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Conformational and mutational landscapes of biomolecules 
as well as fitness landscapes of evolutionary biology are

rugged.
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landscapes end commonly at one of the low lying local 
maxima.
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Selective neutrality in the form of  neutral networks
plays an active role in evolutionary optimization and 
enables populations to reach high local maxima or even 
the global optimum.
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„...Variations neither useful not injurious would not be 
affected by natural selection, and would be left either a 
fluctuating element, as perhaps we see in certain 
polymorphic species, or would ultimately become fixed, 
owing to the nature of the organism and the nature of 
the conditions. ...“

Charles Darwin, Origin of species (1859)



The molecular clock of evolution

Motoo Kimura’s population genetics of 
neutral evolution. 

Evolutionary rate at the molecular level. 
Nature 217: 624-626, 1955.

The Neutral Theory of Molecular Evolution. 
Canbridge University Press. Cambridge, UK, 
1983.
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CGTCGTTACAATTTA GTTATGTGCGAATTC CAAATT AAAA ACAAGAG.....

CGTCGTTACAATTTA GTTATGTGCGAATTC CAAATT AAAA ACAAGAG.....
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(i)

(ii)

(iii)

The Hamming distance between genotypes induces a metric in sequence space
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Mapping from sequence space into structure space and into function
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The pre-image of the structure Sk in sequence space is the neutral network Gk



Neutral networks are sets of sequences forming the same object in a 
phenotype space. The neutral network Gk is, for example, the pre-
image of the structure Sk in sequence space:

Gk = y-1(Sk) π {yj | y(Ij) = Sk}

The set is converted into a graph by connecting all sequences of 
Hamming distance one.

Neutral networks of small biomolecules can be computed by 
exhaustive folding of complete sequence spaces, i.e. all RNA 
sequences of  a given chain length. This number, N=4n , becomes 
very large with increasing length, and is prohibitive for numerical  
computations. 

Neutral networks can be modelled by random graphs in sequence 
space. In this approach, nodes are inserted randomly into sequence 
space until the size of the pre-image, i.e. the number of neutral 
sequences, matches the neutral network to be studied.



Random graph approach to neutral networks

Sketch of sequence spaceStep 00
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Random graph approach to neutral networks
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Random graph approach to neutral networks

Sketch of sequence spaceStep 15



Random graph approach to neutral networks

Sketch of sequence spaceStep 25



Random graph approach to neutral networks

Sketch of sequence spaceStep 50



Random graph approach to neutral networks

Sketch of sequence spaceStep 75



Random graph approach to neutral networks

Sketch of sequence spaceStep 100



λj =   27 = 0.444 ,/12 λk = 
ø l (k)j

| |Gk

λ λk cr  . . . .> 

λ λk cr  . . . .< 

  network  is G connectedk

  network  is G not connectedk  

λ κ cr = 1 - -1 ( 1)/ κ-Connectivity threshold:

The parameter   is the size of the alphabet
underlying the strings in sequence space

k 

G  S Sk k k= ( )    | ( ) =  y y-1 U { }I Ij j

k lcr

2 0.5

3 0.423

4 0.370

Mean degree of neutrality λ and connectivity of neutral networks



Giant Component

A neutral network below connectivity threshold



A connected neutral network
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GCGGAUUUAGCUCAGDDGGGAGAGCMCCAGACUGAAYAUCUGGAGMUCCUGUGTPCGAUCCACAGAAUUCGCACCASequence

Secondary structure



Definition and physical relevance of RNA secondary structures

RNA secondary structures are listings of Watson-Crick 
and GU wobble base pairs, which are free of knots and 
pseudokots.

„Secondary structures are folding intermediates in the 
formation of full three-dimensional structures.“

D.Thirumalai, N.Lee, S.A.Woodson, and D.K.Klimov. 
Annu.Rev.Phys.Chem. 52:751-762 (2001):



James D. Watson and Francis H.C. Crick

Nobel prize 1962

1953 – 2003  fifty years double helix

Stacking of base pairs in nucleic
acid double helices (B-DNA)
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RNA sequence

Empirical parameters

Biophysical chemistry: 
thermodynamics and 

kinetics

RNA structure
of minimal free 

energy

Sequence, structure, and design

Inverse folding of RNA:

Biotechnology,
design of biomolecules

with predefined 
structures and functions

RNA folding:

Structural biology,
spectroscopy of 
biomolecules, 
understanding 

molecular function
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Secondary structure

Symbolic notation

Í

A symbolic notation of RNA secondary structure that is equivalent to the conventional graphs



Hamming distance  d (S ,S ) = H 1 2 4

d (S ,S ) = 0H 1 1

d (S ,S ) = d (S ,S )H H1 2 2 1

d (S ,S )  d (S ,S ) + d (S ,S )H H H1 3 1 2 2 3¶

(i)

(ii)

(iii)

The Hamming distance between  structures in parentheses notation forms a metric 
in structure space



Minimal hairpin loop size:

nlp Æ 3

Minimal stack length:
nst Æ 2

Recursion formula for the number of acceptable RNA secondary structures



Computed numbers of minimum free energy structures over different nucleotide alphabets

P. Schuster, Molecular insights into evolution of phenotypes. In: J. Crutchfield & P.Schuster, 
Evolutionary Dynamics. Oxford University Press, New York 2003, pp.163-215.



UUUAGCCAGCGCGAGUCGUGCGGACGGGGUUAUCUCUGUCGGGCUAGGGCGC

GUGAGCGCGGGGCACAGUUUCUCAAGGAUGUAAGUUUUUGCCGUUUAUCUGG

UUAGCGAGAGAGGAGGCUUCUAGACCCAGCUCUCUGGGUCGUUGCUGAUGCG

CAUUGGUGCUAAUGAUAUUAGGGCUGUAUUCCUGUAUAGCGAUCAGUGUCCG

GUAGGCCCUCUUGACAUAAGAUUUUUCCAAUGGUGGGAGAUGGCCAUUGCAG

Criterion of
Minimum Free Energy

Sequence Space Shape Space



Reference for postulation and in silico verification of neutral networks



Evolution in silico

W. Fontana, P. Schuster, 
Science 280 (1998), 1451-1455
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A connected neutral network formed by a common structure



Giant Component

A multi-component neutral network formed by a rare structure



Structure
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GkNeutral Network

Structure S  k

Gk  Cà k

Compatible Set  Ck

The compatible set Ck of a structure Sk consists of all sequences which form 
Sk as its minimum free energy structure (the neutral network Gk) or one of its
suboptimal structures.



Structure S  0

Structure S  1

The intersection of two compatible sets is always non empty:  C0 Ú C1 â Ù



Reference for the definition of the intersection 
and the proof of the intersection theorem
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Stock Solution Reaction Mixture

Replication rate constant:

fk = g / [a + DdS
(k)]

DdS
(k) = dH(Sk,St)

Selection constraint:

# RNA molecules is 
controlled by the flow

NNtN ±≈)(

The flowreactor as a 
device for studies of 
evolution in vitro and 
in silico



f0 ft

f1

f2

f3

f4

f6

f5f7

Replication rate constant:

fk = g / [a + DdS
(k)]
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Evaluation of RNA secondary structures yields replication rate constants
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In silico optimization in the flow reactor: Trajectory (physicists‘ view)
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Transition inducing point mutations Neutral point mutations

Change in RNA sequences during the final five relay steps 39 Á 44



In silico optimization in the flow reactor: Trajectory and relay steps
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Variation in genotype space during optimization of phenotypes

Mean Hamming distance within the population and drift velocity of the population center
in sequence space. 



Spread of population in sequence space during a quasistationary epoch:  t = 150



Spread of population in sequence space during a quasistationary epoch:  t = 170



Spread of population in sequence space during a quasistationary epoch:  t = 200



Spread of population in sequence space during a quasistationary epoch:  t = 350



Spread of population in sequence space during a quasistationary epoch:  t = 500



Spread of population in sequence space during a quasistationary epoch:  t = 650



Spread of population in sequence space during a quasistationary epoch:  t = 820



Spread of population in sequence space during a quasistationary epoch:  t = 825



Spread of population in sequence space during a quasistationary epoch:  t = 830



Spread of population in sequence space during a quasistationary epoch:  t = 835



Spread of population in sequence space during a quasistationary epoch:  t = 840



Spread of population in sequence space during a quasistationary epoch:  t = 845



Spread of population in sequence space during a quasistationary epoch:  t = 850



Spread of population in sequence space during a quasistationary epoch:  t = 855



AUGC GC

Movies of optimization trajectories over the AUGC and the GC alphabet



 Alphabet Runtime Transitions Main transitions  No. of runs 
     

AUGC 385.6 22.5 12.6 1017 
GUC 448.9 30.5 16.5 611 
GC 2188.3 40.0 20.6 107 

 

Statistics of trajectories and relay series (mean values of log-normal distributions).

AUGC neutral networks of tRNAs are near the connectivity threshold, GC neutral networks 
are way below.



Mount Fuji

Example of a smooth landscape on Earth



Dolomites

Bryce Canyon

Examples of rugged landscapes on Earth
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Evolutionary optimization including neutral paths in sequence space



Grand Canyon

Example of a landscape on Earth with ‘neutral’ 
ridges and plateaus



Neutral ridges and plateus



1. What is a neutral network?
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4. Some experiments with RNA molecules







Structure S  0

Structure S  1

The intersection of two compatible sets is always non empty:  C0 Ú C1 â Ù



A ribozyme switch

E.A.Schultes, D.B.Bartel, Science 
289 (2000), 448-452



Two ribozymes of chain lengths n = 88 nucleotides: An artificial ligase (A) and a natural cleavage 
ribozyme of hepatitis-d-virus (B)



The sequence at the intersection: 

An RNA molecules which is 88 
nucleotides long and can form both 
structures



Two neutral walks through sequence space with conservation of structure and catalytic activity



J.H.A. Nagel, J. Møller-Jensen, C. Flamm, K.J. Öistämö, J. Besnard, I.L. Hofacker, A.P. Gultyaev, 
M.H. de Smit, P. Schuster, K. Gerdes and C.W.A. Pleij.

The refolding mechanism of the metastable structure in the 5’-end of the hok mRNA of plasmid R1,
submitted 2004.

J.H.A. Nagel, C. Flamm, I.L. Hofacker, K. Franke, M.H. de Smit, P. Schuster, and C.W.A. Pleij.

Structural parameters affecting the kinetic competition of RNA hairpin formation, in press 2004.
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RNA 9:1456-1463, 2003

Evidence for neutral networks and shape space covering
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