steps in the formation of the tRNA clover leaf from a randomly chosen
initial structure corresponding to three main transitions.
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Alphabet Runtime Transitions  Main transitions  No. of runs

AUGC 385.6 22.5 12.6 1017
GUC 448.9 30.5 16.5 611
GC 2188.3 40.0 20.6 107

Statistics of trajectories and relay series (mean values of log-normal distributions)



Transition probabilities determining the presence of phenotype S, in the population
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Statistics of evolutionary trajectories

Population Number of Number of Number of main
size replications transitions transitions
N < Nyep > < Nng > < Ngr >
1000 (5.5 + [6.9,3.1]) x 107 92.7 + [80.3,43.0] 8.8 + [2.4,1.9]
2000 (6.0 + [11.1,3.9]) x 107 55.7 £ [30.7,19.8] 8.9 £ [2.8,2.1]
3 000 (6.6 + [21.0,5.0]) x 10’ 44.2 + [25.9,16.3] 8.1 £ [2.3,1.8]
10 000 (1.2 + [1.3,0.6]) x 108 35.9 + [10.3,8.0] 10.3 + [2.6,2.1]
20 000 (1.5 + [1.4,0.7]) x 108 28.8 + [5.8,4.8] 9.0 + [2.8,2.2]
30 000 (2.2 + [3.1,1.3]) x 108 29.8 +[7.3,5.9] 8.7 + [2.4,1.9]
100 000 (3+[2,1]) x 108 24 + [6,5] 9+2

The number of main transitions or evolutionary innovations is constant.
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Transition inducing point mutations

Neutral genotype evolution during phenotypic stasis
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Variation in genotype space during optimization of phenotypes

Mean Hamming distance within the population and drift velocity of the population center
in sequence space.



Spread of population in sequence space during a quasistationary epoch: t= 150



Spread of population in sequence space during a quasistationary epoch: t= 170



Spread of population in sequence space during a quasistationary epoch: t =200
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Spread of population in sequence space during a quasistationary epoch: t= 350
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Spread of population in sequence space during a quasistationary epoch: t= 500
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Spread of population in sequence space during a quasistationary epoch: t= 650



Spread of population in sequence space during a quasistationary epoch: t= 820



Spread of population in sequence space during a quasistationary epoch: t= 825




Spread of population in sequence space during a quasistationary epoch: t= 830



Spread of population in sequence space during a quasistationary epoch: t= 835




Spread of population in sequence space during a quasistationary epoch: t= 840



Spread of population in sequence space during a quasistationary epoch: t= 845




Spread of population in sequence space during a quasistationary epoch: t= 850



Spread of population in sequence space during a quasistationary epoch: t= 855
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Mapping from sequence space into structure space and into function
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Function

Sequence space Structure space Real numbers

The pre-image of the structure S, in sequence space is the neutral network G,



Neutral networks are sets of sequences forming the same structure.
G, 1s the pre-image of the structure S, in sequence space:

G, = y_l(sk) n {Ij | Y(Ij) =S, }

The set 1s converted into a graph by connecting all sequences of
Hamming distance one.

Neutral networks of small RNA molecules can be computed by
exhaustive folding of complete sequence spaces, 1.e. all RNA
sequences of a given chain length. This number, N=4" | becomes
very large with increasing length, and is prohibitive for numerical
computations.

Neutral networks can be modelled by random graphs in sequence
space. In this approach, nodes are inserted randomly into sequence
space until the size of the pre-image, 1.e. the number of neutral
sequences, matches the neutral network to be studied.
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Mean degree of neutrality and connectivity of neutral networks
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A multi-component neutral network
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Degree of neutrality of cloverleaf RNA secondary structures over different alphabets



From sequences to shapes and back: a case study in
RNA secondary structures

PETER SCHUSTER"?3 WALTER FONTANA?, PETER F.STADLER??
aNDp IVO L. HOFACKER?

! Institut fiir Molekulare Biotechnologie, Beutenbergstrasse 11, PF 100813, D-07708 Jena, Germany
* Institut fiir Theoretische Chemie, Universitit Wien, Austria
® Santa Fe Institute, Santa Fe, U.S.A.

SUMMARY

RNA folding is viewed here as a map assigning secondary structures to sequences. At fixed chain length
the number of sequences far exceeds the number of structures. Frequencies of structures are highly non-
uniform and follow a generalized form of Zipf’s law: we find relatively few common and many rare ones.
By using an algorithm for inverse folding, we show that sequences sharing the same structure are
distributed randomly over sequence space. All common structures can be accessed from an arbitrary
sequence by a number of mutations much smaller than the chain length. The sequence space is percolated
by extensive neutral networks connecting nearest neighbours folding into identical structures. Implications
for evolutionary adaptation and for applied molecular evolution are evident: finding a particular
structure by mutation and selection is much simpler than expected and, even if catalytic activity should
turn out to be sparse in the space of RNA structures, it can hardly be missed by evolutionary processes.

Proc. R. Soc. Lond. B (1994) 255, 279284 279
Printed in Great Britain
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Figure 4. Neutral paths. A neutral path is defined by a series
of nearest neighbour sequences that fold into identical
structures. Two classes of nearest neighbours are admitted:
neighbours of Hamming distance 1, which are obtained by
single base exchanges in unpaired stretches of the structure,
and neighbours of Hamming distance 2, resulting from base
pair exchanges in stacks. Two probability densities of
Hamming distances are shown that were obtained by
searching for neutral paths in sequence space: (i) an upper
bound for the closest approach of trial and target sequences
(open circles) obtained as endpoints of neutral paths
approaching the target from a random trial sequence (185
targets and 100 trials for each were used); (ii) a lower bound
for the closest approach of trial and target sequences (open
diamonds) derived from secondary structure statistics
(Fontana et al. 1993a; see this paper, §4); and (iii) longest
distances between the reference and the endpoints of
monotonously diverging neutral paths (filled circles) (500
reference sequences were used).

© 1994 The Royal Society

Reference for postulation and in silico verification of neutral networks
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Random graph theory is used to model and analyse the relationships between sequences and
secondary structures of RNA molecules, which are understood as mappings from sequence
space into shape space. These maps are non-invertible since there are always many orders of
magnitude more sequences than structures. Sequences folding into identical structures form
neutral networks. A neutral network is embedded in the set of sequences that are compatible
with the given structure. Networks are modeled as graphs and constructed by random choice
of vertices from the space of compatible sequences. The theory characterizes neutral
networks by the mean fraction of neutral neighbors (A). The networks are connected and
percolate sequence space if the fraction of neutral nearest neighbors exceeds a threshold
value (A > A*). Below threshold (A < A*), the networks are partitioned into a largest “giant”
component and several smaller components. Structures are classified as “common” or
“rare” according to the sizes of their pre-images, i.e. according to the fractions of sequences
folding into them. The neutral networks of any pair of two different common structures
almost touch each other, and, as expressed by the conjecture of shape space covering
sequences folding into almost all common structures, can be found in a small ball of an
arbitrary location in sequence space. The results from random graph theory are compared to
data obtained by folding large samples of RNA sequences. Differences are explained in
terms of specific features of RNA molecular structures. © 1997 Society for Mathematical
Biology

THEOREM 5. INTERSECTION-THEOREM. Let s and s' be arbitrary secondary
structures and C[s). C[s'] their corresponding compatible sequences. Then,

Cls]InC[s'] # 2.

Proof. Suppose that the alphabet admits only the complementary base pair [XY] and we
ask for a sequence x compatible to both s and s'. Then j(s,s') = D,, operates on the set of
all positions {x,,...,x,}. Since we have the operation of a dihedral group, the orbits are
either cycles or chains and the cycles have even order. A constraint for the sequence
compatible to both structures appears only in the cycles where the choice of bases is not
independent. It remains to be shown that there is a valid choice of bases for each cycle,
which is obvious since these have even order. Therefore, it suffices to choose an alternating
sequence of the pairing partners X and Y. Thus, there are at least two different choices for
the first base in the orbit. u

Remark. A generalization of the statement of theorem 5 to three differ-
ent structures is false.

Reference for the definition of the intersection
and the proof of the intersection theorem
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One Sequence, Two Ribozymes:
Implications for the Emergence
of New Ribozyme Folds

Erik A. Schultes and David P. Bartel*

We describe a single RMA sequence that can assume either of two ribozyme
folds and catalyze the two respective reactions. The two ribozyme folds share
no evolutionary history and are completely different, with no base pairs (and
prabably no hydrogen bonds) in common. Minor variants of this sequence are
highly active for one or the other reaction, and can be accessed from prototype
ribozymes through a series of neutral mutations. Thus, in the course of evo-
lution, new RNA folds could arise from preexisting folds, without the need to
carry inactive intermediate sequences, This raises the possibility that biological
RMAs having no structural or functional similarity might share a common
ancestry. Furthermore, functional and structural divergence might, in some
cases, precede rather than follow gene duplication.

Related protein or RNA sequences with the
same folded conformation can often perform
very different biochemical functions, indi

ate isolates have the same fold and function, it
is lhnught that l.hey descended from a common
gh a series of mutational variants

that new biochemical functions can arise ﬁ'om
preexisting folds. But what evolutionary mech-
anisms give rise to sequences with new macro-
molecular folds? When considering the origin
of new folds, it is useful to picture, among all
sequence possibilities, the distribution of se-
quences with a particular fold and function.

that were eech functional. Hence, sequence het-
erogeneity among divergent isolates implies the
existence of paths through sequence space that
have allowed neutral drift from the ancestral
sequence to each isolate. The set of all possible
neutral paths composes a “neutral network,”
connecting in sequence space those widely dis-
persed seq sharing a particular fold and

This distribution can range very far in seq
space (1), For example, only seven nucleotides
are strictly conserved among the group I self-

activity, such that any sequence on the network
can potentially access very distant sequences by
neutral ions (3-5).

splicing introns, yet secondary (and p ly
tertiary) structure within the core of the ri-
bozyme is preserved (2). Because these dispar-
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Theoretical analyses using algorithms for
predicting RNA secondary structure have
suggested that different neutral networks are
interwoven and can approach each other very
closely (3, 5-&). Of particular interest is
whether ribozyme neutral networks approach
each other so closely that they intersect, If so,
a single sequence would be capable of fold-
ing into two different conformations, would
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have two different catalytic activities, and
could access by neutral drift every sequence
on both networks. With intersecting net-
works, RNAs with novel structures and ac-
tivities could arise from previously existing
rlhozymcs, without the need to carry non-

as lutionary inter-
mediates. l-icre, we explore the proximity of
neutral networks experimentally, at the level
of RNA function. We describe a close appo-
sition of the neutral networks for the hepatitis
delta virus (HDV) self-cleaving ribozyme
and the class III self-ligating ribozyme.

In choosing the two ribozymes for this in-
vestigation, an important criterion was that they
share no evolutionary history that might con-
found the evolutionary interpretations of our
results. Chuosmg at least one artificial -
b dependent evolutionary his-
tories. The class 1II ligase is a synthetic ri-
bozyme isolated previously from a pool of ran-
dom RNA sequences (9). It joins an oligonu-
cleotide substrate to its 5' terminus. The
prototype ligase sequence (Fig. 1A) is a short-
ened version of the most active class 11l variant
isolated after 10 cycles of in vitro selection and

lution. This minimal retains the
activity of the full-length isolate (10). The HDV
ribozyme carries out the site-specific self-cleav-
age reactions needed during the life cycle of
HDV, a satellite virus of hepatitis B with a
circular, single-stranded RNA genome (17).
The prototype HDV construct for our study
(Fig. 1B) is a shortened version of the antige-
nomic HDV ribozyme (/2), which undergoes
self-cleavage at a rate similar to that reported
for other antigenomic constructs (13, 14).

The prototype class III and HDV ribozymes
have no more than the 25% sequence identity
expected by chance and no fortuitous strue-
tural similarities that might favor an intersec-
tion of their two neutral networks. Neverthe-
less, seq; can be designed that simul
neously satisfy the base-pairing requirements

21 JULY 2000 WVOL 289 SCIENCE www.sciencemag.org
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