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A typical energy landscape of a sequence with two (meta)stable comformations



Suboptimal RNA Secondary Structures

Michael Zuker. On finding all suboptimal foldings of an RNA molecule. Science 244 (1989), 48-52

Stefan Wuchty, Walter Fontana, Ivo L. Hofacker, Peter Schuster. Complete suboptimal folding of
RNA and the stability of secondary structures. Biopolymers 49 (1999), 145-165



Total number of structures including

all suboptimal conformations, stable
and unstable (with DG>0):

#conformations =1 416 661

Minimum free energy structure

AAAGGGCACAGGGUGAUUUCAAUAAUUUUA

Sequence

Example of a small RNA molecule: n=30
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Density of stares of suboptimal structures of the RNA molecule with the sequence:

AAAGGGCACAGGGUGAUUUCAAUAAUUUUA



Partition Function of RNA Secondary Structures

John S. McCaskill. The equilibrium function and base pair binding probabilities for RNA
secondary structure. Biopolymers 29 (1990), 1105-1119

Ivo L. Hofacker, Walter Fontana, Peter F. Stadler, L. Sebastian Bonhoeffer, Manfred Tacker,
Peter Schuster. Fast folding and comparison of RNA secondary structures.
Monatshefte fiir Chemie 125 (1994), 167-188



Example of a small RNA molecule 5'
with two low-lying suboptimal

conformations which contribute

substantially to the partition function

UUGGAGUACACAACCUGUACACUCUUUC

Example of a small RNA molecule: n=28



CUUUCUCACAUGUCCAACACAUGAGGUU

UUGGAGUACACAACCUGUACACUCUUUC ¢

second suboptimal configuration
AE(_,, = 0.55 kcal / mole

Q

first suboptimal configuration
AEy_,; = 0.50 kcal / mole

5! . .
minimum free energy

configuration

DGy = - 5.39 keal / mole

2NNNONDOVIOIVNDHNIDOVVYOVIOVNDVYVDDNN

UUGGAGUACACAACCUGUACACUCUUUC

,,Dot plot* of the minimum free energy structure (lower triangle) and the partition function
(upper triangle) of a small RNA molecule (n=28) with low energy suboptimal configurations



GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA
GCGGAUUUAGCUCAGDDGGGAGAGCMCCAGACUGAAYAUCUGGAGMUCCUGUGTPCGAUCCACAGAAUUCGCACCA
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Phenylalanyl-tRNA as an example for the computation of the partition function



ACCACGCUUAAGACACCUAGCUUGUGUCCUGGAGGUCUAGAAGUCAGACCGCGAGAGGGUUGACUCGAUUUAGGCG

GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA

=

GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA

VOOVODOINAVYDVOVOINVOONNODADNOINDHOVHOHNOAVOVVDANOIVOVIOIDOODVHVOHODDNNDVONIDVANNVDHDDID

first suboptimal configuration

AEp_,; = 0.43 kcal / mole

tRNAPhe

without modified bases



ACCACGCUUAAGACACCUAGCPTGUGUCCUMGAGGUCUAYAAGUCAGACCMCGAGAGGGDDGACUCGAUUUAGGCG

GCGGAUUUAGCUCAGDDGGGAGAGCMCCAGACUGAAYAUCUGGAG

UCCUGUGTPCGAUCCACAGAAUUCGCACCA

=

=

GCGGAUUUAGCUCAGDDGGGAGAGCMCCAGACUGAAYAUCUGGAG

UCCUGUGTPCGAUCCACAGAAUUCGCACCA

VOOVIDINAVVYVOHVYVIOVIONVHIILONODADINWNHDHYOHONINVAVYVODNOVOVIONIHVYVOHVYVOHOHDHAADYINIHYNNNVHDIHD

first suboptimal configuration

AEy_1 = 0.94 kcal / mole

tRNAPhE

with modified bases



RNAStudio.lnk

GGCGCGCCCGGCGCC
GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGACGGUCCCAUCGGUACUCCA
UGGUUACGCGUUGGGGUAACGAAGAUUCCGAGAGGAGUUUAGUGACUAGAGG

Suboptimal structures, partitionfunction, ,,dot*“- and ,,mountain*-plots



Kinetic Folding of RNA Secondary Structures

Christoph Flamm, Walter Fontana, Ivo L. Hofacker, Peter Schuster. RNA folding kinetics
at elementary step resolution. RNA 6:325-338, 2000

Christoph Flamm, Ivo L. Hofacker, Sebastian Maurer-Stroh, Peter F. Stadler, Martin Zehl.
Design of multistable RNA molecules. RNA 7:325-338, 2001



The Folding Algorithm

A sequence [ specifies an energy ordered set of
compatible structures S(I):

S) = {S,,S,...,S., O}

m?

A trajectory T (I) is a time ordered series of
structures in S(I). A folding trajectory is
defined by starting with the open chain O and
ending with the global minimum free energy
structure S, or a metastable structure S, which
represents a local energy minimum:

To(H) =1{0,S1),...,S1),S®),
S(t+l) , ..., S,}

T.() ={0,S(),...,S(t1),S (1)),
S(t+l) , ..., S}

Transition probabilities P.(t) = Prob{Si—>Sj} are
defined by

P (1) = P,(t) k; = P,(1) exp(-AG;/2RT) / 3
Py(1) = P(t) k;; = P(t) exp(-AG;/2RT) / %,

m+2
4 = D s 1oy XP(AG2RT)

The symmetric rule for transition rate parameters is due
to Kawasaki (K. Kawasaki, Diffusion constants near
the critical point for time depen-dent Ising models.
Phys.Rev. 145:224-230, 1966).

Formulation of kinetic RNA folding as a stochastic process
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Base paircleavage N\ @@= N Base pair cleavage

Base pair formation and base pair cleavage moves for nucleation and elongation of stacks
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Base pair shift AN /

Base pair shift move of class 1: Shift inside internal loops or bulges
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Base pair shift

Base pair shift move of class 2: Shift involving free ends



Examples of rearrangements through consecutive shift moves
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Mean folding curves for three small RNA molecules with different folding behavior



Suboptimal conformations

02d A319U9 921

Search for local minima in
conformation space

Sh

Local minimum



Free energy DG

-\

Saddle point Ty

"Reaction coordinate"

Definition of a ,barrier tree*

v

Free energy DG

"Barrier tree"
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Example of an unefficiently folding small RNA molecule with n =15
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Example of an easily folding small RNA molecule with n =15
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Examples of two folding trajectories leading to different local minima
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Folding dynamics of the sequence GGCCCCUUUGGGGGCCAGACCCCUAAAAAGGGUC



One sequence is compatible with
two structures

Uu=A
1 1

OOO000NOCCCHAMOOO>O>ONOOCP>P>P>OOMOC

5’-end

/
G=C
] 1

Suboptimal conformation S;
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Barrier tree of a sequence with
two conformations
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Structure S,

Structure S

Intersection of two compatible sets: -

The intersection of two compatible sets is always non empty: C, U C,a U
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Random graph theory is used to model and analyse the relationships between sequences and
secondary structures of RNA molecules, which are understood as mappings from sequence
space into shape space. These maps are non-invertible since there are always many orders of
magnitude more sequences than structures. Sequences folding into identical structures form
neutral networks. A neutral network is embedded in the set of sequences that are compatible
with the given structure. Networks are modeled as graphs and constructed by random choice
of vertices from the space of compatible sequences. The theory characterizes neutral
networks by the mean fraction of neutral neighbors (A). The networks are connected and
percolate sequence space if the fraction of neutral nearest neighbors exceeds a threshold
value (A > A*). Below threshold (A < A*), the networks are partitioned into a largest “giant”
component and several smaller components. Structures are classified as “common” or
“rare” according to the sizes of their pre-images, i.e. according to the fractions of sequences
folding into them. The neutral networks of any pair of two different common structures
almost touch each other, and, as expressed by the conjecture of shape space covering
sequences folding into almost all common structures, can be found in a small ball of an
arbitrary location in sequence space. The results from random graph theory are compared to
data obtained by folding large samples of RNA sequences. Differences are explained in
terms of specific features of RNA molecular structures. © 1997 Society for Mathematical
Biology

THEOREM 5. INTERSECTION-THEOREM. Let s and s' be arbitrary secondary
structures and C[s). C[s'] their corresponding compatible sequences. Then,

Cls]InC[s'] # 2.

Proof. Suppose that the alphabet admits only the complementary base pair [XY] and we
ask for a sequence x compatible to both s and s'. Then j(s,s') = D,, operates on the set of
all positions {x,,...,x,}. Since we have the operation of a dihedral group, the orbits are
either cycles or chains and the cycles have even order. A constraint for the sequence
compatible to both structures appears only in the cycles where the choice of bases is not
independent. It remains to be shown that there is a valid choice of bases for each cycle,
which is obvious since these have even order. Therefore, it suffices to choose an alternating
sequence of the pairing partners X and Y. Thus, there are at least two different choices for
the first base in the orbit. u

Remark. A generalization of the statement of theorem 5 to three differ-
ent structures is false.

Reference for the definition of the intersection
and the proof of the intersection theorem



Kinetics RNA refolding between a long living metastable conformation
and the minmum free energy structure



GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA
GCGGAUUUAGCUCAGDDGGGAGAGCMCCAGACUGAAYAUCUGGAGMUCCUGUGTPCGAUCCACAGAAUUCGCACCA
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Kinetid folding of phenylalanyl-tRNA
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Folding dynamics of tRNAPPe with and without modified nucelotides
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Barrier tree of tRNAPhe without modified nucelotides



Tertiary elements in RNA structure

Different classes of pseudoknots

Different classes of non-Watson-Crick base pairs
Base triplets, G-quartets, A-platforms, etc.
End-on-end stacking of double helices

Divalent metal ion complexes, Mg?", etc.

Other interactions involving phosphate, 2°-OH, etc.



Tertiary elements in RNA structure

2. Different classes of non-Watson-Crick base pairs
3.  Base triplets, G-quartets, A-platforms, etc.

4.  End-on-end stacking of double helices

5. Divalent metal ion complexes, Mg?", etc.

6.  Other interactions involving phosphate, 2°-OH, etc.



W » = 3-end pseudoknot

"H-type pseudoknot" "Kissing loops"

5'-end - / 3"end

5'-end = * )2

(((( ........ [[[[ )))) .......... ]]]] (((( ..... [[))))(((((]] ..... )))))

Two classes of pseudoknots in RNA structures



Tertiary elements in RNA structure

1.  Different classes of pseudoknots

3.  Base triplets, G-quartets, A-platforms, etc.
4.  End-on-end stacking of double helices
5.  Divalent metal ion complexes, Mg?*, etc.

6.  Other interactions involving phosphate, 2°-OH, etc.



Interacting Edges

N.B. Leontis, E. Westhof, Geometric
nomenclature and classification of RNA base
pairs. RNA 7:499-512, 2001.

Glycosidic Bond Orientations
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Tertiary elements in RNA structure

1.  Different classes of pseudoknots

2.  Different classes of non-Watson-Crick base pairs
3.  Base triplets, G-quartets, A-platforms, etc.

5.  Divalent metal ion complexes, Mg?*, etc.

6.  Other interactions involving phosphate, 2°-OH, etc.
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End-on-end stacking of double helical regions yields the L-shape of tRNAPhe
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