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Generation time 10 000 generations 106 generations 107 generations

RNA molecules 10 sec
1 min

27.8 h = 1.16 d
6.94 d

115.7 d
1.90 a

3.17 a
19.01 a

Bacteria 20 min
10 h

138.9 d
11.40 a

38.03 a
1 140 a

380 a
11 408 a

Higher multicelluar
organisms

10 d
20 a

274 a
200 000 a

27 380 a
2 × 107 a

273 800 a
2 × 108 a

Generation times and evolutionary timescales
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RNA  sample

Stock solution:  Q  RNA-replicase, ATP, CTP, GTP and UTP, bufferb

Time
0 1 2 3 4 5 6 69 70

The serial transfer technique applied to RNA evolution in vitro



Reproduction of the original figure of the
serial transfer experiment with Q  RNAβ

D.R.Mills, R,L,Peterson, S.Spiegelman, 

. Proc.Natl.Acad.Sci.USA 
 (1967), 217-224

An extracellular Darwinian experiment 
with a self-duplicating nucleic acid 
molecule
58



Decrease in mean fitness
due to quasispecies formation

The increase in RNA production rate during a serial transfer experiment



wave front

consumed material fresh replication medium

Selection of Qb-RNA through replication in 
a capillary

G.Bauer, H.Otten, J.S. McCaskill, 
Proc.Natl.Acad.Sci.USA 90:4191, 1989



No new principle will declare itself 
from below a heap of facts.

Sir Peter Medawar, 1985
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Complementary replication as the
simplest copying mechanism of RNA
Complementarity is determined by
Watson-Crick base pairs:

GÍC and A=U
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Reproduction of organisms or replication of molecules as the basis of selection



s = ( f2-f1) / f1;  f2 > f1 ; x1(0) = 1 - 1/N ; x2(0) = 1/N 
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Selection of advantageous mutants in populations of N = 10 000 individuals
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Mutations in nucleic acids represent the mechanism of variation of genotypes.



Theory of molecular evolution
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Chemical kinetics of replication and mutation as parallel reactions
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The molecular quasispecies in sequence space
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Genotype-phenotype relations are highly complex and only the most
simple cases can be studied. One example is the folding of RNA 
sequences into RNA structures represented in course-grained form as 
secondary structures.

The RNA genotype-phenotype relation is understood as a mapping from 
the space of RNA sequences into a space of RNA structures.
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5'-End
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GCGGAU AUUCGCUUA AGDDGGGA M CUGAAYA AGMUC TPCGAUC A ACCAGCUC GAGC CCAGA UCUGG CUGUG CACAGSequence

Secondary structure

Symbolic notation

The RNA secondary structure is a listing of GC, AU, and GU base pairs. It is understood in contrast to the full 3D-
or tertiary structure at the resolution of atomic coordinates. RNA secondary structures are biologically relevant. 
They are, for example, conserved in evolution.



RNA Minimum Free Energy Structures

Efficient algorithms based on dynamical programming are 
available for computation of secondary structures for given 
sequences. Inverse folding algorithms compute sequences 
for given secondary structures. 

M.Zuker and P.Stiegler. Nucleic Acids Res. 9:133-148 (1981)

Vienna RNA Package: http:www.tbi.univie.ac.at  (includes 
inverse folding, suboptimal structures, kinetic folding, etc.)

I.L.Hofacker, W. Fontana, P.F.Stadler, L.S.Bonhoeffer, 
M.Tacker, and P. Schuster. Mh.Chem. 125:167-188 (1994)



UUUAGCCAGCGCGAGUCGUGCGGACGGGGUUAUCUCUGUCGGGCUAGGGCGC

GUGAGCGCGGGGCACAGUUUCUCAAGGAUGUAAGUUUUUGCCGUUUAUCUGG

UUAGCGAGAGAGGAGGCUUCUAGACCCAGCUCUCUGGGUCGUUGCUGAUGCG

CAUUGGUGCUAAUGAUAUUAGGGCUGUAUUCCUGUAUAGCGAUCAGUGUCCG

GUAGGCCCUCUUGACAUAAGAUUUUUCCAAUGGUGGGAGAUGGCCAUUGCAG

Minimum free energy
criterion

Inverse folding

1st
2nd
3rd  trial
4th
5th

The inverse folding algorithm searches for sequences that form a given 
RNA secondary structure under the minimum free energy criterion. 



UUUAGCCAGCGCGAGUCGUGCGGACGGGGUUAUCUCUGUCGGGCUAGGGCGC

GUGAGCGCGGGGCACAGUUUCUCAAGGAUGUAAGUUUUUGCCGUUUAUCUGG

UUAGCGAGAGAGGAGGCUUCUAGACCCAGCUCUCUGGGUCGUUGCUGAUGCG

CAUUGGUGCUAAUGAUAUUAGGGCUGUAUUCCUGUAUAGCGAUCAGUGUCCG

GUAGGCCCUCUUGACAUAAGAUUUUUCCAAUGGUGGGAGAUGGCCAUUGCAG

Criterion of
Minimum Free Energy

Sequence Space Shape Space



The RNA model considers RNA sequences as genotypes and 
simplified RNA structures, called secondary structures, as 
phenotypes.

The mapping from genotypes into phenotypes is many-to-one. 
Hence, it is redundant and not invertible.

Genotypes, i.e. RNA sequences, which are mapped onto the 
same phenotype, i.e. the same RNA secondary structure, form 
neutral networks. Neutral networks are represented by graphs
in sequence space. 



Sk I.   = ( )ψ
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Sequence space Phenotype space Non-negative
numbers

Mapping from sequence space into phenotype space and into fitness values
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Sk I.   = ( )ψ
fk f Sk   = ( )

Sequence space Phenotype space Non-negative
numbers

The pre-image of the structure Sk in sequence space is the neutral network Gk
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Mean degree of neutrality and connectivity of neutral networks



Giant Component

A multi-component neutral network



A connected neutral network
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Compatibility of sequences with structures

A sequence is compatible with its minimum 
free energy structure and all its suboptimal 
structures.   



G   Ck à k Gk

Neutral network

Compatible set  Ck

The compatible set Ck of a structure Sk consists of all sequences which form 
Sk as its minimum free energy structure (neutral network Gk) or one of its
suboptimal structures.
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A sequence at the intersection of 
two neutral networks is compatible 
with both structures



:     á ì âC1 C2

:     â ì áC1 C2

G1

G2

The intersection of two compatible sets is always non empty:  C1 Ú C2 â Ù



Reference for the definition of the intersection 
and the proof of the intersection theorem



Optimization of RNA molecules in silico
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Phenylalanyl-tRNA as 
target structure



Stock Solution Reaction Mixture

Fitness function:

fk = g / [a + DdS
(k)]

DdS
(k) = ds(Ik,It)

The flowreactor as a 
device for studies of 
evolution in vitro and 
in silico
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The molecular quasispecies
in sequence space



S{ = y( )I{

f S{ {ƒ= ( )

S{

f{

I{
M

ut
at

io
n

Genotype-Phenotype Mapping

Evaluation of the

Phenotype

Q{j
I1

I2

I3

I4 I5

In

Q

f1

f2

f3

f4 f5

fn

I1

I2

I3

I4

I5

I{

In+1

f1

f2

f3

f4

f5

f{

fn+1

Q

Evolutionary dynamics 
including molecular phenotypes



In silico optimization in the flow reactor: Trajectory (biologists‘ view)
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In silico optimization in the flow reactor: Trajectory (physicists‘ view)
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In silico optimization in the flow reactor: Main transitions

Main  transitionsRelay steps

Time  (arbitrary units)
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Closing of Constrained 
Stacks

Multi-
loop

Main or discontinuous 
transitions: Structural 
innovations, occur
rarely on single point 
mutations



In silico optimization in the flow reactor
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Elongation of StacksShortening of Stacks

Opening of Constrained Stacks

Multi-
loop

Minor or continuous 
transitions: Occur 
frequently on single 
point mutations



Statistics of evolutionary trajectories

Population 
size

N

Number of 
replications

< n  >rep

Number of 
transitions

< n  >tr

Number of main 
transitions

< n  >dtr

The number of main transitions or evolutionary innovations is constant.  



„...Variations neither useful not injurious would not be 
affected by natural selection, and would be left either a 
fluctuating element, as perhaps we see in certain 
polymorphic species, or would ultimately become fixed, 
owing to the nature of the organism and the nature of 
the conditions. ...“

Charles Darwin, Origin of species (1859)
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Evolution in genotype space sketched as a non-descending walk in a fitness landscape
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Diversification

Selection cycle used in
applied molecular evolution
to design molecules with
predefined properties 
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The SELEX technique for the evolutionary design of aptamers



Secondary structures of aptamers binding theophyllin, caffeine, and related compounds



additional methyl group

Dissociation constants and specificity of 
theophylline, caffeine, and related derivatives 
of uric acid for binding to a discriminating 
aptamer TCT8-4



Schematic drawing of the aptamer binding site for the theophylline molecule
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Formation of secondary structure of the tobramycin binding RNA aptamer

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, Saccharide-RNA recognition in an aminoglycoside 
antibiotic-RNA aptamer complex. Chemistry & Biology 4:35-50 (1997)



The three-dimensional structure of the 
tobramycin aptamer complex

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, 
Chemistry & Biology 4:35-50 (1997)



Hammerhead ribozyme – The smallest RNA based catalyst

H.W.Pley, K.M.Flaherty, D.B.McKay, Three dimensional structure of a hammerhead 
ribozyme. Nature 372 (1994), 68-74

W.G.Scott, J.T.Finch, A.Klug, The crystal structures of an all-RNA hammerhead ribozyme: A 
proposed mechanism for RNA catalytic cleavage. Cell 81 (1995), 991-1002

J.E.Wedekind, D.B.McKay, Crystallographic structures of the hammerhead ribozyme: 
Relationship to ribozyme folding and catalysis. Annu.Rev.Biophys.Biomol.Struct. 27 (1998), 
475-502

G.E.Soukup, R.R.Breaker, Design of allosteric hammerhead ribozymes activated by ligand-
induced structure stabilization. Structure 7 (1999), 783-791



Hammerhead ribozyme: The smallest 
known catalytically active RNA molecule
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theophylline

Allosteric effectors:

FMN = flavine mononucleotide

H10 – H12

theophylline

H14

Self-splicing allosteric ribozyme

H13 

Hammerhead ribozymes with allosteric 
effectors



A ribozyme switch

E.A.Schultes, D.B.Bartel, One sequence, two ribozymes: Implication for the emergence
of new ribozyme folds. Science 289 (2000), 448-452



Two ribozymes of chain lengths n = 88 nucleotides: An artificial ligase (A) and a natural cleavage 
ribozyme of hepatitis-d-virus (B)



The sequence at the intersection: 

An RNA molecules which is 88 
nucleotides long and can form both 
structures



Reference for the definition of the intersection 
and the proof of the intersection theorem



Two neutral walks through sequence space with conservation of structure and catalytic activity



Reference for postulation and in silico verification of neutral networks
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