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Stacking of free nucleobases or other planar
heterocyclic compounds (N6,N9-dimethyl-adenine)

The stacking interaction as 
driving force of structure 
formation in nucleic acids Stacking of nucleic acid single strands (poly-A)



James D. Watson and Francis H.C. Crick

Nobel prize 1962

1953 – 2003  fifty years double helix

Stacking of base pairs in nucleic
acid double helices (B-DNA)
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Secondary structure



Definition and physical relevance of RNA secondary structures

RNA secondary structures are listings of Watson-Crick 
and GU wobble base pairs, which are free of knots and 
pseudokots.

„Secondary structures are folding intermediates in the 
formation of full three-dimensional structures.“

D.Thirumalai, N.Lee, S.A.Woodson, and D.K.Klimov. 
Annu.Rev.Phys.Chem. 52:751-762 (2001):
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Secondary structure

Symbolic notation

Í

A symbolic notation of RNA secondary structure that is equivalent to the conventional graphs
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Mountain representation used in structure prediction of medium size RNA molecules



Mountain representation used in structure prediction of large RNA molecules



Minimal hairpin loop size:

nlp Æ 3

Minimal stack length:
nst Æ 2

Recursion formula for the number of acceptable RNA secondary structures



Computed numbers of minimum free energy structures over different nucleotide alphabets

P. Schuster, Molecular insights into evolution of phenotypes. In: J. Crutchfield & P.Schuster, 
Evolutionary Dynamics. Oxford University Press, New York 2003, pp.163-215.
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How to compute RNA secondary structures

Efficient algorithms based on dynamic programming are available for computation of 
minimum free energy and many suboptimal secondary structures for given sequences. 

M.Zuker and P.Stiegler. Nucleic Acids Res. 9:133-148 (1981)

M.Zuker, Science 244: 48-52 (1989)

Equilibrium partition function and base pairing probabilities in Boltzmann ensembles of 
suboptimal structures.
J.S.McCaskill. Biopolymers 29:1105-1190 (1990)

The Vienna RNA Package provides in addition: inverse folding (computing sequences 
for given secondary structures), computation of melting profiles from partition
functions, all suboptimal structures within a given energy interval, barrier tress of 
suboptimal structures, kinetic folding of RNA sequences, RNA-hybridization and 
RNA/DNA-hybridization through cofolding of sequences, alignment, etc..  
I.L.Hofacker, W. Fontana, P.F.Stadler, L.S.Bonhoeffer, M.Tacker, and P. Schuster. Mh.Chem.
125:167-188 (1994)

S.Wuchty, W.Fontana, I.L.Hofacker, and P.Schuster. Biopolymers 49:145-165 (1999)

C.Flamm, W.Fontana, I.L.Hofacker, and P.Schuster. RNA 6:325-338 (1999)

Vienna RNA Package: http://www.tbi.univie.ac.at
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Maximum matching

An example of a dynamic programming computation 
of the maximum number of base pairs

Back tracking yields the structure(s).

i i+1 i+2 k

Xi,k-1

j-1 j

Xk+1,j

j+1

[ k+1,j ][i,k-1]

( ){ }1,,11,1,1, )1(max,max ++−−≤≤+ ++= jkjkkijkijiji XXXX ρ

Minimum free energy computations are based on empirical energies

GGCGCGCCCGGCGCC

GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGACGGUCCCAUCGGUACUCCA

UGGUUACGCGUUGGGGUAACGAAGAUUCCGAGAGGAGUUUAGUGACUAGAGGRNAStudio.lnk



Maximum matching j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
i G G C G C G C C C G G C G C C
1 G * * 1 1 1 1 2 3 3 3 4 4 5 6 6
2 G * * 0 1 1 2 2 2 3 3 4 4 5 6
3 C * * 0 1 1 1 2 3 3 3 4 5 5
4 G * * 0 1 1 2 2 2 3 4 5 5
5 C * * 0 1 1 2 2 3 4 4 4
6 G * * 1 1 1 2 3 3 3 4
7 C * * 0 1 2 2 2 2 3
8 C * * 1 1 1 2 2 2
9 C * * 1 1 2 2 2

10 G * * 1 1 1 2
11 G * * 0 1 1
12 C * * 0 1
13 G * * 1
14 C * *
15 C *

An example of a dynamic programming computation 
of the maximum number of base pairs

Back tracking yields the structure(s).

i i+1 i+2 k

Xi,k-1

j-1 j

Xk+1,j

j+1

[ k+1,j ][i,k-1]

( ){ }1,,11,1,1, )1(max,max ++−−≤≤+ ++= jkjkkijkijiji XXXX ρ

Minimum free energy computations are based on empirical energies

GGCGCGCCCGGCGCC

GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGACGGUCCCAUCGGUACUCCA

UGGUUACGCGUUGGGGUAACGAAGAUUCCGAGAGGAGUUUAGUGACUAGAGGRNAStudio.lnk
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Minimum free energy
criterion

Inverse folding of RNA secondary structures

The idea of inverse folding algorithm is to search for sequences that form a 
given RNA secondary structure under the minimum free energy criterion. 



Structure



C
U
G
G
G
A
A
A
A
A
U
C
C
C
C
A
G
A
C
C
G
G
G
G
G
U
U
U
C
C
C
C
G
G

Compatible sequenceStructure

5’-end

3’-end



C
U
G
G
G
A
A
A
A
A
U
C
C
C
C
A
G
A
C
C
G
G
G
G
G
U
U
U
C
C
C
C
G
G

G

G

G

G

G

G

G

C

C

C

C G

G

G

G

C

C

C

C

C

C

C

U A

U

U

G

U

AA

A

A

U

Compatible sequenceStructure

5’-end

3’-end



C
U
G
G
G
A
A
A
A
A
U
C
C
C
C
A
G
A
C
C
G
G
G
G
G
U
U
U
C
C
C
C
G
G

G

G

G

G

G

G

G

C

C

C

C

U

U

G

G

G

G

G

C

C

C

C

C

C

C

U

U

AA

A

A

A

U

Compatible sequenceStructure

5’-end

3’-end

Single nucleotides:   A U G C, , ,

Single bases pairs are varied independently



C
U
G
G
G
A
A
A
A
A
U
C
C
C
C
A
G
A
C
C
G
G
G
G
G
U
U
U
C
C
C
C
G
G

G

G

C

C

C

C G

G

G

G

C

C

G

G

G

G

G

C

C

C

C

C

U A

U

U

G

U

AA

A

A

U

Compatible sequenceStructure

5’-end

3’-end

Base pairs:   
AU , UA
GC , CG
GU , UG

Base pairs are varied in strict correlation



C
U
G
G
G
A
A
A
A
A
U
C
C
C
C
A
G
A
C
C
G
G
G
G
G
U
U
U
C
C
C

G
G

U

C
U
G
G
G
A
A
A
A
A
U
C
C
C
C
A
G
A
C
C
G
G
G
G
G
U
U
U
C
C
C
C
G
G

G G

G G

G G

G G

G G

G G

G G

C U

C C

C C

C C

U U

U U

G G

G G

G G

G G

G G

C C

C C

C C

C C

C C

C C

C C

U U

U U

A AA A

A A

A A

A A

U U

Compatible sequencesStructure

5’-end 5’-end

3’-end 3’-end



C
U
G
G
G
A
A
A
A
A
U
C
C
C
C
A
G
A
C
C
G
G
G
G
G
U
U
U
C
C
G
C
G
G

G

G

G

G

G

G

G

C
G

C

C

U

U

G

G

G
G

G

C

C

C

C

C

C

C

U

U

AA

A

A

A

U

Structure Incompatible sequence

5’-end

3’-end



.... GC UC ....CA

.... GC UC ....GU

.... GC UC ....GA .... GC UC ....CU

d =1H

d =1H

d =2H

City-block distance in sequence space 2D Sketch of sequence space

Single point mutations as moves in sequence space



CGTCGTTACAATTTA GTTATGTGCGAATTC CAAATT AAAA ACAAGAG.....

CGTCGTTACAATTTA GTTATGTGCGAATTC CAAATT AAAA ACAAGAG.....

G A G T

A C A C

Hamming distance  d (I ,I ) = H 1 2 4

d (I ,I ) = 0H 1 1

d (I ,I ) = d (I ,I )H H1 2 2 1

d (I ,I )  d (I ,I ) + d (I ,I )H H H1 3 1 2 2 3¶

(i)

(ii)

(iii)

The Hamming distance between sequences induces a metric in sequence space



0

421 8 16

10

19

9

14

6

13

5

11

3

7

12

21

17

22

18

25

20

26

24

28

272315 29 30

31

Binary sequences are encoded
by their decimal equivalents:

 = 0 and  = 1, for example,

"0"    00000 = 

"14"  01110 = ,

"29"  11101 = , etc.

≡

≡

≡

,

C

CCCCC

C C

C

G

GGG

GGG G

Mutant class

 0

 1

 2

 3

 4

 5

Hypercube of dimension n = 5 Decimal coding of binary sequences

Sequence space of binary sequences of chain lenght n = 5



Hamming distance  d (S ,S ) = H 1 2 4

d (S ,S ) = 0H 1 1

d (S ,S ) = d (S ,S )H H1 2 2 1

d (S ,S )  d (S ,S ) + d (S ,S )H H H1 3 1 2 2 3¶

(i)

(ii)

(iii)

The Hamming distance between  structures in parentheses notation forms a metric 
in structure space



Inverse folding algorithm

I0 Á I1 Á I2 Á I3 Á I4Á ... Á Ik Á Ik+1 Á ... Á It

S0Á S1Á S2Á S3Á S4Á ... Á SkÁ Sk+1Á ... Á St

Ik+1 = Mk(Ik)   and  DdS(Sk,Sk+1) = dS(Sk+1,St) - dS(Sk,St) < 0 

M ... base or base pair mutation operator

dS (Si,Sj) ... distance between the two structures Si and Sj

‚Unsuccessful trial‘ ... termination after n steps



Target structure Sk

Initial trial sequences

Target sequence 

Stop sequence of an
unsuccessful trial 

Intermediate compatible sequences

 

Approach to the target structure Sk in the inverse folding algorithm



Minimum free energy
criterion

Inverse folding of RNA secondary structures

1st
2nd
3rd  trial
4th
5th

The inverse folding algorithm searches for sequences that form a given RNA 
secondary structure under the minimum free energy criterion. 



UUUAGCCAGCGCGAGUCGUGCGGACGGGGUUAUCUCUGUCGGGCUAGGGCGC

GUGAGCGCGGGGCACAGUUUCUCAAGGAUGUAAGUUUUUGCCGUUUAUCUGG

UUAGCGAGAGAGGAGGCUUCUAGACCCAGCUCUCUGGGUCGUUGCUGAUGCG

CAUUGGUGCUAAUGAUAUUAGGGCUGUAUUCCUGUAUAGCGAUCAGUGUCCG

GUAGGCCCUCUUGACAUAAGAUUUUUCCAAUGGUGGGAGAUGGCCAUUGCAG

Criterion of
Minimum Free Energy

Sequence Space Shape Space



RNA sequences as well as RNA secondary structures can be 
visualized as objects in metric spaces. At constant chain 
length the sequence space is a (generalized) hypercube.

The mapping from RNA sequences into RNA secondary 
structures is many-to-one. Hence, it is redundant and not 
invertible.

RNA sequences, which are mapped onto the same RNA 
secondary structure, are neutral with respect to structure. 
The pre-images of structures in sequence space are neutral 
networks. They can be represented by graphs where the edges
connect sequences of Hamming distance dH = 1. 





Sk I.   = ( )ψ
fk f Sk   = ( )

Sequence space Structure space Real  numbers

Mapping from sequence space into structure space and into function



Sk I.   = ( )ψ
fk f Sk   = ( )

Sequence space Structure space Real  numbers



Sk I.   = ( )ψ
fk f Sk   = ( )

Sequence space Structure space Real  numbers

The pre-image of the structure Sk in sequence space is the neutral network Gk



Neutral networks are sets of sequences forming the same structure. 
Gk is the pre-image of the structure Sk in sequence space:

Gk = y-1(Sk) π {yj | y(Ij) = Sk}

The set is converted into a graph by connecting all sequences of 
Hamming distance one.

Neutral networks of small RNA molecules can be computed by 
exhaustive folding of complete sequence spaces, i.e. all RNA 
sequences of  a given chain length. This number, N=4n , becomes 
very large with increasing length, and is prohibitive for numerical  
computations. 

Neutral networks can be modelled by random graphs in sequence 
space. In this approach, nodes are inserted randomly into sequence 
space until the size of the pre-image, i.e. the number of neutral 
sequences, matches the neutral network to be studied.



Random graph approach to neutral networks

Sketch of sequence spaceStep 00



Random graph approach to neutral networks

Sketch of sequence spaceStep 01



Random graph approach to neutral networks

Sketch of sequence spaceStep 02



Random graph approach to neutral networks

Sketch of sequence spaceStep 03



Random graph approach to neutral networks

Sketch of sequence spaceStep 04



Random graph approach to neutral networks

Sketch of sequence spaceStep 05



Random graph approach to neutral networks

Sketch of sequence spaceStep 10



Random graph approach to neutral networks

Sketch of sequence spaceStep 15



Random graph approach to neutral networks

Sketch of sequence spaceStep 25



Random graph approach to neutral networks

Sketch of sequence spaceStep 50



Random graph approach to neutral networks

Sketch of sequence spaceStep 75



Random graph approach to neutral networks

Sketch of sequence spaceStep 100



λj =   27 = 0.444 ,/12 λk = 
ø l (k)j

| |Gk

λ κ cr = 1 - -1 ( 1)/ κ-

λ λk cr  . . . .> 

λ λk cr  . . . .< 

  network  is connectedGk

  network  is  connectednotGk

Connectivity threshold:

Alphabet size   :       = 4k ñ kAUGC

G  S Sk k k= ( )    | ( ) =  y y-1 U { }I Ij j

k lcr

2 0.5

3 0.423

4 0.370

GC,AU

GUC,AUG

AUGC

Mean degree of neutrality and connectivity of neutral networks



A connected neutral network



Giant Component

A multi-component neutral network
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The six base pairing alphabets built from natural nucleotides A, U, G, and C
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UGC

GC

- -

- -

0.275   0.064
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Ä

Ä

Ä

- -
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0.279   0.063

0.257  0.070

Ä

Ä

Ä

0.057  0.034Ä

0.073  0.032

0.201  0.056

0.313   0.058

0.250  0.064

0.068  0.034

Ä

Ä

Ä
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Ä

`

Degree of neutrality of cloverleaf RNA secondary structures over different alphabets



Computed numbers of minimum free energy structures over different nucleotide alphabets

P. Schuster, Molecular insights into evolution of phenotypes. In: J. Crutchfield & P.Schuster, 
Evolutionary Dynamics. Oxford University Press, New York 2003, pp.163-215.



Reference for postulation and in silico verification of neutral networks



GkNeutral Network

Structure S  k

Gk  Cà k

Compatible Set  Ck

The compatible set Ck of a structure Sk consists of all sequences which form 
Sk as its minimum free energy structure (the neutral network Gk) or one of its
suboptimal structures.
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Web-Page for further information:

http://www.tbi.univie.ac.at/~pks
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