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 Generation time 10 000 generations 106 generations 107 generations 
RNA molecules 10 sec 

1 min 
27.8 h = 1.16 d 

6.94 d 
115.7 d 
1.90 a 

3.17 a 
19.01 a 

Bacteria 20 min 
10 h 

138.9 d 
11.40 a 

38.03 a 
1 140 a 

380 a 
11 408 a 

Higher multicelluar 
organisms 

10 d 
20 a 

274 a 
20 000 a 

27 380 a 
2 × 107 a 

273 800 a 
2 × 108 a 

 

Time scales of evolutionary change
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Complex Dissociation

Synthesis

Synthesis

James Watson and Francis Crick, 1953

Complementary replication as the
simplest copying mechanism of RNA
Complementarity is determined by
Watson-Crick base pairs:

GÍC and A=U
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Complementary replication as the simplest molecular mechanism of reproduction



Equation for complementary replication:     [Ii] = xi Æ 0 ,  fi > 0 ; i=1,2

Solutions are obtained by integrating factor transformation
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Direct replication of DNA is a higly complex copying mechanism
involving more than ten different protein molecules. Complementarity 
is determined by Watson-Crick base pairs:

GÍC and A=T
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Reproduction of organisms or replication of molecules as the basis of selection
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Selection equation:     [Ii] = xi Æ 0 ,  fi > 0

Mean fitness or dilution flux, φ (t), is a non-decreasing function of time, 

Solutions are obtained by integrating factor transformation
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s = ( f2-f1) / f1;  f2 > f1 ; x1(0) = 1 - 1/N ; x2(0) = 1/N 

200 400 600 800 1000

0.2

0
0

0.4

0.6

0.8

1

Time [Generations]

Fr
ac

tio
n 

of
 a

dv
an

ta
ge

ou
s v

ar
ia

nt

s = 0.1

s = 0.01

s = 0.02

Selection of advantageous mutants in populations of N = 10 000 individuals



Changes in RNA sequences originate from replication 
errors called mutations.

Mutations occur uncorrelated to their consequences
in the selection process and are, therefore, commonly 
characterized as random elements of evolution.
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Point Mutation

Insertion

Deletion

GAA AA   UCCCG

GAAUCC A   CGA

GAA AAUCCCGUCCCG

GAAUCCA

The origins of changes in RNA sequences are replication errors called mutations.
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Chemical kinetics of molecular 
evolution

M. Eigen, P. Schuster, `The Hypercycle´, 
Springer-Verlag, Berlin 1979
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Chemical kinetics of replication and mutation as parallel reactions
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City-block distance in sequence space 2D Sketch of sequence space

Single point mutations as moves in sequence space



Mutation-selection equation: [Ii] = xi Æ 0,  fi > 0, Qij Æ 0

Solutions are obtained after integrating factor transformation by means of an 
eigenvalue problem
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The molecular quasispecies in sequence space



Quasispecies as a function of the replication accuracy q



In evolution variation occurs on genotypes but selection operates on the phenotype.

Mappings from genotypes into phenotypes are highly complex objects. The only 
computationally accessible case is in the evolution of RNA molecules.  

The mapping from RNA sequences into secondary structures and function,

sequence ñ structure ñ function,

is used as a model for the complex relations between genotypes and phenotypes. Fertile 
progeny measured in terms of fitness in population biology is determined quantitatively 
by replication rate constants of RNA molecules. 

Population biology Molecular genetics Evolution of RNA molecules  

Genotype Genome RNA sequence 

Phenotype Organism RNA structure and function 

Fitness Reproductive success Replication rate constant 

 

The RNA model



Optimized element:  RNA structure



Hamming distance  d (S ,S ) = H 1 2 4

d (S ,S ) = 0H 1 1

d (S ,S ) = d (S ,S )H H1 2 2 1

d (S ,S )  d (S ,S ) + d (S ,S )H H H1 3 1 2 2 3¶

(i)

(ii)

(iii)

The Hamming distance between  structures in parentheses notation forms a metric 
in structure space
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Replication rate constant:

fk = g / [a + DdS
(k)]

DdS
(k) = dH(Sk,St)

Evaluation of RNA secondary structures yields replication rate constants



Stock Solution Reaction Mixture

Replication rate constant:

fk = g / [a + DdS
(k)]

DdS
(k) = dH(Sk,St)

Selection constraint:

# RNA molecules is 
controlled by the flow

NNtN ±≈)(

The flowreactor as a 
device for studies of 
evolution in vitro and 
in silico



5'-End

3'-End

70

60

50

4030

20

10

Randomly chosen 
initial structure

Phenylalanyl-tRNA as 
target structure
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mutations

The molecular quasispecies
in sequence space
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including molecular phenotypes



In silico optimization in the flow reactor: Trajectory (biologists‘ view)
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In silico optimization in the flow reactor: Trajectory (physicists‘ view)
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Reconstruction of the last step 43 Á 44
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Reconstruction of last-but-one step 42 Á 43 (Á 44)
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Reconstruction of step 41 Á 42 (Á 43 Á 44)
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Reconstruction of step 40 Á 41 (Á 42 Á 43 Á 44)



444342414039

Evolutionary process

Reconstruction
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Transition inducing point mutations Neutral point mutations

Change in RNA sequences during the final five relay steps 39 Á 44



In silico optimization in the flow reactor: Trajectory and relay steps
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In silico optimization in the flow reactor: Main transitions

Main  transitionsRelay steps
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Three important steps in the formation of the tRNA clover leaf from a randomly chosen 
initial structure corresponding to three main transitions.
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Definition of an e-neighborhood of structure Sk

Y(Sk) ... set of all structures occurring in the Hamming distance one
neighborhood of the neutral network Gk of Sk

gjk ... number of contacts between the two neutral networks Gj and Gk

gjk = gkj
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AUGC GC

Movies of optimization trajectories over the AUGC and the GC alphabet



Runtime of trajectories
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Number of transitions
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 Alphabet Runtime Transitions Main transitions  No. of runs 
     

AUGC 385.6 22.5 12.6 1017 
GUC 448.9 30.5 16.5 611 
GC 2188.3 40.0 20.6 107 

 

Statistics of trajectories and relay series (mean values of log-normal distributions)
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28 neutral point mutations during 
a long quasi-stationary epoch

Transition inducing point mutations Neutral point mutations

Neutral genotype evolution during phenotypic stasis 



Variation in genotype space during optimization of phenotypes

Mean Hamming distance within the population and drift velocity of the population center
in sequence space. 



Spread of population in sequence space during a quasistationary epoch:  t = 150



Spread of population in sequence space during a quasistationary epoch:  t = 170



Spread of population in sequence space during a quasistationary epoch:  t = 200



Spread of population in sequence space during a quasistationary epoch:  t = 350



Spread of population in sequence space during a quasistationary epoch:  t = 500



Spread of population in sequence space during a quasistationary epoch:  t = 650



Spread of population in sequence space during a quasistationary epoch:  t = 820



Spread of population in sequence space during a quasistationary epoch:  t = 825



Spread of population in sequence space during a quasistationary epoch:  t = 830



Spread of population in sequence space during a quasistationary epoch:  t = 835



Spread of population in sequence space during a quasistationary epoch:  t = 840



Spread of population in sequence space during a quasistationary epoch:  t = 845



Spread of population in sequence space during a quasistationary epoch:  t = 850



Spread of population in sequence space during a quasistationary epoch:  t = 855



Massif Central

Mount FujiExamples of smooth landscapes on Earth



Dolomites

Examples of rugged landscapes on Earth Bryce Canyon



Genotype Space
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Evolutionary optimization in absence of neutral paths in sequence space
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Evolutionary optimization including neutral paths in sequence space



Grand Canyon

Example of a landscape on Earth with ‘neutral’ 
ridges and plateaus



Neutral ridges and plateus
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