Some Mathematical Challenges from Life Sciences

Part III

Peter Schuster, Universität Wien
Peter F.Stadler, Universität Leipzig
Günter Wagner, Yale University, New Haven, CT
Angela Stevens, Max-Planck-Institut für Mathematik in den
Naturwissenschaften, Leipzig
and
Ivo L. Hofacker, Universität Wien

Oberwolfach, GE, 16.-21.11.2003

1. Mathematics and the life sciences in the $21^{\text {st }}$ century
2. Selection dynamics
3. RNA evolution in silico and optimization of structure and properties

5'-end GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA 3'-end

Mutant class

0

Binary sequences are encoded by their decimal equivalents:

$$
\begin{aligned}
& " 0 " \equiv \mathbf{0 0 0 0 0}=\mathrm{CCCCC} \\
& " \mathbf{1 4} " \equiv \mathbf{0 1 1 1 0}=\text { CGGGC, } \\
& " \mathbf{2 9} " \equiv \mathbf{1 1 1 0 1}=\text { GGGCG, etc. }
\end{aligned}
$$

Sequence space of binary sequences of chain lenght $\mathrm{n}=5$

Population and population support in sequence space: The master sequence

Population and population support in sequence space: The quasi-species

The increase in RNA production rate during a serial transfer experiment

Mapping from sequence space into structure space and into function

GGCGCGCCCGGCGCC
GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGACGGUCCCAUCGGUACUCCA UGGUUACGCGUUGGGGUAACGAAGAUUCCGAGAGGAGUUUAGUGACUAGAGG

Folding of RNA sequences into secondary structures of minimal free energy, ${ }^{\prime} \mathrm{G}_{0}{ }^{300}$

Hamming distance $\mathrm{d}_{\mathrm{H}}\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)=4$
(i) $\mathrm{d}_{\mathrm{H}}\left(\mathrm{S}_{1}, \mathrm{~S}_{1}\right)=0$
(ii) $\mathrm{d}_{\mathrm{H}}\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)=\mathrm{d}_{\mathrm{H}}\left(\mathrm{S}_{2}, \mathrm{~S}_{1}\right)$
(iii) $\mathrm{d}_{\mathrm{H}}\left(\mathrm{S}_{1}, \mathrm{~S}_{3}\right) \times \mathrm{d}_{\mathrm{H}}\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)+\mathrm{d}_{\mathrm{H}}\left(\mathrm{S}_{2}, \mathrm{~S}_{3}\right)$

The Hamming distance between structures in parentheses notation forms a metric in structure space

Replication rate constant:

$$
\begin{gathered}
\mathrm{f}_{\mathrm{k}}=\mathrm{J} /\left[\mathrm{D}+\mathrm{I}_{\mathrm{S}}{ }_{\mathrm{S}}^{\mathrm{k})}\right] \\
\mathrm{I} \mathrm{~d}_{\mathrm{S}}(\mathrm{k})=\mathrm{d}_{\mathrm{H}}\left(\mathrm{~S}_{\mathrm{k}}, \mathrm{~S}_{\mathrm{W}}\right)
\end{gathered}
$$

f_{4}

Evaluation of RNA secondary structures yields replication rate constants

Replication rate constant:

$$
\begin{gathered}
\mathrm{f}_{\mathrm{k}}=\mathrm{J} /\left[\mathrm{D}+{ }^{\prime} \mathrm{d}_{\mathrm{S}}{ }^{(\mathrm{k})}\right] \\
\quad \mathrm{d}_{\mathrm{S}}{ }^{(\mathrm{k})}=\mathrm{d}_{\mathrm{H}}\left(\mathrm{~S}_{\mathrm{k}}, \mathrm{~S}_{\mathrm{W}}\right)
\end{gathered}
$$

Selection constraint:
\# RNA molecules is controlled by the flow

$$
N(t) \approx \bar{N} \pm \sqrt{\bar{N}}
$$

The flowreactor as a device for studies of evolution in vitro and in silico

The molecular quasispecies in sequence space

Genotype-Phenotype Mapping

Evolutionary dynamics
including molecular phenotypes

In silico optimization in the flow reactor: Trajectory (biologists ${ }^{6}$ view)

In silico optimization in the flow reactor: Trajectory (physicists ${ }^{6}$ view)

AUGC
GC
Movies of optimization trajectories over the AUGC and the GC alphabet

Statistics of the lengths of trajectories from initial structure to target (AUGC-sequences)

43 44

Reconstruction of the last step $43 \square 44$

42 43 44

Reconstruction of last-but-one step $42 \square 43$ (\square 44)

41

42 \qquad 43 44

Reconstruction of step $41 \square 42(\square 43 \square$ 44)

40

Evolutionary process

Reconstruction of the relay series

GGGAUACAUGUGGCCCCUCAAGGCCCUAGCGAAACUGCUGCUGAAACCGUGUGAAUAAUCCGCACCCUGUCCCCGA
 GGGAUAUACGAGGCCCGUCAAGGCCGUAGCGAACCGACUGUUGAAACUGUGCGAAUAAUCCGCACCCUGUCCCGGG GGGAJJAUACGGGGCCCGUCAAGGCCGUAGCGAACCGACUGUUGAAACUGUGCGAAUAAUCCGCACCCUGUCCCGGG
 GGGAUAUACGGGGCCCGUCAAGGCCGUAGCGAACCGACUGUUGAG ACUGUGCGAAUAAUCCGCACCCUGUCCCGGG GGGAUAUACGGGCCCCGUCAAGGCCGUAGCGAACCGACUGUUGAGACUGUGCGAAUAAUCCGCACCCUGUCCCGGG
 GGGAUAUACGGGCCCCUUCAAGGCCAUAGCGAACCGACUGUUGAAACUGUGCGAAUAAUCCGCACCCUGUCCCGGA GGGAUAUACGGGCCCCUUCAAGCCCAUAGCGAACGGACUGUUGAAACUGUGCGAAUAAUCCGCACCCUGUCCCGGA
 GGGAUGAUAGGGCGUGUGAUAGCCCAUAGCGAACCCCCCGCUGAGCUUGUGCGACGUUUGUGCACCCUGUCCCGCU GGGAAGAUAGGGCGUGUGAUAGCCCAUAGCGAACCCCCCGCUGAGCUUGUGCGACGUUUGUGCACCCUGUCCCGCU
 GGGAAGAUAGGGCGUGUGAUAGCCCAUAGCGAACCCCCCGCUGAGCUUGUGCGACGUUUGUGCACCCUGUCCCGCU GGGCAGAUAGGGCGUGUGAUAGCCCAUAGCGAACCCCCCGCUGAGCUUGUGCGACGUUUGUGCACCCUGUCCCGCU $((((((\ldots)(((\ldots \ldots))))(((((\ldots . \ldots)))) \ldots((((\ldots . \ldots)))))))).) \ldots$

Transition inducing point mutations
Neutral point mutations

Change in RNA sequences during the final five relay steps $39 \square 44$

In silico optimization in the flow reactor: Trajectory and relay steps

Birth-and-death process with immigration

$\begin{array}{llllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \mathrm{~N}-1\end{array}$

$$
\lambda(x)=\lambda x+v(N-x) \quad \mu(x)=\mu x
$$

Calculation of transition probabilities by means of a birth-and-death process with immigration

28 neutral point mutations during a long quasi-stationary epoch

entry

GGUAUGGGCGUUGAAUAGUAGGGUUUAAACCAAUCGGCCAACGAUCUCGUGUGCGCAUUUCAUAUCCCGUACAGAA
 GGUAUGGGCGUUGAAUAAUAGGGUUUAAACCAAUCGGCCAACGAUCUCGUGUGCGCAUUUCAUAUCCCAUACAGAA GGUAUGGGGCGUUGAAUAAUAGGGUUUAAACCAAUCGGCCAACGAUCUCGUGUGCGCAUUUCAUAUACCAUACAGAA
.$(((((,(((((\ldots \ldots)(((\ldots))) \ldots . .))).) \ldots(((((\ldots \ldots)))))))))$.

UGGAUGGACGUUGAAUAACAAGGUAUCGACCAAACAACCAACGAGUAAGUGUGUACGCCCCACACACCGUCCCAAG UGGAUGGACGUUGAAUAACAAGGUAUCGACCAAACAACCAACGAGUAAGUGUGUACGCCCCACACAGCGUCCCAAG
 UGGAUGGACGUUGAAUAACAAGGUAUCGACCAAACAACCAACGAGUAAGUGUGUACGCCCCACACAGCGUCCCAAG

Transition inducing point mutations
Neutral point mutations

Neutral genotype evolution during phenotypic stasis

A random sequence of minor or continuous transitions in the relay series

A random sequence of minor or continuous transitions in the relay series

GGGAUGCACGUAGACCGAGAAGGCUGUAGCAAGGAAGCUAACGAGUAUGUGUGAAGGACCCACACCGCAUCCUAAG
$(((((((.(((() .((\ldots))))).((((\ldots .)))))).) \ldots .(((((\ldots . .))))).)))))).) \ldots$ GGGAUGCACGUAGACCGAGAAGGCUGUAGCAAGGAAGCUAACGAGUAUGUGUGAAGGACCCACACCGCAUCCUAAG GGGAUGIAACGUAGACCGAGAAGGCUGUAGCAAGGAAGCUAACGAGUAUGUGUGAAGGACCCACACCGCAUCCUAAG $((((((. .(((()((\ldots)))) ..((((\ldots .)))))).) \ldots . .(((((\ldots \ldots)))) .))))).) \ldots$ GGGAUGGACGUAGACCGUGAAGGCUGUAGCAAGGAAGCUAACGAAUAUGUGUGAAGGACCCACACCGCAUCCUAAU GGGAUGGACGUAGACCGUGAAGGCUGUAGCUAGGAAGCUAACGAAUAUGUGUGAAGGACCCACACCGCAUCCUAAU $((((((\ldots(((((.((\ldots))))) \cdot(((((\ldots)))))))) \ldots . .(((((\ldots \ldots))))) .))))).) \ldots$ GGGAUGGACGUAGACCGUGAAGGCUGUAGCUAGGAAGCUAACGAAUAUGUGUGAAGGACCCACACCGCAUCCUAAU GGGAUGGACGUAGACCGUGAAGGCUGUAGCMAGGAAGCUAACGAAUAUGUGUGAAGGACCCACACCGCAUCCUAAU
 GGGAUGCACGUAGACCGACAGGGCUAUAGCMAGGAAGCUAACGACUAUGUGUGAACGACCCACACCUCAUCCCAAA GGGAUGCACGUAGACCGACAGGGCUAUAGCUAGGAAGCUAACGACUAUGUGUGAACGACCCACACCUCAUCCCAAA ((((((.. ((((. ((.....)))). (((((...))))))))....(((((.......)))))..))))))... GGGAUGCACGUAGACCGACAGGGCUAUAGCUAGGAAGCUAACGACUAUGUGUGAACGACCCACACUUCAUCCCAAA GGGAUGCACGUAGACCGACAGGGCUAUAGCGAGGAAGCUAACGACUAUGUGUGAACGACCCACACUUCAUCCCAAA $((((((. .(((((.((\ldots))))).((((\ldots .)))))).) \ldots . .(((((\ldots \ldots))))) .))))).) \ldots$ GGGAUGCACGUGGACCGACAGGGCCAUAGCGCGGAAGCUAACGAAUACGUGUGAACGACCCACACCUCAUCCCAGA GGGAUGCACGUGGACCGACAGGGCCAUAGCGCGGAAGCUAACGAAUACGUGUGAACGACCCACACCGCAUCCCAGA $(((((((.(((((.((\ldots)))) ..((((\ldots .)))))).) \ldots .(((((\ldots \ldots))))).)))))).) \ldots$ GGGAUGCACGUGGACCGACUGGGCUAUAGCGCGGAAGCUAACGACUACGUGUGAACGACCCACACCGCAUCCCAGA AGGAUGCACGUGGACCGACUGGGCUAUAGCGCGGAAGCUAACGACUACGUGUGAACGACCCACACCGCAUCCCAGA . ((((((. (((((. ((.....))))).((((.....)))))))(((((.......))))).)))))).... GGGAUGUGCGUAGACCGAUCGGGCUGUAGCCAGGGAGCUAACGAAACCGUGUGAACCAUCCGCACUGCAUCUGACA GGGAUGUGCGUAGACCGAUCGGGCUGUAGCCAGGGAGCUAACGAAACCGUGUGAACCAUCCGCACUGCAUCUGACA $(((((((.(((()((\ldots))))).((((\ldots .)))))).) \ldots .(((((\ldots \ldots))))))))))) \ldots$ GGGAUGCACGUGGACCGGGAAGGCUGUAGCGAACGAGCUAACGAAAACGUGCAAGUGAAGUGCACUGCAUCCCCGG

Probability of occurrence of different structures in the mutational neighborhood of tRNA ${ }^{\text {phe }}$

In silico optimization in the flow reactor: Main transitions

00

09

31

44

Three important steps in the formation of the tRNA clover leaf from a randomly chosen initial structure corresponding to three main transitions.

Statistics of the numbers of transitions from initial structure to target (AUGC-sequences)

Alphabet	Runtime	Transitions	Main transitions	No. of run
AUGC	385.6	22.5	12.6	1017
GUC	448.9	30.5	16.5	611
GC	2188.3	40.0	20.6	107

Statistics of trajectories and relay series (mean values of log-normal distributions)

Transition probabilities determining the presence of phenotype $\mathrm{S}_{\mathrm{k}}{ }^{(\mathrm{j})}$ in the population

$$
\mathrm{N}_{\mathrm{sat}}^{(\mathrm{j})}=\frac{1}{\left.\mathrm{p} \cdot \boldsymbol{\ell} \cdot \ll^{(\mathrm{j})}\right\rangle}
$$

Statistics of evolutionary trajectories

Population size N	Number of replications $\left\langle\mathrm{n}_{\text {rep }}\right\rangle$	Number of transitions $\left\langle\mathrm{n}_{\text {tr }}\right\rangle$	Number of main transitions $\left\langle\mathrm{n}_{\text {dtr }}\right\rangle$
$\mathbf{1 0 0 0}$	$(5.5 \pm[6.9,3.1]) \times 10^{7}$	$92.7 \pm[80.3,43.0]$	$8.8 \pm[2.4,1.9]$
$\mathbf{2 0 0 0}$	$(6.0 \pm[11.1,3.9]) \times 10^{7}$	$55.7 \pm[30.7,19.8]$	$8.9 \pm[2.8,2.1]$
3000	$(6.6 \pm[21.0,5.0]) \times 10^{7}$	$44.2 \pm[25.9,16.3]$	$8.1 \pm[2.3,1.8]$
10000	$(1.2 \pm[1.3,0.6]) \times 10^{8}$	$35.9 \pm[10.3,8.0]$	$10.3 \pm[2.6,2.1]$
20000	$(1.5 \pm[1.4,0.7]) \times 10^{8}$	$28.8 \pm[5.8,4.8]$	$9.0 \pm[2.8,2.2]$
30000	$(2.2 \pm[3.1,1.3]) \times 10^{8}$	$29.8 \pm[7.3,5.9]$	$8.7 \pm[2.4,1.9]$
100000	$(3 \pm[2,1]) \times 10^{8}$	$24 \pm[6,5]$	9 ± 2

The number of main transitions or evolutionary innovations is constant.

28 neutral point mutations during a long quasi-stationary epoch

entry

GGUAUGGGCGUUGAAUAGUAGGGUUUAAACCAAUCGGCCAACGAUCUCGUGUGCGCAUUUCAUAUCCCGUACAGAA
 GGUAUGGGCGUUGAAUAAUAGGGUUUAAACCAAUCGGCCAACGAUCUCGUGUGCGCAUUUCAUAUCCCAUACAGAA GGUAUGGGGCGUUGAAUAAUAGGGUUUAAACCAAUCGGCCAACGAUCUCGUGUGCGCAUUUCAUAUACCAUACAGAA
.$(((((,(((((\ldots \ldots)(((\ldots))) \ldots . .))).) \ldots(((((\ldots \ldots)))))))))$.

UGGAUGGACGUUGAAUAACAAGGUAUCGACCAAACAACCAACGAGUAAGUGUGUACGCCCCACACACCGUCCCAAG UGGAUGGACGUUGAAUAACAAGGUAUCGACCAAACAACCAACGAGUAAGUGUGUACGCCCCACACAGCGUCCCAAG
 UGGAUGGACGUUGAAUAACAAGGUAUCGACCAAACAACCAACGAGUAAGUGUGUACGCCCCACACAGCGUCCCAAG

Transition inducing point mutations
Neutral point mutations

Neutral genotype evolution during phenotypic stasis

Variation in genotype space during optimization of phenotypes
Mean Hamming distance within the population and drift velocity of the population center in sequence space.

Spread of population in sequence space during a quasistationary epoch: $\mathrm{t}=150$

Spread of population in sequence space during a quasistationary epoch: $\mathrm{t}=170$

Spread of population in sequence space during a quasistationary epoch: $t=200$

Spread of population in sequence space during a quasistationary epoch: $\mathrm{t}=350$

Spread of population in sequence space during a quasistationary epoch: $\mathrm{t}=500$

Spread of population in sequence space during a quasistationary epoch: $\mathrm{t}=650$

Spread of population in sequence space during a quasistationary epoch: $\mathrm{t}=820$

Spread of population in sequence space during a quasistationary epoch: $\mathrm{t}=825$

Spread of population in sequence space during a quasistationary epoch: $\mathrm{t}=830$

Spread of population in sequence space during a quasistationary epoch: $\mathrm{t}=835$

Spread of population in sequence space during a quasistationary epoch: $\mathrm{t}=840$

Spread of population in sequence space during a quasistationary epoch: $\mathrm{t}=845$

Spread of population in sequence space during a quasistationary epoch: $\mathrm{t}=850$

Spread of population in sequence space during a quasistationary epoch: $\mathrm{t}=855$

Mapping from sequence space into structure space and into function

Sequence space
Structure space Real numbers

The pre-image of the structure S_{k} in sequence space is the neutral network G_{k}

Neutral networks are sets of sequences forming the same structure. G_{k} is the pre-image of the structure S_{k} in sequence space:

$$
\mathrm{G}_{\mathrm{k}}=\backslash^{-1}\left(\mathrm{~S}_{\mathrm{k}}\right) \pi\left\{\mathrm{I}_{\mathrm{j}} \mid \backslash\left(\mathrm{I}_{\mathrm{j}}\right)=\mathrm{S}_{\mathrm{k}}\right\}
$$

The set is converted into a graph by connecting all sequences of Hamming distance one.

Neutral networks of small RNA molecules can be computed by exhaustive folding of complete sequence spaces, i.e. all RNA sequences of a given chain length. This number, $\mathbf{N}=4^{\mathbf{n}}$, becomes very large with increasing length, and is prohibitive for numerical computations.

Neutral networks can be modelled by random graphs in sequence space. In this approach, nodes are inserted randomly into sequence space until the size of the pre-image, i.e. the number of neutral sequences, matches the neutral network to be studied.

$$
\mathrm{G}_{\mathrm{k}}=\backslash^{-1}\left(\mathrm{~S}_{\mathrm{k}}\right) \cup \mathrm{I}_{\mathrm{j}} \mid \backslash\left(\mathrm{I}_{\mathrm{j}}\right)=\mathrm{S}_{\mathrm{k}}{ }^{`}
$$

$$
\lambda_{\mathrm{j}}=12 / 27=0.444, \quad \bar{\lambda}_{\mathrm{k}}=\frac{\underset{\mathrm{j} \in\left|\mathrm{G}_{\mathrm{G} \mid}\right|}{ } \mathrm{O}(\mathrm{k})}{\left|\mathrm{G}_{\mathrm{k}}\right|}
$$

$$
\text { Connectivity threshold: } \quad \lambda_{\mathrm{cr}}=1-\kappa^{-1 /(\kappa-1)}
$$

Alphabet size $\mathrm{N}: ~ A U G C{ }^{3} \mathrm{~N}=4$
$\bar{\lambda}_{\mathrm{k}}>\lambda_{\text {cr }} \ldots$. network \mathbf{G}_{k} is connected
$\bar{\lambda}_{\mathrm{k}}<\lambda_{\text {cr }} \ldots$.... network G_{k} is not connected

N	O_{cr}	
2	0.5	Gc,AU
3	0.423	GUc,AUG
4	0.370	AUGC

Mean degree of neutrality and connectivity of neutral networks

A connected neutral network

A multi-component neutral network

Alphabet

AU	--	--	--	$0.073 \square 0.032$
AUG	--	$0.217 \square 0.051$	0.207 ± 0.055	$0.201 \square 0.056$
AUGC	$0.275 \square 0.064$	$0.279 \square 0.063$	0.289 ± 0.062	$0.313 \square 0.058$
UGC	$0.263 \square 0.071$	$0.257 \square 0.070$	0.251 ± 0.068	$0.250 \square 0.064$
GC	$0.052 \square 0.033$	$0.057 \square 0.034$	0.060 ± 0.033	$0.068 \square 0.034$

Degree of neutrality of cloverleaf RNA secondary structures over different alphabets

From sequences to shapes and back: a case study in RNA secondary structures

PETER SCHUSTER ${ }^{1,2,3}$, WALTER FONTANA ${ }^{3}$, PETER F. STADLER ${ }^{2,3}$ and IVO L. HOFACKER ${ }^{2}$
${ }^{1}$ Institut für Molekulare Biotechnologie, Beutenbergstrasse 11, PF 100813, D-07708 Jena, Germany
${ }^{2}$ Institut für Theoretische Chemie, Universität Wien, Austria
${ }^{3}$ Santa Fe Institute, Santa Fe, U.S.A.

SUMMARY

RNA folding is viewed here as a map assigning secondary structures to sequences. At fixed chain length the number of sequences far exceeds the number of structures. Frequencies of structures are highly nonuniform and follow a generalized form of Zipf's law: we find relatively few common and many rare ones. By using an algorithm for inverse folding, we show that sequences sharing the same structure are distributed randomly over sequence space. All common structures can be accessed from an arbitrary sequence by a number of mutations much smaller than the chain length. The sequence space is percolated by extensive neutral networks connecting nearest neighbours folding into identical structures. Implications for evolutionary adaptation and for applied molecular evolution are evident: finding a particular structure by mutation and selection is much simpler than expected and, even if catalytic activity should turn out to be sparse in the space of RNA structures, it can hardly be missed by evolutionary processes.

Figure 4. Neutral paths. A neutral path is defined by a series of nearest neighbour sequences that fold into identical structures. Two classes of nearest neighbours are admitted: neighbours of Hamming distance 1 , which are obtained by single base exchanges in unpaired stretches of the structure, and neighbours of Hamming distance 2, resulting from base pair exchanges in stacks. Two probability densities of Hamming distances are shown that were obtained by searching for neutral paths in sequence space: (i) an upper bound for the closest approach of trial and target sequences (open circles) obtained as endpoints of neutral paths approaching the target from a random trial sequence (185 targets and 100 trials for each were used); (ii) a lower bound for the closest approach of trial and target sequences (open diamonds) derived from secondary structure statistics (Fontana et al. 1993a; see this paper, §4); and (iii) longest distances between the reference and the endpoints of monotonously diverging neutral paths (filled circles) (500 reference sequences were used).

Structure

Structure

Compatible sequence

Structure

5'-end G
Compatible sequence

Single nucleotides: A,U,G,C

Base pairs:

Structure

Compatible sequence

Structure S_{k}

Neutral Network G_{k}

5

Compatible Set C_{k}

The compatible set C_{k} of a structure S_{k} consists of all sequences which form S_{k} as its minimum free energy structure (the neutral network G_{k}) or one of its suboptimal structures.

The intersection of two compatible sets is always non empty: $\mathrm{C}_{\mathbf{0}} \square \mathrm{C}_{1} \propto \square$

S0092-8240(96)00089-4

GENERIC PROPERTIES OF COMBINATORY MAPS: NEUTRAL NETWORKS OF RNA SECONDARY STRUCTURES ${ }^{1}$

- CHRISTIAN REIDYS*, \dagger, PETER F. STADLER*, \ddagger and PETER SCHUSTER* ${ }^{*} \ddagger, \S,{ }^{2}$
*Santa Fe Institute,
Santa Fe, NM 87501, U.S.A.
\dagger Los Alamos National Laboratory,
Los Alamos, NM 87545, U.S.A.
\ddagger Institut für Theoretische Chemie der Universität Wien, A-1090 Wien, Austria
§Institut für Molekulare Biotechnologie, D-07708 Jena, Germany
(E.mail: pks@tbi.univie.ac.at)

Random graph theory is used to model and analyse the relationships between sequences and secondary structures of RNA molecules, which are understood as mappings from sequence space into shape space. These maps are non-invertible since there are always many orders of magnitude more sequences than structures. Sequences folding into identical structures form neutral networks. A neutral network is embedded in the set of sequences that are compatible with the given structure. Networks are modeled as graphs and constructed by random choice of vertices from the space of compatible sequences. The theory characterizes neutral networks by the mean fraction of neutral neighbors (λ). The networks are connected and percolate sequence space if the fraction of neutral nearest neighbors exceeds a threshold value ($\lambda>\lambda^{*}$). Below threshold ($\lambda<\lambda^{*}$), the networks are partitioned into a largest "giant" component and several smaller components. Structures are classified as "common" or "rare" according to the sizes of their pre-images, i.e. according to the fractions of sequences folding into them. The neutral networks of any pair of two different common structures almost touch each other, and, as expressed by the conjecture of shape space covering sequences folding into almost all common structures, can be found in a small ball of an arbitrary location in sequence space. The results from random graph theory are compared to data obtained by folding large samples of RNA sequences. Differences are explained in terms of specific features of RNA molecular structures. © 1997 Society for Mathematical Biology

Theorem 5. Intersection-theorem. Let s and s' be arbitrary secondary structures and $\mathbf{C}[\mathrm{s}], \mathbf{C}\left[\mathrm{s}^{\prime}\right]$ their corresponding compatible sequences. Then,

$$
\mathbf{C}[s] \cap \mathbf{C}\left[s^{\prime}\right] \neq \varnothing .
$$

Proof. Suppose that the alphabet admits only the complementary base pair [$X Y$] and we ask for a sequence x compatible to both s and s^{\prime}. Then $\jmath\left(s, s^{\prime}\right) \cong D_{m}$ operates on the set of all positions $\left\{x_{1}, \ldots, x_{n}\right\}$. Since we have the operation of a dihedral group, the orbits are either cycles or chains and the cycles have even order. A constraint for the sequence compatible to both structures appears only in the cycles where the choice of bases is not independent. It remains to be shown that there is a valid choice of bases for each cycle, which is obvious since these have even order. Therefore, it suffices to choose an alternating sequence of the pairing partners X and Y. Thus, there are at least two different choices for the first base in the orbit.

Remark. A generalization of the statement of theorem 5 to three different structures is false.

> Reference for the definition of the intersection and the proof of the intersection theorem

A sequence at the intersection of two neutral networks is compatible with both structures

basin '1'
basin '0'

Barrier tree for two long living structures
long living metastable structure
minimum free energy structure

$x-100$ or 15 min at 4 C wh intermitent mixing $\mathrm{MeOH} / \mathrm{CH}, \mathrm{Cl}$ and separated by sDs precipitated by gel electrophoresis (PACE) followed by immunoblot ting using p 115 mAb 13 F 12.
51. V. Rybin et al. Nature 383,266 (1996).
52. K. . . Hardwick and H. R. Pelham, J. Cell Biol. 119, 513
(1992).
53. A. P. Newman, M.
54. A spang and R. Schekman, J. Cell Biol. 143, 589 (1998).
55. M. F. Rexach, M. Latterich, R. W. Schekman, J. Cell Biol. 126, 1133 (1994).
56. A. Mayer and W. Wickner, J. Cell Biol. 136, 307 (1997) 57. M. D. Turner. H. Plutner, W. E. Balch, J. Biol. Chem 58. A. Price, D. Seals,
59. Biol. Xa Biol. 148, 1231 (2000).
59.
60.
59. C . Cao and C. Barlowe, Cell Biol 149,55
60. G. G. Tall, H. Hama, D. B. DeWald, B. F. H5 (2000)
61. C. G. Burd, M. Peterson CR Co. Biol. Cell 8, 1089 (1997).

One Sequence, Two Ribozymes: Implications for the Emergence of New Ribozyme Folds

Erik A. Schultes and David P. Bartel*

We describe a single RNA sequence that can assume either of two ribozyme folds and catalyze the two respective reactions. The two ribozyme folds share no evolutionary history and are completely different, with no base pairs (and probably no hydrogen bonds) in common. Minor variants of this sequence are highly active for one or the other reaction, and can be accessed from prototype ribozymes through a series of neutral mutations. Thus, in the course of evo lution, new RNA folds could arise from preexisting folds, without the need to carry inactive intermediate sequences. This raises the possibility that biological RNAs having no structural or functional similarity might share a common ancestry. Furthermore, functional and structural divergence might, in some cases, precede rather than follow gene duplication.

Related protein or RNA sequences with the ame folded conformation can often perform very different biochemical functions, indicating hat new biochemical functions can arise from preexisting folds. But what evolutionary mechanisms give rise to sequences with new macromolecular folds? When considering the origin of new folds, it is useful to picture, among all sequence possibilities, the distribution of sequences with a particular fold and function. his distribution can range very far in sequence pace (l). For example, only seven nucleotides are strictly conserved among the group I selfplicing introns, yet secondary (and presumably ertiary) structure within the core of the ribozyme is preserved (2). Because these dispar-

[^0]ate isolates have the same fold and function, it is thought that they descended from a common acestor through a series of mutational variants that were each functional. Hence, sequence heterogeneity among divergent isolates implies the existence of paths through sequence space that have allowed neutral drift from the ancestral sequence to each isolate. The set of all possible neutral paths composes a "neutral network," connecting in sequence space those widely dispersed sequences sharing a particular fold and activity, such that any sequence on the network can potentially access very distant sequences by neutral mutations (3-5)
Theoretical analyses using algorithms for predicting RNA secondary structure have suggested that different neutral networks are nterwoven and can approach each other very whether ribozyme neutral networks approach each other so closely that they intersect. If so a single sequence would be capable of folding into two different conformations, would
(1999) . Whon, C. C. Bud, s. D. Em, Curr. Biol. 9, 159 (1999).
63. M. G. Wats (1.D.2). Clay. I E Rothman I Cell oid 118, 1015 (1992).
64. D. M. Walter, K. S. P.
273, 29565 (1998).
65. N. Hui et al., Mol. Biol. Cell 8, 1777 (1997).
66. T. E. Kreis, EMBO J. 5, 931 (1986).
67. H. Plutner, H. W. Davidson, ।. Saraste, W. E. Balch J. Cell Biol. 119,1097 (1992).
69. We thank C. Waters for p115 cDi, 319 (1998). W. Warren for p97 for p 115 CDNA and p 115 mAbs Warren for p97 and p47 antibodies; R. Scheller for bet1, membrin, and secc22 CDNAS; H. Plutner for during the initial phase of this work Supported by NIH grants CM 33301 and CM42336 and National Cancer Institute grant CA58689 (W.E.B.), a NIH Naional Research Service Award (B.D.M.), and a Well-
ome Trust Intemational Traveling Fellowship come
(B.B.A).

20 March 2000; accepted 22 May 2000

A ribozyme switch

E.A.Schultes, D.B.Bartel, Science

289 (2000), 448-452

Two ribozymes of chain lengths $\mathrm{n}=88$ nucleotides: An artificial ligase (\mathbf{A}) and a natural cleavage ribozyme of hepatitis-Gvirus (B)

The sequence at the intersection:
An RNA molecules which is 88 nucleotides long and can form both structures

HDV1

Ligase fold

HDV fold

Two neutral walks through sequence space with conservation of structure and catalytic activity

Massif Central

Dolomites

Examples of rugged landscapes on Earth

Evolutionary optimization in absence of neutral paths in sequence space

Evolutionary optimization including neutral paths in sequence space

Neutral ridges and plateus

[^0]: Whitehead Instiute for Biomedicl Rese ar and
 partment of Biology, Massachusetts Institute of Tech partment of Biology, Massachusetts institute of TechUSA.
 To whom correspondence should be addressed. E-

