Some Implications of the RNA Model for a Prebiotic World

Peter Schuster

Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA

Chemibiogenesis 2005, COST Action D 27 Venice, 28.09.– 01.10.2005

Web-Page for further information:

http://www.tbi.univie.ac.at/~pks

Three necessary conditions for Darwinian evolution are:

- 1. Multiplication,
- 2. Variation, and
- 3. Selection.

Variation through mutation and recombination operates on the genotype whereas the phenotype is the target of selection.

One important property of the Darwinian scenario is that variations in the form of mutations or recombination events occur uncorrelated with their effects on the selection process.

All conditions can be fulfilled not only by cellular organisms but also by nucleic acid molecules in suitable cell-free experimental assays. Population genetics and chemical reaction kinetics count only numbers of molecules and model their changes in time.

Molecular properties and functions enter as parameters and mechanisms and are inputs and no intrinsic part of the model.

Understanding evolution requires a concept of the phenotype as an intergal part of the model.

Genotype = Genome Mutation GGCTATCGTACGTTTACCCAAAAAGTCTACGTTGGACCCAGGCATTGGAC......G Unfolding of the genotype: Production and assembly of all parts of a bacterial cell, and cell division

Phenotype

Evolution of phenotypes: Bacterial cells

Evolution of phenotypes

Definition and **physical relevance** of RNA secondary structures

RNA secondary structures are listings of Watson-Crick and GU wobble base pairs, which are free of knots and pseudokots. This definition allows for rigorous mathematical analysis by means of combinatorics.

D.Thirumalai, N.Lee, S.A.Woodson, and D.K.Klimov. *Annu.Rev.Phys.Chem.* **52**:751-762 (2001):

"Secondary structures are folding intermediates in the formation of full three-dimensional structures."

Secondary structures have been and still are frequently used to predict and discuss RNA function.

- 1. The RNA model
- 2. How many stable structures can be formed?
- 3. Why not binary (GC or AU) sequences?
- 4. Evolution on neutral networks
- 5. Multiconformational RNA molecules

1. The RNA model

- 2. How many stable structures can be formed?
- 3. Why not binary (GC or AU) sequences?
- 4. Evolution on neutral networks
- 5. Multiconformational RNA molecules

Symbolic notation

A symbolic notation of RNA secondary structure that is equivalent to the conventional graphs

RNA sequence GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGACGGUCCCAUCGGUACUCCA

Structural biology, spectroscopy of biomolecules, understanding molecular function

Biophysical chemistry: thermodynamics and kinetics **Empirical parameters RNA structure** of minimal free energy

Sequence, structure, and design

The minimum free energy structures on a discrete space of conformations

RNA sequence GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGACGGUCCCAUCGGUACUCCA

RNA folding:

Structural biology, spectroscopy of biomolecules, understanding molecular function Iterative determination of a sequence for the given secondary structure

> Inverse Folding Algorithm

Inverse folding of RNA:

Biotechnology, design of biomolecules with predefined structures and functions

RNA structure of minimal free energy

Sequence, structure, and design

UUUAGCCAGCGCGAGUCGUGCGGACGGGGUUAUCUCUGUCGGGCUAGGGCGC GUGAGCGCGGGGCACAGUUUCUCAAGGAUGUAAGUUUUUGCCGUUUAUCUGG UUAGCGAGAGAGGAGGCUUCUAGACCCAGCUCUCUGGGUCGUUGCUGAUGCG CAUUGGUGCUAAUGAUAUUAGGGCUGUAUUCCUGUAUAGCGAUCAGUGUCCG GUAGGCCCUCUUGACAUAAGAUUUUUCCAAUGGUGGGAGAUGGCCAUUGCAG

The **inverse folding algorithm** searches for sequences that form a given RNA secondary structure under the minimum free energy criterion.

Sequence space

Structure space

Sequence space and structure space

Sequence space

Structure space

Mapping from sequence space into structure space

Sequence space

Structure space

The pre-image of the structure S_k in sequence space is the **neutral network** G_k

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG

One error neighborhood – Surrounding of an RNA molecule (n=50) in sequence and shape space

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG

GGCUAUCGUACGUUUACCCGAAAGUCUACGUUGGACCCAGGCAUUGGACG

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG

GGCUAUCGUACGUUUACCCGAAAGUCUACGUUGGACCCAGGCAUUGGACG

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG

ACG GGCUAUCGUACGUUUACCCGAAAGUCUACGUUGGACCCAGGCAUUGGACG

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGUCCCAGGCAUUGGACG

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGG^UCCCAGGCAUUGGACG GGCUAUCGUACGUUUACCC<mark>G</mark>AAAGUCUACGUUGGACCCAGGCAUUGGACG

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGG^UCCCAGGCAUUGGACG GGCUAUCGUACGUUUACCC<mark>G</mark>AAAGUCUACGUUGGACCCAGGCAUUGGACG

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG

GCAGCUUGCCCAAUGCAACCCCAUGUGGCGCGCUAGCUAACACCAUCCCC

1	((((((((((((((((((((((())))))))))))))))	65	0.433333
2	((((((((((((((((((()))))))))))))))))	9	0.060000
3	((((((((((((((((((((((((((((((((((((5	0.033333
4	((((((((()))))))))))	5	0.033333
5	((((((((((((((((((()))))))))))))))))	4	0.026667
6	((((((((((((((((((((((((((((((((((((3	0.020000
7	((((((((((((((((((((((((((((((((((((3	0.020000
8	((((((((((((((((((((((((((((((((((((3	0.020000
9	((((((((((((((((((((((((((((((((((((3	0.020000
10	((((((((((((((((())))))))))))))))))))))	3	0.020000
11	((((((((((((((((((((((((((((((((((((2	0.013333
12	((((((((((((((((((((((((((((((((((((2	0.013333
13	(((((((((()))))))))))))))	2	0.013333
14	((((((((((((((((((((((((((((((((((((2	0.013333
15	.((((((((((((((()))))))))))))))))))	2	0.013333

GGAGCUUGCCGAAUGCAACCCCAUGAGGCGCGCUGCCUGGCACCAGCCCC

1	((((((((((((((((((((())))))))))))))))))	49	0.326667
2	((((((((((((((((((((())))))))))))))))))	7	0.046667
3	\dots (((((((((((((((((((б	0.040000
4	((((((((((((((((((((((((((((((((((((5	0.033333
5	((.((((((((((((())).))))))))))))	5	0.033333
б	((((((((((((((((((((((((((((((((((((5	0.033333
7	((((((((((((((((((((((((((((((((((((4	0.026667
8	((((((((((((((((((((((((((((((((((((4	0.026667
9	((((((((((((((((((((((((((((((((((((3	0.020000
10	((((((((((((((((((((((((((((((((((((3	0.020000
11	((.((((((((((((((((((((((((((((((((((3	0.020000
12	((((((((((())))))))))))))))))	3	0.020000
13	(.(((.(((((((((((((((((((((((((((((((3	0.020000
14	$((\ldots (.((((\ldots (((\ldots)))))))))))))))))))))))$	3	0.020000
15	((((((((((((((((((((((((((((((((((((3	0.020000
16	((((((((((((((((((((((((((((((((((((3	0.020000
17	(((((((((((()))))))))))))))))))	3	0.020000
18	((.(((((((((()))))))))))))))))))	2	0.013333
19	((((((((((((((((((((((((((((((((((((2	0.013333
20	((.((((((((((((((((((((((((((()))))))))	2	0.013333

Total Hamming Distance: Nonzero Hamming Distance: Degree of Neutrality: Number of Structures:	Number 3750000 2493088 1256912 25000	Mean Value 11.608372 16.921998 0.335177 52.15	Variance 22.628558 30.500616 0.006850 84.61	Std.Dev. 4.756948 5.522736 0.082764 9.20	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$))))) .))))))))))))))))) .))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))	<pre> 1256912 69647 69194 61825 56398 55423 34871 29201 25844 25459</pre>	0.335177 0.018573 0.018452 0.016487 0.015039 0.014779 0.009299 0.007787 0.006892 0.006789	
$\begin{array}{c} 28 & (((((((((((((((((((((((((((((((((($)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))).))(((()))).)))))))))))))))))))))))	<pre>)). 3629 3519 3138 3067 3058 2960) 2946))) 2937 2914 2723</pre>	0.000968 0.000938 0.000837 0.000818 0.000815 0.000789 0.000786 0.000783 0.000777 0.000726	GAGGA GCAGGA
adow – Surrounding of RNA structu	re I in shape s	space – AUGC alp	ohabet	GCAUACC AAGUC AAGUC	- 4

	Number	Mean Value	Variance	Std.Dev.
Total Hamming Distance:	3750000	12.498761	23.352188	4.832410
Nonzero Hamming Distance:	2807992	16.350987	29.476615	5.429237
Degree of Neutrality:	942008	0.251202	0.003690	0.060747
Number of Structures:	25000	54.16	73.46	8.57
1 (((((.(((())))))))))).)).((())) 942008	0.251202
2 (((((((((((((((())))))))))).))	166946	0.044519
3(((((()))))))))))((())) 103673	0.027646
4 (((((((((((())))))))))).)).((())) 69658	0.018575
5 (((((.((()))))))))))).)).((())) 62183	0.016582
6 (((((.((((.()))).))))))))).)).((())) 56510	0.015069
7 ((((((((((((())).)))))))))).)).((())) 55902	0.014907
8 (((((((())))))))).)).((())) 35249	0.009400
9 .((((.(((((()))))))))))))((())) 32042	0.008545
10 (((((.(((())))))))))).)).((())) 29725	0.007927
11 (((((.((())))))))))))))((())) 27114	0.007230
12 (((((((((())))))))).)).((())) 25820	0.006885
13 (((((.((((()))))))))).))).((())) 22513	0.006003
14 (((((.((()))))).))).)).((())) 21640	0.005771
15(((((())))))))))))(((()))). 20394	0.005438
16(((((())))))))))))((((())))) 16983	0.004529
17 (((((.((())))))))))).)).((())) 15965	0.004257
18 (((((.(((()))))))))))).))(()) 14239	0.003797
19 (((((.(((())))))))))).)).(()) 11870	0.003165
20 (((((((((())))))))))))).))(((()))). 9919	0.002645

Shadow – Surrounding of RNA structure II in shape space – **AUGC** alphabet

38 529 4257 .03797 .003165 ..002645 ..002645

	$\mathbf{G}_{\mathbf{k}} = \boldsymbol{\psi}^{-1}(\mathbf{S}_{\mathbf{k}}) \doteq \{ \mathbf{I}_{j} \mid \boldsymbol{\psi} \}$ $\boldsymbol{\Sigma} \boldsymbol{\lambda} \cdot (\mathbf{k})$	$r(I_j) = S$	5 _k }	
	$\overline{\lambda}_k = \frac{\sum_{j \in \mathbf{G}_k } \mathcal{H}_j(\mathbf{R})}{ \mathbf{G}_k }$			
			Alphabet	size κ:
		к	λ_{cr}	
		2	0.5	AU,GC,DU
$\lambda_j = 12 / 27 = 0.444$		3	0.423	AUG , UGC
		4	0.370	AUGC

 $\bar{\lambda}_k > \lambda_{cr} \dots$ network \mathbf{G}_k is connected

 $\bar{\lambda}_k < \lambda_{cr} \dots$ network G_k is **not** connected

Connectivity threshold: $\lambda_{cr} = 1 - \kappa^{-1/(\kappa-1)}$

Degree of neutrality of neutral networks and the connectivity threshold

A multi-component neutral network formed by a rare structure: $\lambda < \lambda_{cr}$

A connected neutral network formed by a common structure: $\lambda > \lambda_{cr}$
From sequences to shapes and back: a case study in RNA secondary structures

PETER SCHUSTER^{1, 2, 3}, WALTER FONTANA³, PETER F. STADLER^{2, 3} and IVO L. HOFACKER²

¹ Institut für Molekulare Biotechnologie, Beutenbergstrasse 11, PF 100813, D-07708 Jena, Germany
² Institut für Theoretische Chemie, Universität Wien, Austria
³ Santa Fe Institute, Santa Fe, U.S.A.

SUMMARY

RNA folding is viewed here as a map assigning secondary structures to sequences. At fixed chain length the number of sequences far exceeds the number of structures. Frequencies of structures are highly nonuniform and follow a generalized form of Zipf's law: we find relatively few common and many rare ones. By using an algorithm for inverse folding, we show that sequences sharing the same structure are distributed randomly over sequence space. All common structures can be accessed from an arbitrary sequence by a number of mutations much smaller than the chain length. The sequence space is percolated by extensive neutral networks connecting nearest neighbours folding into identical structures. Implications for evolutionary adaptation and for applied molecular evolution are evident: finding a particular structure by mutation and selection is much simpler than expected and, even if catalytic activity should turn out to be sparse in the space of RNA structures, it can hardly be missed by evolutionary processes.

Figure 4. Neutral paths. A neutral path is defined by a series of nearest neighbour sequences that fold into identical structures. Two classes of nearest neighbours are admitted: neighbours of Hamming distance 1, which are obtained by single base exchanges in unpaired stretches of the structure. and neighbours of Hamming distance 2, resulting from base pair exchanges in stacks. Two probability densities of Hamming distances are shown that were obtained by searching for neutral paths in sequence space: (i) an upper bound for the closest approach of trial and target sequences (open circles) obtained as endpoints of neutral paths approaching the target from a random trial sequence (185 targets and 100 trials for each were used); (ii) a lower bound for the closest approach of trial and target sequences (open diamonds) derived from secondary structure statistics (Fontana et al. 1993a; see this paper, §4); and (iii) longest distances between the reference and the endpoints of monotonously diverging neutral paths (filled circles) (500 reference sequences were used).

Proc. R. Soc. Lond. B (1994) 255, 279–284 Printed in Great Britain 279

© 1994 The Royal Society

Reference for postulation and *in silico* verification of *neutral networks*

Evolution of aptamers with a new specificity and new secondary structures from an ATP aptamer

ZHEN HUANG¹ and JACK W. SZOSTAK²

¹Department of Chemistry, Brooklyn College, Ph.D. Programs of Chemistry and Biochemistry, The Graduate School of CUNY, Brooklyn, New York 11210, USA

²Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA

ABSTRACT

Small changes in target specificity can sometimes be achieved, without changing aptamer structure, through mutation of a few bases. Larger changes in target geometry or chemistry may require more radical changes in an aptamer. In the latter case, it is unknown whether structural and functional solutions can still be found in the region of sequence space close to the original aptamer. To investigate these questions, we designed an in vitro selection experiment aimed at evolving specificity of an ATP aptamer. The ATP aptamer makes contacts with both the nucleobase and the sugar. We used an affinity matrix in which GTP was immobilized through the sugar, thus requiring extensive changes in or loss of sugar contact, as well as changes in recognition of the nucleobase. After just five rounds of selection, the pool was dominated by new aptamers falling into three major classes, each with secondary structures distinct from that of the ATP aptamer. The average sequence identity between the original aptamer and new aptamers is 76%. Most of the mutations appear to play roles either in disrupting the original secondary structures that recognize a significantly different ligand in the region of sequence space close to the ATP aptamer. These examples of the emergence of novel functions and structures from an RNA molecule with a defined specificity and fold provide a new perspective on the evolutionary flexibility and adaptability of RNA.

Keywords: Aptamer; specificity; fold; selection; RNA evolution

RNA 9:1456-1463, 2003

Evidence for neutral networks and shape space covering

Springer-Verlag New York Inc. 2003

Evolutionary Landscapes for the Acquisition of New Ligand Recognition by RNA Aptamers

Daniel M. Held, S. Travis Greathouse, Amit Agrawal, Donald H. Burke

Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA

Received: 15 November 2002 / Accepted: 8 April 2003

Abstract. The evolution of ligand specificity underlies many important problems in biology, from the appearance of drug resistant pathogens to the re-engineering of substrate specificity in enzymes. In studying biomolecules, however, the contributions of macromolecular sequence to binding specificity can be obscured by other selection pressures critical to bioactivity. Evolution of ligand specificity in vitro-unconstrained by confounding biological factors-is addressed here using variants of three flavin-binding RNA aptamers. Mutagenized pools based on the three aptamers were combined and allowed to compete during in vitro selection for GMP-binding activity. The sequences of the resulting selection isolates were diverse, even though most were derived from the same flavin-binding parent. Individual GMP aptamers differed from the parental flavin aptamers by 7 to 26 mutations (20 to 57% overall change). Acquisition of GMP recognition coincided with the loss of FAD (flavin-adenine dinucleotide) recognition in all isolates, despite the absence of a counter-selection to remove FAD-binding RNAs. To examine more precisely the proximity of these two activities within a defined sequence space, the complete set of all intermediate sequences between an FAD-binding aptamer and a GMP-binding aptamer were synthesized and assayed for activity. For this set of sequences, we observe a portion of a neutral network for FAD-binding function separated from GMP-binding function by a distance of three mutations. Furthermore, enzymatic probing of these aptamers revealed gross structural remodeling of the RNA coincident with the switch in ligand recognition. The capacity for neutral drift along an FAD-binding network in such close approach to RNAs with GMPbinding activity illustrates the degree of phenotypic buffering available to a set of closely related RNA sequences—defined as the set's functional tolerance for point mutations—and supports neutral evolutionary theory by demonstrating the facility with which a new phenotype becomes accessible as that buffering threshold is crossed.

Key words: Aptamers — RNA structure — Phenotypic buffering — Fitness landscapes — Neutral evolutionary theory — Flavin — GMP

Introduction

RNA aptamers targeting small molecules serve as useful model systems for the study of the evolution and biophysics of macromolecular binding interactions. Because of their small sizes, the structures of atomic resolution by NMR spectrometry or X-ray crystallography (reviewed by Herman and Patel 2000). Moreover, aptamers can be subjected to mutational and evolutionary pressures for which survival is based entirely on ligand binding, without the complicating effects of simultaneous selection pressures for bioactivity, thus allowing the relative contributions of each activity to be evaluated separately.

Evidence for neutral networks and intersection of apatamer functions

Correspondence to: Donald H. Burke; email: dhburke@indiana.edu

1. The RNA model

- 2. How many stable structures can be formed?
- 3. Why not binary (GC or AU) sequences?
- 4. Evolution on neutral networks
- 5. Multiconformational RNA molecules

$$S_{n+1} = S_n + \sum_{j=1}^{n-1} S_{j-1} \cdot S_{n-j}$$

Counting the numbers of structures of chain length $n \Rightarrow n+1$

M.S. Waterman, T.F. Smith (1978) Math.Bioscience 42:257-266

TABLE 2 A recursion to calculate the numbers of acceptable RNA secondary structures, $N_S(\ell) = S_{\ell}^{(\min[n_{lp}],\min[n_{st}])}$ [49]. A structure is acceptable if all its hairpin loops contain three or more nucleotides (loopsize: $n_{lp} \geq 3$) and if it has no isolated base pairs (stacksize: $n_{st} \geq 2$). The recursion $m + 1 \Longrightarrow m$ yields the desired results in the array Ψ_m and uses two auxiliary arrays with the elements Φ_m and Ξ_m , which represent the numbers of structures with or without a closing base pair (1, m). One array, e.g., Φ_m , is dispensible, but then the formula contains a double sum that is harder to interpret.

Recursion formula for the number of physically acceptable stable structures

I.L.Hofacker, P.Schuster, P.F. Stadler (1998) Discr.Appl.Math. 89:177-207

G≡C (C≡G)

The six base pairing alphabets built from natural nucleotides A, U, G, and C

The six base pairing alphabets built from natural nucleotides A, U, G, and C

	Number of Sequences		Number of Structures					
l	24	4'	$S_\ell^{(3,2)}$	GC	UGC	AUGC	AUG	AU
7	128	1.64×10^4	2	1	1	1	1	1
8	256	$6.55 imes 10^4$	4	3	3	3	1	1
9	512	2.62×10^5	8	7	7	7	1	1
10	1024	1.05×10^6	14	13	13	13	1	1
15	$3.28 imes 10^4$	1.07×10^9	174	130	145	152	37	15
16	$6.55 imes 10^4$	4.29×10^9	304	214	245	257	55	25
19	$5.24 imes 10^5$	2.75×10^{11}	1 587	972	1 235		220	84
20	$1.05 imes 10^6$	1.10×10^{12}	2 7 4 1	1 599	2112		374	128
29	5.37×10^8	2.88×10^{17}	430 370	132875				8 6 9 0
30	$1.07 imes 10^9$	$1.15 imes 10^{18}$	760 983	218 318				13 726

Computed numbers of minimum free energy structures over different alphabets

P. Schuster, *Molecular insights into evolution of phenotypes*. In: J. Crutchfield & P.Schuster, Evolutionary Dynamics. Oxford University Press, New York 2003, pp.163-215.

Nature 402, 323-325, 1999

A ribozyme that lacks cytidine

Jeff Rogers & Gerald F. Joyce

Departments of Chemistry and Molecular Biology, and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA

The RNA-world hypothesis proposes that, before the advent of DNA and protein, life was based on RNA, with RNA serving as both the repository of genetic information and the chief agent of catalytic function¹. An argument against an RNA world is that the components of RNA lack the chemical diversity necessary to sustain life. Unlike proteins, which contain 20 different aminoacid subunits, nucleic acids are composed of only four subunits which have very similar chemical properties. Yet RNA is capable of a broad range of catalytic functions²⁻⁷. Here we show that even three nucleic-acid subunits are sufficient to provide a substantial increase in the catalytic rate. Starting from a molecule that contained roughly equal proportions of all four nucleosides, we used in vitro evolution to obtain an RNA ligase ribozyme that lacks cytidine. This ribozyme folds into a defined structure and has a catalytic rate that is about 105-fold faster than the uncatalysed rate of template-directed RNA ligation.

Catalytic activity in the **AUG** alphabet

Base pairs in the **AUG** alphabet

Figure 1 Composition of the final selected cytidine-free ribozyme. **a**, Sequence trace showing the lack of cytidines at nucleotide positions 19–173. Positions 2–18 correspond to the T7 promoter sequence and positions 174–188 correspond to the downstream vector sequence (pCR 2.1). Automated sequencing was carried out using an ABI model 373 DNA sequencer and was confirmed by manual sequencing of both strands (data not shown). **b**, Secondary structure of the starting ribozyme (E100) based on that of the class I

ligase¹⁰. Box indicates the primer binding site at the 3' end of the ribozyme. **c**, Secondary structure of the final selected ribozyme based on chemical modification of unpaired adenosine and guanosine residues (carat marks), carried out in the absence of substrate. Highlighted adenosine residues blocked catalytic activity when methylated at N1. Dashed line indicates the site of the largest 3'-terminal deletion that was compatible with catalytic activity.

A ribozyme composed of only two different nucleotides

John S. Reader & Gerald F. Joyce

Departments of Chemistry and Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA

RNA molecules are thought to have been prominent in the early history of life on Earth because of their ability both to encode genetic information and to exhibit catalytic function¹. The modern genetic alphabet relies on two sets of complementary base pairs to store genetic information. However, owing to the chemical instability of cytosine, which readily deaminates to uracil², a primitive genetic system composed of the bases A, U, G and C may have been difficult to establish. It has been suggested that the first genetic material instead contained only a single base-pairing unit³⁻⁷. Here we show that binary informational macromolecules, containing only two different nucleotide subunits, can act as catalysts. In vitro evolution was used to obtain ligase ribozymes composed of only 2,6-diaminopurine and uracil nucleotides, which catalyse the template-directed joining of two RNA molecules, one bearing a 5'-triphosphate and the other a 3'-hydroxyl. The active conformation of the fastest isolated ribozyme had a catalytic rate that was about 36,000-fold faster than the uncatalysed rate of reaction. This ribozyme is specific for the formation of biologically relevant 3',5'-phosphodiester linkages.

Catalytic activity in the **DU** alphabet

The 2,6-diamino purine – uracil, **DU**, base pair

a GD DUUDGUDDUGDG DGUUGG 60 G D 1 30 D G G G D 50 G - U D - G 1140 G P3 P2 b UDUD_{OH} UDUDDUDDUDD D 5'- 11 DDDDD DDDU UDDDUU UD D DU D DDU D D 60 U D 130 U D D D D P4 U 50 U D D D D U 40 D D D D

Figure 1 Sequence and secondary structure of ligase ribozymes containing either three or two different nucleotide subunits. **a**, Ribozyme containing D, G and U residues, which was made to react with a substrate containing only A and U. This structure is supported by chemical modification and site-directed mutagenesis studies⁹. Bold G at positions 1, 58 and 63 indicates residues that could not be replaced by D or U without complete loss of catalytic activity. **b**, Ribozyme containing only D and U, which was made to react with a substrate containing only D and U, which was made to react with a substrate containing only D and U. This structure is conjectural. Note that this molecule is shortened by one nucleotide at the 5' end and lengthened by six nucleotides at the 3' end compared with the ribozyme shown in **a**.

- 1. The RNA model
- 2. How many stable structures can be formed?

3. Why not binary (GC or AU) sequences?

- 4. Evolution on neutral networks
- 5. Multiconformational RNA molecules

	Number	Mean Value	Variance	Std.Dev.	
Total Hamming Distance:	150000	11.647973	23.140715	4.810480	
Nonzero Hamming Distance:	99875	16.949991	30.757651	5.545958	
Degree of Neutrality:	50125	0.334167	0.006961	0.083434	
Number of Structures:	1000	52.31	85.30	9.24	
1 (((((((((((((((((((((((((((((((((((()))))))))))).))	50125	0.334167	
2(((((())	()))))))))))	2856	0.019040	
3 ((((((((((((()))	()))))))))).))	2799	0.018660	
4 (((((((((((((((((((((((((((((((((((((()))).))).))	2417	0.016113	
5 (((((((((((((((((())•))))•))).))	2265	0.015100	
6 (((((((((((((((().)))))))))))).))	2233	0.014887	
7 ((((((((((())))))))))))))))).))	1442	0.009613	
8 (((((.((())))).))).))	1081	0.007207	
9 ((((((()))))))).))	1025	0.006833	
)))).)))))	1003	0.006687	
)))).))))	963	0.006420	
12 (((((((((((((((((((((((((((((((((((()))).))).))	860	0.005733	
)))).))	•))) • • • • • • • • • • • • • • • •	800	0.005333	
14 ((((((((((((((((((((((((((((((((((((••••))))•))))))))).))	548	0.003653	
	· • • •)))) •))).))	362	0.002413	
)))).))	•••))••••••••	337	0.002247	G G L
17 (.(((.(((()))))))) .))).)	241	0.001607	¢
)))))))))))))))))))))))))))))))))))))))).))	231	0.001540	G A
19 ((((((())))))))) = 10 ((()))))))))))))	225	0.001500	e e
$20 ((\ldots,((((\ldots,(((\ldots,)))$)))))))	202	0.001347	A B C NG
				G	ัดป้
				G-A A	y a
				̰ ́γ́^	
				A LU GHE	
			C	AUA	
Shadow – Surrounding of an RNA s	tructure in sh	ape space – AUC	GC alphabet 🛛 🧔	X	
-		_	_	C-A	

	Number	Mean Value	Variance	Std.Dev.	
Total Hamming Distance:	50000	13.673580	10.795762	3.285691	
Nonzero Hamming Distance:	45738	14.872054	10.821236	3.289565	
Degree of Neutrality:	4262	0.085240	0.001824	0.042708	
Number of Structures:	1000	36.24	6.27	2.50	
			4262	0 085240	
$\frac{1}{2} \left($)))))))		1940	0.038800	
2 (((((((((((((((((((((((((((((((((((())••))))))		1701	0.035820	
	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		1752	0.035040	
= (((((((((((((((((((((((((((((((((((())))))))))		1423	0.028460	
			665	0 013300	
7 (((((((((((((((((((((((((((((((((((()))))))))).).)	005	0.015300	
8 ((((((((((((((()))))))))))))))	280	0.005600	
9 (((((((((((((((((((((((((((((((((((())))))))	$)))))) \\ ((($))) 278	0.005560	
$\begin{array}{c} 9 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $))))))))).))	·/// 278	0.003300	
$11 \ (((((((((((((((((((((((((((((((((($	$)) \cdot \cdot \cdot))) \cdot)$))))))) ((())) 193	0.004100	
12 (((((((((((((((((((((((((((((((((((()).))))))))))))))(((())) 180	0.003600	
13 (((((((((((((((((((((((((((((((((((($)) \cdot \cdot)))))))))))))))))))))) $)))))	180	0.003600	
14 ((((((((((((((((((((())))))))))))))))))))))))))))))))))))))))).))	176	0.003520	
15 (((((((((((((((((((((((((((((((((((()))))))))))))	175	0.003500	
16 (((((((((((((((((((((((((((((((((((()))))))))))))	167	0 003340	
17 (((((((((((((((((((((()))))))		157	0.003140	6 ⁶⁶ 6
18 (((((((((((((((((((((((((((((((((((()))))	140	0 002800	ୁ ଜୁ ଜୁ
19 ((((((((((((((((((((((((((((((((((((137	0 002740	C G
20 (((((((((((((((((((((((((((((((((((127	0 002540	e e
20 .(((((.((((((()	//••////•/))) • • • • • • • • • • • •	•••• ±27	0.002510	^C ^C _C _C ^C
					<u> </u>
					G G G G
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	G G
				G G G	a
				۳ و آ	
				o of been	
			2		
Shadow – Surrounding of an RNA	structure in s	shape space – <b>GC</b> a	alphabet <b>G</b>	Ġ	
				C-C	



RNA clover-leaf secondary structures of sequences with chain length n=76



RNA clover-leaf secondary structures of sequences with chain length n=76



robability of successfu	l trials in	inverse folding
1	robability of successfu	robability of successful trials in

AU				$0.051\pm0.006$
AUG		$0.003\pm0.001$	$0.026\pm0.006$	$0.374\pm0.016$
AUGC	$0.794 \pm 0.007$	$0.884 \pm 0.008$	$0.934 \pm 0.009$	$0.982 \pm 0.004$
UGC	$0.548 \pm 0.011$	$0.628\pm0.012$	$0.697 \pm 0.020$	$0.818\pm0.012$
GC	$0.067\pm0.007$	$0.086\pm0.008$	$0.087\pm0.008$	$0.127 \pm 0.006$

Probability of finding cloverleaf RNA secondary structures from different alphabets



Alphabet		Degree of ne		
AU				$0.073\pm0.032$
AUG		$0.217\pm0.051$	$0.207\pm0.055$	$0.201\pm0.056$
AUGC	$0.275 \pm 0.064$	$0.279 \pm 0.063$	$0.289 \pm 0.062$	$0.313 \pm 0.058$
UGC	$0.263\pm0.071$	$0.257\pm0.070$	$0.251 \pm 0.068$	$0.250 \pm 0.064$
GC	$0.052 \pm 0.033$	$0.057 \pm 0.034$	$0.060 \pm 0.033$	$0.068 \pm 0.034$

Degree of neutrality of cloverleaf RNA secondary structures over different alphabets

Probability to be able to form a base pair between two arbitrarily chosen nucelotides in a random sequence with uniform base composition

AU,GC	0.5		
AUGC	0.375		
GCXK	0.25		
AUGCXK	0.167		

- 1. The RNA model
- 2. How many stable structures can be formed?
- 3. Why not binary (GC or AU) sequences?
- 4. Evolution on neutral networks
- 5. Multiconformational RNA molecules



## **Replication rate constant:**

$$f_{k} = \gamma / [\alpha + \Delta d_{S}^{(k)}]$$
$$\Delta d_{S}^{(k)} = d_{H}(S_{k}, S_{\tau})$$

## Selection constraint:

Population size, N = # RNA molecules, is controlled by the flow

$$N(t) \approx \overline{N} \pm \sqrt{\overline{N}}$$

## **Mutation rate**:

 $p = 0.001 / site \times replication$ 

The flowreactor as a device for **studies** of evolution *in vitro* and *in silico* 

Replication rate constant:

 $f_{k} = \gamma / \left[\alpha + \Delta d_{S}^{(k)}\right]$  $\Delta d_{S}^{(k)} = d_{H}(S_{k}, S_{\tau})$ f₆  $f_7$  $f_5$  $f_0$  $f_4$  $f_3$  $\mathbf{f}_1$  $f_2$ 

Evaluation of RNA secondary structures yields replication rate constants









Migration of a quasispecies through sequence space



Evolutionary dynamics including molecular phenotypes



In silico optimization in the flow reactor: Evolutionary Trajectory



# 28 neutral point mutations during a long quasi-stationary epoch

GGUAUGGGCGUUGAAUAGUAGGGUUUAAACCAAUCGGCCAACGAUCUCGUGUGCGCAUUUCAUAUCCCGUACAGAA entry 8 GGUAUGGGCGUUGAAUAAUAGGGUUUAAAACCAAUCGGCCAACGAUCUCGUGUGCGCAUUUCAUAUGCCAUACAGAA exit GGUAUGGGCGUUGAAUAAUAGGGUUUAAACCAAUCGGCCAACGAUCUCGUGUGCGCAUUUCAUAUACCAUACAGAA entry 9 exit entrv 10exit

## **Transition inducing point mutations** change the molecular structure

Neutral point mutations leave the molecular structure unchanged

Neutral genotype evolution during phenotypic stasis



Evolutionary trajectory

Spreading of the population on neutral networks

Drift of the population center in sequence space

_	
_	

Spreading and evolution of a population on a neutral network: t = 150



Spreading and evolution of a population on a neutral network : t = 170




























AUGC

GC

Movies of optimization trajectories over the **AUGC** and the **GC** alphabet

Alphabet	Runtime	Transitions	Main transitions	No. of runs
AUGC GUC GC	385.6 448.9 2188.3	22.5 30.5 40.0	12.6 16.5 20.6	1017 611 107

Mean population size: N = 3000; mutation rate: p = 0.001

Statistics of trajectories and relay series (mean values of log-normal distributions).

**AUGC** neutral networks of tRNAs are near the connectivity threshold, **GC** neutral networks are way below.



- 1. The RNA model
- 2. How many stable structures can be formed?
- 3. Why not binary (GC or AU) sequences?
- 4. Evolution on neutral networks
- 5. Multiconformational RNA molecules



RNA secondary structures derived from a single sequence



The compatible set  $C_k$  of a structure  $S_k$  consists of all sequences which form  $S_k$  as its minimum free energy structure (the neutral network  $G_k$ ) or one of its suboptimal structures.



The intersection of two compatible sets is always non empty:  $\mathbf{C}_0 \cap \mathbf{C}_1 \notin \emptyset$ 



Bulletin of Mathematical Biology, Vol. 59, No. 2, pp. 339-397, 1997 Elsevier Science Inc. © 1997 Society for Mathematical Biology 0092-8240/97 517.00 + 0.00

#### S0092-8240(96)00089-4

### GENERIC PROPERTIES OF COMBINATORY MAPS: NEUTRAL NETWORKS OF RNA SECONDARY STRUCTURES¹

 CHRISTIAN REIDYS*,†, PETER F. STADLER*,‡ and PETER SCHUSTER*,‡, §,²
 *Santa Fe Institute, Santa Fe, NM 87501, U.S.A.

†Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.

‡Institut für Theoretische Chemie der Universität Wien, A-1090 Wien, Austria

§Institut für Molekulare Biotechnologie, D-07708 Jena, Germany

(E.mail: pks@tbi.univie.ac.at)

Random graph theory is used to model and analyse the relationships between sequences and secondary structures of RNA molecules, which are understood as mappings from sequence space into shape space. These maps are non-invertible since there are always many orders of magnitude more sequences than structures. Sequences folding into identical structures form neutral networks. A neutral network is embedded in the set of sequences that are compatible with the given structure. Networks are modeled as graphs and constructed by random choice of vertices from the space of compatible sequences. The theory characterizes neutral networks by the mean fraction of neutral neighbors ( $\lambda$ ). The networks are connected and percolate sequence space if the fraction of neutral nearest neighbors exceeds a threshold value  $(\lambda > \lambda^*)$ . Below threshold  $(\lambda < \lambda^*)$ , the networks are partitioned into a largest "giant" component and several smaller components. Structures are classified as "common" or "rare" according to the sizes of their pre-images, i.e. according to the fractions of sequences folding into them. The neutral networks of any pair of two different common structures almost touch each other, and, as expressed by the conjecture of shape space covering sequences folding into almost all common structures, can be found in a small ball of an arbitrary location in sequence space. The results from random graph theory are compared to data obtained by folding large samples of RNA sequences. Differences are explained in terms of specific features of RNA molecular structures. © 1997 Society for Mathematical Biology

THEOREM 5. INTERSECTION-THEOREM. Let s and s' be arbitrary secondary structures and C[s], C[s'] their corresponding compatible sequences. Then,

### $C[s] \cap C[s'] \neq \emptyset.$

**Proof.** Suppose that the alphabet admits only the complementary base pair [XY] and we ask for a sequence x compatible to both s and s'. Then  $j(s, s') \cong D_m$  operates on the set of all positions  $\{x_1, \ldots, x_n\}$ . Since we have the operation of a dihedral group, the orbits are either cycles or chains and the cycles have even order. A constraint for the sequence compatible to both structures appears only in the cycles where the choice of bases is not independent. It remains to be shown that there is a valid choice of bases for each cycle, which is obvious since these have even order. Therefore, it suffices to choose an alternating sequence of the pairing partners X and Y. Thus, there are at least two different choices for the first base in the orbit.

Remark. A generalization of the statement of theorem 5 to three different structures is false.

> Reference for the definition of the intersection and the proof of the **intersection theorem**

J. H. A. Nagel, C. Flamm, I. L. Hofacker, K. Franke, M. H. de Smit, P. Schuster, and C. W. A. Pleij. *Structural parameters affecting the kinetic competition of RNA hairpin formation*, in press 2005.

J. H. A. Nagel, J. Møller-Jensen, C. Flamm, K. J. Öistämö, J. Besnard, I. L. Hofacker, A. P. Gultyaev, M. H. de Smit, P. Schuster, K. Gerdes and C. W. A. Pleij. *The refolding mechanism of the metastable structure in the 5'-end of the* hok *mRNA of plasmid* R1, submitted 2005.



J.H.A. Nagel, C. Flamm, I.L. Hofacker, K. Franke, M.H. de Smit, P. Schuster, and C.W.A. Pleij.

Structural parameters affecting the kinetic competition of RNA hairpin formation, in press 2004.



J.H.A. Nagel, C. Flamm, I.L. Hofacker, K. Franke, M.H. de Smit, P. Schuster, and C.W.A. Pleij.

Structural parameters affecting the kinetic competition of RNA hairpin formation, in press 2004.

## A ribozyme switch

E.A.Schultes, D.B.Bartel, Science **289** (2000), 448-452

minus the background levels observed in the HSP in the control (Sar1-GDP-containing) incubation that prevents COPII vesicle formation. In the microsome control, the level of p115-SNARE associations was less than 0.1%.

- C. M. Carr, E. Grote, M. Munson, F. M. Hughson, P. J. Novick, J. Cell Biol. 146, 333 (1999).
- C. Ungermann, B. J. Nichols, H. R. Pelham, W. Wickner, J. Cell Biol. 140, 61 (1998).
- 48. E. Grote and P. J. Novick, Mol. Biol. Cell 10, 4149 (1999).
- 49. P. Uetz et al., Nature 403, 623 (2000).

50. GST-SNARE proteins were expressed in bacteria and purified on glutathione-Sepharose beads using standard methods. Immobilized GST-SNARE protein (0.5 μM) was incubated with rat liver cytosol (20 mg) or purified recombinant p115 (0.5 μM) in 1 ml of NS buffer containing 1% BSA for 2 hours at 4°C with rotation. Beads were briefly spun (3000 rpm for 10.s) and sequentially washed three times with NS buffer and three times with NS buffer supplemented with 150 ml NaCL Bound proteins were eluted three times in 50 μJ of 50 ml tris-HCl (pH 8.5), 50 ml reduced glutathione. 150 ml NaCL, and 0.1% Tirtion 0.1% Tirtion M NaCL.

#### REPORTS

X-100 for 15 min at 4°C with intermittent mixing, and elutes were pooled. Proteins were precipitated by MeOH/CH₃Cl and separated by SDS-polyacrylamide gel electrophoresis (PAGE) followed by immunoblotting using p115 mAb 13F12.

- 51. V. Rybin et al., Nature 383, 266 (1996).
- K. G. Hardwick and H. R. Pelham, J. Cell Biol. 119, 513 (1992).
- A. P. Newman, M. E. Groesch, S. Ferro-Novick, EMBO J. 11, 3609 (1992).
- A. Spang and R. Schekman, J. Cell Biol. 143, 589 (1998).
  M. F. Rexach, M. Latterich, R. W. Schekman, J. Cell Biol. 126 (113) (1994).
- A. Mayer and W. Wickner, J. Cell Biol. 136, 307 (1997).
  M. D. Turner, H. Plutner, W. E. Balch, J. Biol. Chem. 272, 13479 (1997).
- A. Price, D. Seals, W. Wickner, C. Ungermann, J. Cell Biol. 148, 1231 (2000).
- 59. X. Cao and C. Barlowe, J. Cell Biol. 149, 55 (2000). 60. G. G. Tall, H. Hama, D. B. DeWald, B. F. Horazdovsky,
- Mol. Biol. Cell 10, 1873 (1999). 61. C. G. Burd, M. Peterson, C. R. Cowles, S. D. Emr, Mol.
- Biol. Cell 8, 1089 (1997).

## One Sequence, Two Ribozymes: Implications for the Emergence of New Ribozyme Folds

#### Erik A. Schultes and David P. Bartel*

We describe a single RNA sequence that can assume either of two ribozyme folds and catalyze the two respective reactions. The two ribozyme folds share no evolutionary history and are completely different, with no base pairs (and probably no hydrogen bonds) in common. Minor variants of this sequence are highly active for one or the other reaction, and can be accessed from prototype ribozymes through a series of neutral mutations. Thus, in the course of evolution, new RNA folds could arise from preexisting folds, without the need to carry inactive intermediate sequences. This raises the possibility that biological RNAs having no structural or functional similarity might share a common ancestry. Furthermore, functional and structural divergence might, in some cases, precede rather than follow gene duplication.

Related protein or RNA sequences with the same folded conformation can often perform very different biochemical functions, indicating that new biochemical functions can arise from preexisting folds. But what evolutionary mechanisms give rise to sequences with new macromolecular folds? When considering the origin of new folds, it is useful to picture, among all sequence possibilities, the distribution of sequences with a particular fold and function. This distribution can range very far in sequence space (1). For example, only seven nucleotides are strictly conserved among the group I selfsplicing introns, yet secondary (and presumably tertiary) structure within the core of the ribozyme is preserved (2). Because these disparate isolates have the same fold and function, it is thought that they descended from a common ancestor through a series of mutational variants that were each functional. Hence, sequence heterogeneity among divergent isolates implies the existence of paths through sequence space that have allowed neutral drift from the ancestral sequence to each isolate. The set of all possible neutral paths composes a "neutral network," connecting in sequence space those widely dispersed sequences sharing a particular fold and activity, such that any sequence on the network can potentially access very distant sequences by neutral mutations (3–5).

Theoretical analyses using algorithms for predicting RNA secondary structure have suggested that different neutral networks are interwoven and can approach each other very closely (3, 5–8). Of particular interest is whether ribozyme neutral networks approach each other so closely that they intersect. If so, a single sequence would be capable of folding into two different conformations, would  M. R. Peterson, C. G. Burd, S. D. Emr, Curr. Biol. 9, 159 (1999).

- M. G. Waters, D. O. Clary, J. E. Rothman, J. Cell Biol. 118, 1015 (1992).
- D. M. Walter, K. S. Paul, M. G. Waters, J. Biol. Chem. 273, 29565 (1998).
- , 513 65. N. Hui et al., Mol. Biol. Cell 8, 1777 (1997).
  - 66. T. E. Kreis, EMBO J. 5, 931 (1986).
  - H. Plutner, H. W. Davidson, J. Saraste, W. E. Balch J. Cell Biol. 119, 1097 (1992).
  - 68. D. S. Nelson et al., J. Cell Biol., **143**, 319 (1998), 69. We thank G. Waters for p115 cDNA and p115 mAbrs, G. Warren for p97 and p47 antibodies; R. Scheller for rbet1, membrin, and sec22. CDNAs; H. Plutner for excellent technical assistance; and P. Tan for help during the initial phase of this work. Supported by NIH grants CM 33301 and CM 42336 and National Cancer Institute grant CA58689 (W.E.B.), a NIH National Research Service Award (B.D.M.), and a Wel-

come Trust International Traveling Fellowship

20 March 2000; accepted 22 May 2000

(B.B.A.).

have two different catalytic activities, and could access by neutral drift every sequence on both networks. With intersecting networks, RNAs with novel structures and activities could arise from previously existing ribozymes, without the need to carry nonfunctional sequences as evolutionary intermediates. Here, we explore the proximity of neutral networks experimentally, at the level of RNA function. We describe a close apposition of the neutral networks for the hepatitis delta virus (HDV) self-cleaving ribozyme and the class III self-ligating ribozyme.

In choosing the two ribozymes for this investigation, an important criterion was that they share no evolutionary history that might confound the evolutionary interpretations of our results. Choosing at least one artificial ribozyme ensured independent evolutionary histories. The class III ligase is a synthetic ribozyme isolated previously from a pool of random RNA sequences (9). It joins an oligonucleotide substrate to its 5' terminus. The prototype ligase sequence (Fig. 1A) is a shortened version of the most active class III variant isolated after 10 cycles of in vitro selection and evolution. This minimal construct retains the activity of the full-length isolate (10). The HDV ribozyme carries out the site-specific self-cleavage reactions needed during the life cycle of HDV, a satellite virus of hepatitis B with a circular, single-stranded RNA genome (11). The prototype HDV construct for our study (Fig. 1B) is a shortened version of the antigenomic HDV ribozvme (12), which undergoes self-cleavage at a rate similar to that reported for other antigenomic constructs (13, 14).

The prototype class III and HDV ribozymes have no more than the 25% sequence identity expected by chance and no fortuitous structural similarities that might favor an intersection of their two neutral networks. Nevertheless, sequences can be designed that simultaneously satisfy the base-pairing requirements

Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA.

^{*}To whom correspondence should be addressed. Email: dbartel@wi.mit.edu



Two ribozymes of chain lengths n = 88 nucleotides: An artificial ligase (A) and a natural cleavage ribozyme of hepatitis- $\delta$ -virus (B)



The sequence at the *intersection*:

An RNA molecules which is 88 nucleotides long and can form both structures



Two neutral walks through sequence space with conservation of structure and catalytic activity

## Acknowledgement of support

Fonds zur Förderung der wissenschaftlichen Forschung (FWF) Projects No. 09942, 10578, 11065, 13093 13887, and 14898



Jubiläumsfonds der Österreichischen Nationalbank Project No. Nat-7813

European Commission: Contracts No. 98-0189, 12835 (NEST)

Austrian Genome Research Program – GEN-AU: Bioinformatics Network (BIN)

Österreichische Akademie der Wissenschaften

Siemens AG, Austria

Universität Wien and the Santa Fe Institute



Universität Wien

# Coworkers

Peter Stadler, Bärbel M. Stadler, Universität Leipzig, GE

Paul E. Phillipson, University of Colorado at Boulder, CO

Heinz Engl, Philipp Kügler, James Lu, Stefan Müller, RICAM Linz, AT

Jord Nagel, Kees Pleij, Universiteit Leiden, NL

Walter Fontana, Harvard Medical School, MA

Christian Reidys, Christian Forst, Los Alamos National Laboratory, NM

**Ulrike Göbel, Walter Grüner, Stefan Kopp, Jaqueline Weber,** Institut für Molekulare Biotechnologie, Jena, GE

Ivo L.Hofacker, Christoph Flamm, Andreas Svrček-Seiler, Universität Wien, AT

Kurt Grünberger, Michael Kospach, Andreas Wernitznig, Stefanie Widder, Stefan Wuchty, Universität Wien, AT

Jan Cupal, Stefan Bernhart, Lukas Endler, Ulrike Langhammer, Rainer Machne, Ulrike Mückstein, Hakim Tafer, Thomas Taylor, Universität Wien, AT



**Universität Wien** 

Web-Page for further information:

http://www.tbi.univie.ac.at/~pks