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1. Adaptation in biology



system mechanism driving force external constraint result
biomolecule evolutionary better thermodynamic and functional
design performance kinetic stability biomolecules

Adaptation at different levels of complexity
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system mechanism driving force external constraint result
cell / molecule host/parasite mutual ,arms availability and viroids and
coevolution races” survival of host cells viruses

Adaptation at different levels of complexity




system mechanism driving force external constraint result
organism cell differentiation | improvment by | regulation and control multicellular
and development | task splitting of cell proliferation organism

Optimization at different levels of complexity




system mechanism driving force external constraint result
population natural selection | maximization of resources limiting optimized
progeny population size variants

Adaptation at different levels of complexity




Three necessary conditions for Darwinian evolution are:

1. Multiplication,

2. Variation, and

3. Selection.
Charles Darwin, 1809-1882

None of the three conditions involves specific properties of the
evolving entity except for the capability of reproduction:

Darwinian evolution is universal for reproducing objects
no matter whether they are molecules or societies.

Darwinian evolution, however, is not the only mechanism
driving biological evolution.
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system mechanism driving force external constraint result
global climate changes | survival in new | global sustainability new classes
singular events environments and phyla

Adaptation at different levels of complexity
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Adaptation at different levels of complexity




2. Cycles of evolution
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Genotypes, phenotypes, and fitness
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Genotypes, phenotypes, and fitness



3. Molecules - from sequence to function



Make things as simple as possible,
but not simpler |

Albert Einstein

Albert Einstein‘s razor, precise refence is unknown.



S > Y =0(S) > [=Y()
sequence structure function

The paradigm of structural biology
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The paradigm of structural biology



(CCCCC..22))))))

shape space

Y

structure

The paradigm of structural biology



X4(t), x2(t), x3(t)
~

\ \/

A T
5T

]

e

<5
.

A X N

0 2 4 6 8 10 12 14
time

parameter space

J=¥(Y)

function
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James D. Watson, 1928-, and Francis H.C. Crick, 1916-2004
Nobel prize 1962

1953 — 2003 fifty years double helix

The three-dimensional structure of a
short double helical stack of B-DNA




5-End 3'-End

Sequence GCGGAUUUAGCUCAGDDGGGAGAGCMCCAGACUGAAYAUCUGGAGMUCCUGUGTPCGAUCCACAGAAUUCGCAC(:‘,A N — 4n
gend e
5-End 3-End

s @ e |G

_C —G—
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Secondary structure |
-
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Symbolic notation 5-End ((((((---((((---+-- ME((((CaE N)))----- (o MN-IIN))---- 3-End NS < 3"

Criterion: Minimum free energy (mfe)

Ruless _ (_)_ e {AUCG,GC,GUUA UG}

A symbolic notation of RNA secondary structure that is equivalent to the conventional graphs



Taq polymerase

Adenine o Thymine °

Guanine @ Cytosine Taq = thermus aquaticus

The logics of DNA replication



4. Mutation and structure



Nucleobase and base pair mutations
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Nucleobase and base pair mutations



5'-end UAACGCUAGGGGUCAACUACCACCGCCGGUUUCGCAAGGUUGCCGUGCGUUGCAA 3'-end
sequence

minimum free energy structure

A case study: A simple RNA molecule
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28G=C44 < > 28G-U44 <€ > 28A=U44

AG=-18.6 kcal/mole AG=-14.4 kcal/mole AG=-17.1 kcal/mole
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AG=-18.9 kcal/mole
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5. Spaces and mappings



Minimum free energy
criterion

"J'J-J

UUUAGCCAGCGCGAGUCGUGCGGACGGGGUUAUCUCUGUCGGGCUAGGGCGC

1st -_____,_—-—? GUGAGCGCGGGGCACAGUUUCUCAAGGAUGUAAGUUUUUGCCGUUUAUCUGG

2nd
UUAGCGAGAGAGGAGGCUUCUAGACCCAGCUCUCUGGGUCGUUGCUGAUGCG

>Q
AR m = = s )

44
JJJ-J'J-J-J-J-Q

3rd trial >
4th
5th Q CAUUGGUGCUAAUGAUAUUAGGGCUGUAUUCCUGUAUAGCGAUCAGUGUCCG
*ﬁrﬂ,’ _“,‘T\ ,‘_‘\1\ GUAGGCCCUCUUGACAUAAGAUUUUUCCAAUGGUGGGAGAUGGCCAUUGCAG
4 1’?”‘ \“L\\ Inverse folding
o

The inverse folding algorithm searches for sequences that form a given
RNA secondary structure under the minimum free energy criterion.



Monatshefte fiir Chemie 125, 167188 (1994
Monatshefte fiir Chemie

Chemical Monthly

© Springer-Verlag 1994
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Fast Folding and Comparison of RNA
Secondary Structures

I. L. Hofacker'*, W. Fontana®, P. F. Stadler'”, L. S. Bonhoeffer*, M. Tacker'
and P. Schuster!'*+?
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* Santa Fe Institute, Santa Fe, NM 87501, U.S.A.
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Summary, Computer codes for computation and comparison of RNA secondary structures, the
Vienna RNA package, are presented, that are based on dynamic programming algorithms and aim al
predictions of structures with minimum free energies as well as at computations of the equilibrinm
partition functions and base pairing probabilities.

An efficient heuristic for the inverse folding problem of RNA is introduced. In addition we present
compact and efficient programs for the comparison of RNA secondary structures based on tree editing
and alignment.

All computer codes are written in ANS| C. They include implementations of modified algorithms
on parallel computers with distributed memory. Performance analysis carried out on an Intel
Hypercube shows that parallel computing becomes gradually more and more efficient the longer the
Sﬂq ugnces are,

Keywords. Inverse folding; parallel computing; public domain software; RNA folding; RNA secondary
structures; tree editing.



space of genotypes: @={S4,5,,83,...,S\}

space of phenotypes: @/ ={Y1,Y2,Y3,....Y\}

N >> M

D(S)) = Yk

Gk = @7 (Yy) = {S; | ©(S) = Yi}

Inversion of genotype-phenotype mapping



neutral network

Y =v(S)

sequence space shape space

Neutral networks in sequence space



From sequences to shapes and back: a case study in
RNA secondary structures

PETER SCHUSTER"?*3 WALTER FONTANA? PETER F.STADLER?*?®
anDp [VO L.HOFACKER?

YInstitut fiir Molekulare Biolechnologie, Beutenbergstrasse 11, PF 100813, D-07708 Jena, Germany
® Institut fiir Theoretische Chemie, Universitiit Wien, Austria
3 Santa Fe Institute, Santa Fe, U.S.A.

SUMMARY

RNA folding is viewed here as a map assigning secondary structures to sequences. At fixed chain length
the number of sequences far exceeds the number of structures. Frequencies of structures are highly non-
uniform and follow a generalized form of Zipf's law: we find relatively few common and many rare ones.
By using an algorithm for inverse folding, we show that sequences sharing the same structure are
distributed randomly over sequence space. All common structures can be accessed from an arbitrary
sequence by a number of mutations much smaller than the chain length. The sequence space is percolated
by extensive neutral networks connecting nearest neighbours folding into identical structures. Implications
for evolutionary adaptation and for applied molecular evolution are evident: finding a particular
structure by mutation and selection is much simpler than expected and, even if catalytic activity should
turn out to be sparse in the space of RNA structures, it can hardly be missed by evolutionary processes.

Proc. R. Soe. Lond. B (1994) 255, 279-284 279 © 1994 The Rovyal Society
Printed in Greaf Britain



Realistic fithness landscapes

1.Ruggedness: nearby lying genotypes may
unfold into very different phenotypes

2.Neutrality: many different genotypes give rise to
phenotypes with identical selection behavior
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Prediction of RNA secondary structures: from theory
to models and real molecules

Peter Schuster'
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6. Evolutionary dynamics on landscapes



Three necessary conditions for Darwinian evolution are:

1. Multiplication,
2. Variation, and

3. Selection.

Charles Darwin, 1809-1882

All three conditions are fulfilled not only by cellular organisms
but also by nucleic acid molecules - DNA or RNA - in suitable
cell-free experimental assays:

Darwinian evolution in the test tube



Reviews G. F. Joyes

DOI: 10.1002f3nie 200701 369

Forty Years of In Vitro Evolution™*
Gerald F. Joyce*®

Evolution in the test tube:

G.F. Joyce, Angew.Chem.Int.Ed. Angewandte
46 (2007), 6420-6436

6420 wwwangewandteorg D 2007 Wiy WEH Wiy S & Co KCak Warbar Arges: Cheee. . Fd 2000, 46, Sgpo- 448
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Adenine © Uracil

Guanine ®  Cytosine

RNA replication by QB-replicase

C. Weissmann, The making of a phage.
FEBS Letters 40 (1974), S10-S18

9
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Manfred Eigen X

1927 -
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k 1l
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Mutation and (correct) replication as parallel chemical reactions

M. Eigen. 1971. Naturwissenschaften 58:465,
M. Eigen & P. Schuster.1977. Naturwissenschaften 64:541, 65:7 und 65:341



Mutation-selection equation: [I]=x;20, /;>0,0,20

dt _Z—lfQ]l J_xi¢’ i=12,---,n; Z—l X =1 ¢ Z—l it =

Solutions are obtained after integrating factor transformation by means
of an eigenvalue problem

()= ﬁ,k ¢, (0)- exp(4,1)

Z] 12 oL Ck )'eXp(/Ikt);

i=12,---,n; ¢, (0)= Z;hkl. x,(0)

WA f,0,0 0, j=12, - fi L=40,14,j=02,nf; LY =H ={h; i,j=12,---,n

L*w-L = A = {4;k=01--n-1}
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Error threshold on the
step linear landscape
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7. Neutrality



WOTOD KIML=RA

Motoo Kimuras population genetics of
neutral evolution.

Evolutionary rate at the molecular level.
Nature 217: 624-626, 1955.

The Neutral Theory of Molecular Evolution.

Cambridge University Press. Cambridge,
UK, 1983.

THE NEUTRAL THEORY
OF MOLECULAR EVOLUTION

MOTOO KIMURA

National Institute of Genetics, Japan

CAMBRIDGE UNIVERSITY PRESS
Cambridge

London New York New Rochelle
Melbourne Sydney



Frequency

Fig. 3.1. Behavior of mutant genes following their appearance in a
finite population. Courses of change in the frequencies of mutants
destined to fixation are depicted by thick paths. N_ stands for the

effective population size and v is the mutation rate.

A it /v .

el i, M

Motoo Kimura

Is the Kimura scenario correct for frequent mutations?



dy=1
lim,_,x(p)=x,(p)=0.5

dy =2
Iimp—)O xl(p):a

Iimp—>0 X (p) =1-a

J 1
R 4

lim__,x (p)=1,lim__,x,(p)=0 or
Iimp—)O xl (p)zO, Iimp—>0 x2 (p):l

Pairs of neutral sequences in replication networks Random fixation in the

sense of Motoo Kimura
P. Schuster, J. Swetina. 1988. Bull. Math. Biol. 50:635-650



Fitness values f(S;)

| e (Bt
g\
A
HF-—4---2d
| _ 1___Y
OI

01 2 3 45 6 7 8 9101 1213 14 15 16

fo

o deda s s e oa

Sequences S,

if n;(s) >
fn + % (fo— fa) (?]F) — 0.5) if n;(s)
EX -1

random number; s ...

A fitness landscape including neutrality

1— A,
1— A,

seeds



Relative concentration X(p)

0.5
0.4 \
0.3 \
N
0.1 \\
0 0.005 0.;__ 0.015 0.02

—Errorrate p—>

Neutral network

A =0.01, s=2367

Neutral network: Individual sequences
n=10,0=11,d=05

Relative concentration X(p)

Relative concentration X(p)

0.03

0.025

0.02

0.015

0.01

0.005

LN

/\\

0.03 -

0.025
0.02
0.015
0.01

0.005

\

|
/

-‘-—"-'--—-_-__

0

0.005

0.01

—Errorrate p—>

0.015

0.02

TS

0

0.005

0.01

—Errorrate p—>

0.015

0.02



4 128

J
) - §

Relative concentration X(p)

Neutral network

A =0.01, s=877

Neutral network: Individual sequences
n=10,0=11,d=05

0.5

0.4

0.3

0.2

0.1

-,.—-l-""""-_-—:-::-—-—
e |

A|

0 0.005

0.01

0.015

—— Errorrate p—>

0.02



....... ACAUGCGAA ----==» master sequence 1
....... AUAUACGAA ::e::--

....... ACAUCCGCA -=-===-

....... ggigéggﬁ

....... ACAUGCGAG +erses- 0 9
....... ACACGCGAA ===

....... ACCUACGAA =-sese-

....... ACAUAGGAA --=:=-
------- ACAUACGAA ------- master sequence 2

------- ACAU%CGAA sereees CONSENSUS SEQUENCE

------- ACAGUCAGAA rrrrres master sequence 1
------- ACAGUCCGAA == intermediate |
....... AUAAUCCGARA -«rer--
....... ACAGUCAGCA +-:ee=-
....... GCAGUCAGARA --+-+--
....... ACAGUCAUAA «:e+:-
....... ACAGUCAGAG -resses
....... ACAACCCGARA rereese
Consensus sequence ofa ... igggggigﬁ
quasispecies with strongly ~ ....... ACAAUCAGAA «wesees intermediate |l
coupled sequences of ~ =eesees ACAAUCCGAA :==r==- master sequence 2

Hamming distance
dH(Xi,’Xj) =land2. ...... ACAEUC%GAA ....... consensus sequence
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Complexity in molecular evolution



8. Stochasticity, contingency, and history



Evolution in silico

W. Fontana, P. Schuster,
Science 280 (1998), 1451-1455

random individuals. The primer pair used for ganomic
DiNA ion s 5'-Td T TCT-
CATTTA-3' (forward) and 5'-TCTTTGTCTTCTGT-
TCCACC-3 (reverse). Reactions were performed in
25 l using 1 uret of Tag DNA polymerass with each
primer at 0.4 uM; 200 uM each dATP, dTTP, dGTP,
and dCTP; and PCR butfer [10 mM tris-HCI (pH 8.3),
50 mM KCL,.1.5 mM MgCL] in a cycle condition of
84°C for 1 min and then 35 cycles of 84°C for 30 s,
55°C for 30 5, and 72°C for 30 s followed by 72°C for
B min. PCR products were purified (Qiagen), digested
with Xmn |, and separated in a 2% agarose gel.
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Am. J, Hum, Genet. 59, 279 (1996)].
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includes MYO15 and perhaps 20 other genes [(6);
K-5 Chen, L Potockd, J. R. Lupski, MROD Res. Rev.
2, 122 (1998)]. MYO15 expressicn is easily detected
in the pituitary gland (data not shown). Haploinsuffi-
ciency for MYOT5 may explain a portion of the SMS

phenotype such as short stature. Morm a few
SMS patients have sensorineural loss, pos-
sibly becausa of a point mutation in MYOT5 in trans
to the SMS 17p11.2 deletion.

35. R. A, Fridell, data not shown.

36. K. B. Avraham al al., Mafure Genet. 11, 369 (1995);
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Nature 374, 62 (1895); D. Wedl af al., ibid., p. 60.

37. RNAwas from cochiea lab-
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established by the Human Research Oomrnlltae at
the Brigham and Women's Hospital. Only samples
without evidence of degradation wera pooled for
poly (A)* selection over oligo{dT) columns. First-

strand CONA was prepared using an Advantage RT-
for-PCR kit (Clontech Laboratonies). A portion of the
first-strand cDNA (4%) was amplified by PCR with
Advantage cONA polymarase mix (Clontech Labora-
tories) using human MYO15-specific oligonucleatide
primers (forward, 5 -GCATGACCTGOCGGUTAAT-

GGG-3'; reverse, 5'-CTCACGGCT TCTGCATGGT-

GCTCGGCTGGC-3'). Cycling conditions were 40 s
at 94°C; 40 5 at 66°C [3 cycles), 60°C (5 cycles), and
55°C (29 cycles); and 45 s at 68°C. PCR products
were visualized by ethidium bromide staining after
fractionation in a 1% agarose gel. A 688-bp PCR

Continuity in Evolution: On the
Nature of Transitions

Walter Fontana and Peter Schuster

Todistinguish continuous from discontinuous evelutionary change, a relation of nearness
between phenotypes is needed. Such a relation is based on the probability of one
phenotype being accessible from another through changes in the genotype. This near-
ness relation is exemplified by calculating the shape neighborhood of a transfer RNA
secondary structure and provides a characterization of discontinuous shape transfor-
mations in ANA. The simulation of replicating and mutating RNA populations under
selection shows that sudden adaptive progress coincides mostly, but not always, with
discontinuous shape transformations. The nature of these transformations illuminates
the key role of neutral genetic drift in their realization.

A much-debated issue in evolutionary bi-
ology concerns the extent to which the
history of life has proceeded gradually or has
been puncruated by discontinuous transi-
tions at the level of phenortypes (1). Qur
goal is to make the notion of a discontinu-
ous transition more precise and to under-
stand how it arises in a model of evolution-
ary adaptation.

We focus on the narrow domain of RNA
secondary structure, which is currently the
simplest compurationally tractable, yet re-
alistic phenotype (2). This choice enables
the definition and exploration of concepts
that may prove useful in a wider context.
BNA secondary structures represent a
coarse level of analysis compared with the
three-dimensional structure at atomic reso-
lution. Yer, secondary structures are empir-
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Ingerstrassa 17, A-1090 Wien, Austria, Santa Fe Institute,
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ically well defined and obtain their biophys-
ical and biochemical importance from be-
ing a scaffold for the tertiary structure. For
the sake of breviry, we shall refer to second-
ary structures as “shapes.” RNA combines
in a single molecule both genotype (repli-
catable sequence) and phenotype (select-
able shape), making it ideally suited for in
vitro evolution experiments (3, 4).

To generate evolutionary histories, we
used a stochastic continuous time model of
an RNA population replicating and mutar-
ing in a capacity-constrained flow reactor
under selection (5, 6). In the laboratory, a
goal might be to find an RNA aptamer
binding specifically to a molecule (4). Al-
though in the experiment the evolutionary
end product was unknown, we thought of
its shape as being specified implicitly by the
imposed selection criterion. Because our in-
tent is to study evolutionary histories rather
than end products, we defined a target
shape in advance and assumed the replica-
tion rate of a sequence to be a function of
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product is expected from ampification of the human
MYO15 cDNA. Ampification of human genomic
DNA with this primer pair would result in a 2903-bp
fragment.
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the similarity between its shape and the
targer. An actual situation may involve
more than one best shape, but this does not
affect our conclusions.

An instance representing in its qualita-
tive features all the simulations we per-
formed is shown in Fig. 1A, Starting with
identical sequences folding into a random
shape, the simulation was stopped when the
population became dominated by the tar-
get, here a canonical tRNA shape. The
black curve traces the average distance to
the target (inversely related to firness) in
the population against time. Aside from a
short initial phase, the entire history is
dominated by steps, thar is, flar periods of
no apparent adaptive progress, interrupted
by sudden approaches roward the target
structure (7). However, the dominant
shapes in the population not only change at
tht.'se murkud events I)Kll undergu st'vcral
fitness-neutral transformations during the
periods of no apparent progress. Although
discontinuities in the fitness trace are evi-
dent, it is entirely unclear when and on the
basis of what the series of successive phe-
notypes itself can be called continuous or
discontinuous.

A set of entities is organized into a (to-
pological) space by assigning to each entity
a system of neighborhoods. In the present
case, there are two kinds of entities: se-
quences and shapes, which are related by a
thermodynamic folding procedure. The set
of possible sequences (of fixed length) is
naturally organized into a space because
point mutations induce a canonical neigh-
borhood. The neighborhood of a sequence
consists of all its one-error mutants. The
problem is how to organize the set of pos-
sible shapes into a space. The issue arises
because, in contrast to sequences, there are
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Bacterial evolution under controlled conditions: A twenty years experiment.

Richard Lenski, University of Michigan, East Lansing
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Fig. 1. Change in average cell size (1 fl = 107'° L)
in a population of E. coli during 3000 generations
of experimental evolution. Each point is the mean
of 10 replicate assays (22). Error bars indicate
95% confidence intervals. The solid line shows the
best fit of a step-function model to these data
(Table 1).

Epochal evolution of bacteria in serial transfer experiments under constant conditions

S. F. Elena, V. S. Cooper, R. E. Lenski. Punctuated evolution caused by selection of rare beneficial mutants.
Science 272 (1996), 1802-1804
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in a population of E. coli during 3000 generations
of experimental evolution. Each point is the mean
of 10 replicate assays (22). Error bars indicate
95% confidence intervals. The solid line shows the
best fit of a step-function model to these data
(Table 1).
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Fig. 2. Correlation between average cell size and
mean fitness, each measured at 100-generation
intervals for 2000 generations. Fitness is ex-
pressed relative to the ancestral genotype and
was obtained from competition experiments be-
tween derived and ancestral cells (6, 7). The open
symbols indicate the only two samples assigned
to different steps by the cell size and fithess data.

Epochal evolution of bacteria in serial transfer experiments under constant conditions

S. F. Elena, V. S. Cooper, R. E. Lenski. Punctuated evolution caused by selection of rare beneficial mutants.

Science 272 (1996), 1802-1804



The twelve populations of Richard Lenski‘s long time evolution experiment
Enhanced turbidity in population A-3
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Fig. 1. Population expansion during evolution of the Cit* phenotype.
Samples frozen at various times in the history of population Ara-3 were
revived, and three DM25 cultures were established for each generation.
Optical density (OD) at 420 nm was measured for each culture at 24 h. Error
bars show the range of three values measured for each generation.

Innovation by mutation in long time evolution of Escherichia coli in constant environment
Z.D. Blount, C.Z. Borland, R.E. Lenski. 2008. Proc.Natl.Acad.Sci.USA 105:7899-7906




Table 1. Summary of replay experiments

First experiment

Second experiment

Third experiment

Independent Independent Independent
Generation Replicates Cit™ mutants Replicates Cit" mutants Replicates  Cit™ mutants
Ancestor 6 0 10 0 200 0
5,000 — — — — 200 0
10,000 6 0 30 0 200 0
15,000 — — —_ — 200 0
20,000 6 0 30 0 200 2
25,000 6 0 30 0 200 0
27,000 — — — — 200 2
27,500 6 0 30 0 — —_
28,000 — — — — 200 0
29,000 6 0 30 0 200 0
30,000 6 0 30 0 200 0
30,500 6 1 30 0 —_ —_
31,000 6 0 30 0 200 1
31,500 6 1 30 0 200 1
32,000 6 0 30 4 200 2
32,500 6 2 30 1 200 0
Totals 72 4 340 5 2,800 8

Contingency of E. coli evolution experiments




9. Perspectives



(i) Fitness landscapes for the evolution of molecules
are obtainable by standard techniques of physics
and chemistry.

(ii) Fitness landscapes for evolution of viroids and
viruses under controlled conditions are accessible
in principle.

(iii) Systems biology can be carried out for especially
small bacteria and an extension to bacteria of
normal size is to be expected for the near future.

(iv) The computational approach for selection on known
fitness landscapes - ODEs or stochastic processes -
is standard.

(v) The efficient description of migration and splitting
of populations in sequence space requires new
mathematical techniques.



Consideration of multistep and nonlinear replication
mechanisms as well as accounting for epigenetic
phenomena is readily possible within the molecular

approach.
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