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Equilibrium thermodynamics is based on two major
statements:

1. The energy of the universe is a constant (first law).
2. The entropy of the universe never decreases

(second law).

Carnot, Mayer, Joule, Helmholtz, Clausius, ......

D.Jou, J.Casas-Vazquez, G.Lebon, Extended Irreversible Thermodynamics, 1996
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Entropy and fluctuations at equilibrium



Environment

dSCIlV = O

Selforganization
dS =dS; +dS, <0

R

dS;>0 ds. <0

dStOt — dS + dSCIlV >0

Self-organization is spontaneous
creation of order.

Entropy is equivalent to disorder.
Hence there is no spontaneous
creation of order at equilibrium.

Self-organization requires export of
entropy to an environment which is
almost always tantamount to an

or in an

Entropy production and self-organization in open systems



Four examples of self-organization and spontaneous creation
of order
*Hydrodynamic pattern formation in the atmosphere of Jupiter

*Fractal pattern in the solution manifold of mathematical
equations

*Chaotic dynamics in model equations for atmospheric flow

«Pattern formation in chemical reactions

Examples of self-organization and pattern formation



South pole Red spot

Jupiter: Observation of the gigantic vortex

Picture taken from James Gleick, Chaos. Penguin Books, New York, 1988



Computer simulation
of the gigantic vortex
on Jupiter

View from south pole

Particles turning
counterclockwise

@

Particles turning
clockwise

0

Jupiter: Computer simulation of the giant vortex

Philip Marcus, 1980. Picture taken from James Gleick, Chaos. Penguin Books, New York, 1988



Mandelbrot set

7z A z2+¢

with z=x+1y

The Mandelbrot set as an example of fractal patterns in mathematics

Picture taken from James Gleick, Chaos. Penguin Books, New York, 1988



Mandelbrot set

zA 72+ ¢

with z=x+1y

The Mandelbrot set as an example of fractal patterns in mathematics: Enlargement no.1

Picture taken from James Gleick, Chaos. Penguin Books, New York, 1988



Mandelbrot set

zAz2+¢

with z=x+1y

The Mandelbrot set as an example of fractal patterns in mathematics: Enlargement no.2

Picture taken from James Gleick, Chaos. Penguin Books, New York, 1988



Mandelbrot set

zA 72+ ¢

with z=x+1y

The Mandelbrot set as an example
of fractal patterns in mathematics:
Enlargement no.3

Picture taken from James Gleick, Chaos. Penguin
Books, New York, 1988




Lorenz attractor

dx/dt = o (y — x)
dy/dt=px—-y—xz
dz/dt=f z + xy

A trajectory of the Lorenz attractor in the chaotic regime



Stock Solution —> Reaction Mixture —>

dSEO
Isolated system Closed system Open system
U = const., V = const., T = const., p = const., dS =dS,,,tdSEO
dSEO dG =dU-pdV-TdS 110 dS = d;S+d.S
d;S £O

Entropy changes in different thermodynamic systems with chemical reactions
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Reactions in the continuously stirred tank reactor (CSTR)
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Reversible first order reaction in the flow reactor
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Autocatalytic second order reaction in the flow reactor
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Autocatalytic second order and uncatalyzed reaction in the flow reactor
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Autocatalytic third order reaction in the flow reactor
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Autocatalytic third order and uncatalyzed reaction in the flow reactor




Autocatalytic third order reactions Multiple steady states

Direct, A+2X A 3 X, or hidden \ Oscillations in homogeneous solution

in the reaction mechanism o
(Belousow-Zhabotinskii reaction). Deterministic chaos

Turing patterns

Spatiotemporal patterns (spirals)

Deterministic chaos in space and time

Pattern formation in autocatalytic third order reactions

G.Nicolis, I.Prigogine. Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through
Fluctuations. John Wiley, New York 1977



Formation of target waves
and spirals in the
Belousov-Zhabotinskii reaction

Winding number:

number of left-handed spirals
minus
number of right-handed spirals

Target waves and spirals in the Belousov-Zhabotinskii reaction

Pictures taken from Arthur T. Winfree, The geometry of biological time. Springer-Verlag, New York, 1980.



Autocatalytic second order reactions Chemical self-enhancement

, _ _ _ \> Combustion and chemistry
Direct, A+1 A 21, or hidden in of flames
the reaction mechanism

Selection of laser modes

Selection of molecular or
organismic species competing
for common sources

Autocatalytic second order reaction as basis for selection processes.

The autocatalytic step is formally equivalent to replication or reproduction.



Stock Solution [A] = a; Reaction Mixture: A; Iy, k=1,2,...
(U 0

A+Il P — 211

A+, = 21,

A+; == 214

A+I4 P — 214

A+15 = 215

Replication in the flow reactor

P.Schuster & K.Sigmund, Dynamics of evolutionary optimization, Ber. Bunsenges.Phys.Chem.
89: 668-682 (1985)
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Selection in the flow reactor: Reversible replication reactions
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Selection in the flow reactor: Irreversible replication reactions
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A + L
dx; /dt = fix; - x5 @ = (fj - D) x; A) + L
O = Zi fi Xi s Zi Xi= 1 . 1,_] :1,2,...,1’1
[A] = a = constant
f,,=max {f; j=1,2,...n} A + O
xp() Al fort A _
A) + Iy
S = (fm+1_frn)/frn
succession of temporarily
fittest variants: @ + 0,

m A m+1A ..

Selection of the ,.fittest™ or fastest replicating species I |
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Selection of advantageous mutants in populations of N = 10 000 individuals



Thermodynamics of isolated systems: Entropy is a non-decreasing
state function

Second law S = Shax

Valid in the limit of infinite time, limt A _.

Evolution of Populations: Mean fitness is a non-decreasing function

Ronald Fisher‘s conjecture f =S x(®)fi /Sy x() A .,

Optimization heuristics in the sense that it
IS only almost always true and the process
need

not reach the optimum in finite times.
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Q = adenylate
0 = uridylate
C =cytidylate
Combinatorial diversity of sequences: N = 4{ G = guanylate

427 = 1.801 C 1016 possible different sequences

Combinatorial diversity of heteropolymers illustrated by means of an RNA aptamer
that binds to the antibiotic tobramycin
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Complementary replication as
the simplest copying
mechanism of RNA



Plus Strand

Plus Strand

Minus Strand

Plus Strand

Point Mutation

GAAUCCCGAA —> GAAUCCCGUCCCGAA

Insertion

GAAUCCCGAA —> GAAUCC{A

Deletion

Mutations represent the mechanism of variation in nucleic acids



de /dt = Zi fini Xj = X] €))
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Chemical kinetics of replication and mutation
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Master sequence

Mutant cloud

uonNeIUAIUO))

The molecular quasispecies in sequence space



Master sequence

Mutant cloud

mutations

“Oftf-the-cloud”

uonNeIUAIUO))

The molecular quasispecies and mutations producing new variants



Ronald Fisher's conjecture of optimization of mean fitness in
populations does not hold in general for replication-mutation systems: In
general evolutionary dynamics the mean fitness of populations may
also decrease monotonously or even go through a maximum or
minimum. It does also not hold in general for recombination of many
alleles and general multi-locus systems in population genetics.

Optimization of fithess is, nevertheless, fulfilled in most cases, and can
be understood as a useful heuristic.



Optimization of RNA molecules in silico

W.Fontana, P.Schuster, 4 computer model of evolutionary optimization. Biophysical
Chemistry 26 (1987), 123-147

W.Fontana, W.Schnabl, P.Schuster, Physical aspects of evolutionary optimization and
adaptation. Phys.Rev.A 40 (1989), 3301-3321

M.A.Huynen, W.Fontana, P.F.Stadler, Smoothness within ruggedness. The role of
neutrality in adaptation. Proc.Natl.Acad.Sci.USA 93 (1996), 397-401

W.Fontana, P.Schuster, Continuity in evolution. On the nature of transitions. Science 280
(1998), 1451-1455

W.Fontana, P.Schuster, Shaping space. The possible and the attainable in RNA genotype-
phenotype mapping. J.Theor.Biol. 194 (1998), 491-515



Three-dimensional structure of
phenylalanyl-transfer-RNA



5'-End 3'-End

Sequence GCGGAUUUAGCUCAGDDGGGAGAGCMCCAGACUGAAYAUCUGGAGMUCCUGUGTPCGAUCCACAGAAUUCGCACCA
5End g
70
y 60
Secondary Structure Q- 1o, ¢ t:m e
! m | 50 - *
20 '
30 40
Symbolic Notation 5-End  (((((C---(((Ceenreene IN)-((((Creeeee )))) R ((((GRREEE ))))))))))-+++ 3-End

Definition and formation of the secondary structure of phenylalanyl-tRNA



Genotype-Phenotype Mapping

cC
5 Si=y(y

Evolutionary dynamics
including molecular phenotypes



UUUAGCCAGCGCGAGUCGUGCGGACGGGGUUAUCUCUGUCGGGCUAGGGCGC
GUGAGCGCGGGGCACAGUUUCUCAAGGAUGUAAGUUUUUGCCGUUUAUCUGG
UUAGCGAGAGAGGAGGCUUCUAGACCCAGCUCUCUGGGUCGUUGCUGAUGCG
CAUUGGUGCUAAUGAUAUUAGGGCUGUAUUCCUGUAUAGCGAUCAGUGUCCG

GUAGGCCCUCUUGACAUAAGAUUUUUCCAAUGGUGGGAGAUGGCCAUUGCAG

Criterion of
Minimum Free Energy

Sequence Space

Shape Space



Stock Solution ——

u

Reaction Mixture ——

The flowreactor as a
device for studies of
evolution in vitro and
in silico
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In silico optimization in the flow reactor: Trajectory



Endconformation of optimization
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In silico optimization in the flow reactor: Trajectory and relay steps



Relay steps

Uninterrupted presence
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In silico optimization in the flow reactor: Uninterrupted presence



Main transitions
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In silico optimization in the flow reactor: Main transitions



Main transition leading to clover leaf
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In silico optimization in the flow reactor
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Variation in genotype space during optimization of phenotypes



Statistics of evolutionary trajectories

Population Number of Number of Number of main
size replications transitions transitions
N < Nrep > < Ny > < Ngyr >

1000 (5.5 + [6.9,3.1]) x 107 92.7 + [80.3,43.0] 8.8 £ [2.4,1.9]

2 000 (6.0 + [11.1,3.9]) x 107 55.7 £ [30.7,19.8] 8.9 +[2.8,2.1]

3 000 (6.6 + [21.0,5.0]) x 10’ 44.2 + [25.9,16.3] 8.1 +£[2.3,1.8]
10 000 (1.2 £ [1.3,0.6]) x 108 35.9 £ [10.3,8.0] 10.3 £ [2.6,2.1]
20 000 (1.5 + [1.4,0.7]) x 108 28.8 + [5.8,4.8] 9.0 +[2.8,2.2]
30 000 (2.2 + [3.1,1.3]) x 108 29.8 +[7.3,5.9] 8.7 + [2.4,1.9]

100 000 (3+[2,1]) x 108 24 + [6,5] 9+2

The number of main transitions or evolutionary innovations is constant.
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Three important steps in the formation of the tRNA clover leaf from a randomly chosen
initial structure corresponding to three main transitions.



,...variations neither useful not injurious would
not be affected by natural selection, and would
be left either a fluctuating element, as perhaps
we see in certain polymorphic species, or would
ultimately become fixed, owing to the nature of
the organism and the nature of the conditions.

(13

Charles Darwin, Origin of species (1859)



Fitness

\L End of Walk
Adaptive Periods

Random Drift Periods

T Start of Walk

Genotype Space

Evolution in genotype space sketched as a non-descending walk in a fitness landscape




Evolution of RNA molecules based on Q3 phage

D.R.Mills, R,L,Peterson, S.Spiegelman, An extracellular Darwinian experiment with a
self-duplicating nucleic acid molecule. Proc.Natl.Acad.Sci.USA 58 (1967), 217-224

S.Spiegelman, An approach to the experimental analysis of precellular evolution.
Quart.Rev.Biophys. 4 (1971), 213-253

C.K.Biebricher, Darwinian selection of self-replicating RNA molecules. Evolutionary
Biology 16 (1983), 1-52

C.K.Biebricher, W.C. Gardiner, Molecular evolution of RNA in vitro. Biophysical
Chemistry 66 (1997), 179-192

G.Strunk, T. Ederhof, Machines for automated evolution experiments in vitro based on
the serial transfer concept. Biophysical Chemistry 66 (1997), 193-202
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Stock solution: Qb RNA-replicase, ATP, CTP, GTP and UTP, buffer

The serial transfer technique applied to RNA evolution in vitro



Reproduction of the original figure of the
serial transfer experiment with Qf RNA

D.R.Mills, R,L,Peterson, S.Spiegelman,
An extracellular Darwinian experiment
with a self-duplicating nucleic acid
molecule. Proc.Natl.Acad.Sci.USA

58 (1967), 217-224
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Fig. 9. Scrial transfer experiment. Each o-25 ml standard reaction mixture
contained 40 xg of Q/f replicase and **P-UTP, The first reaction (o transfer)
was initiated by the addition of o2 pug ts-1 (temperature-sensitive RNA)
and incubated at 35 °C for 20 min, whereupon o002 ml was drawn for
counting and 0'02 ml was used to prime the second reaction (first transfer),
and so on. After the first 13 reactions, the incubation periods were reduced
to 1§ min (transfers 14-29). Transfers 30-38 were incubated for 10 min.
Transfers 39-52 were incubated for 7 min, and transfers 53-74 were incu-
bated for § min. The arrows above certain transfers (o, 8, 14, 29, 37, 53,and
%3) indicate where o'co1-o0'1 ml of product was removed and used to prime re-
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to appear ufter the 4th transfer (Mills ez al. 1967).
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Bacterial Evolution

S. F. Elena, V. S. Cooper, R. E. Lenski. Punctuated evolution caused by selection of
rare beneficial mutants. Science 272 (1996), 1802-1804

D. Papadopoulos, D. Schneider, J. Meier-Eiss, W. Arber, R. E. Lenski, M. Blot.
Genomic evolution during a 10,000-generation experiment with bacteria.
Proc.Natl.Acad.Sci.USA 96 (1999), 3807-3812
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Fig. 1. Change in average cell size (1 fl = 107 '° L)
in a population of E. coli during 3000 generations
of experimental evolution. Each point is the mean
of 10 replicate assays (22). Error bars indicate
95% confidence intervals. The solid line shows the
best fit of a step-function model to these data
(Table 1).
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Fig. 2. Correlation between average cell size and
mean fitness, each measured at 100-generation
intervals for 2000 generations. Fitness is ex-
pressed relative to the ancestral genotype and
was obtained from competition experiments be-
tween derived and ancestral cells (6, 7). The open
symbols indicate the only two samples assigned
to different steps by the cell size and fitness data.

Epochal evolution of bacteria in serial transfer experiments under constant conditions

S. F. Elena, V. S. Cooper, R. E. Lenski. Punctuated evolution caused by selection of rare beneficial mutants.

Science 272 (1996), 1802-1804
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D. Papadopoulos, D. Schneider, J. Meier-Eiss, W. Arber, R. E. Lenski, M. Blot. Genomic evolution during a
10,000-generation experiment with bacteria. Proc.Natl.Acad.Sci.USA 96 (1999), 3807-3812



Evolutionary design of RNA molecules

D.B.Bartel, J.W.Szostak, In vitro selection of RNA molecules that bind specific ligands.
Nature 346 (1990), 818-822

C.Tuerk, L.Gold, SELEX - Systematic evolution of ligands by exponential enrichment:
RNA ligands to bacteriophage T4 DNA polymerase. Science 249 (1990), 505-510

D.P.Bartel, J.W.Szostak, Isolation of new ribozymes from a large pool of random
sequences. Science 261 (1993), 1411-1418

R.D.Jenison, S.C.Gill, A.Pardi, B.Poliski, High-resolution molecular discrimination by
RNA. Science 263 (1994), 1425-1429
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The SELEX technique for the evolutionary design of aptamers
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Formation of secondary structure of the tobramycin binding RNA aptamer

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, Chemistry & Biology 4:35-50 (1997)



The three-dimensional structure of the
tobramycin aptamer complex

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel,
Chemistry & Biology 4:35-50 (1997)




A ribozyme switch

E.A.Schultes, D.B.Bartel, One sequence, two ribozymes: Implication for the emergence of
new ribozyme folds. Science 289 (2000), 448-452
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Two ribozymes of chain lengths n = 88 nucleotides: An artificial ligase (A) and a natural cleavage
ribozyme of hepatitis-d-virus (B)



The sequence at the intersection:

HDV fold

Ligase fold

An RNA molecules which is 88

nucleotides long and can form both

structures
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Random graph theory is used to model and analyse the relationships between sequences and
secondary structures of RNA molecules, which are understood as mappings from sequence
space into shape space. These maps are non-invertible since there are always many orders of
magnitude more sequences than structures. Sequences folding into identical structures form
neutral networks. A neutral network is embedded in the set of sequences that are compatible
with the given structure. Networks are modeled as graphs and constructed by random choice
of vertices from the space of compatible sequences. The theory characterizes neutral
networks by the mean fraction of neutral neighbors (A). The networks are connected and
percolate sequence space if the fraction of neutral nearest neighbors exceeds a threshold
value (A > A*). Below threshold (A < A*), the networks are partitioned into a largest “giant”
component and several smaller components. Structures are classified as “common” or
“rare” according to the sizes of their pre-images, i.e. according to the fractions of sequences
folding into them. The neutral networks of any pair of two different common structures
almost touch each other, and, as expressed by the conjecture of shape space covering
sequences folding into almost all common structures, can be found in a small ball of an
arbitrary location in sequence space. The results from random graph theory are compared to
data obtained by folding large samples of RNA sequences. Differences are explained in
terms of specific features of RNA molecular structures. © 1997 Society for Mathematical
Biology

THEOREM 5. INTERSECTION-THEOREM. Let s and s' be arbitrary secondary
structures and C[s). C[s'] their corresponding compatible sequences. Then,

Cls]InC[s'] # 2.

Proof. Suppose that the alphabet admits only the complementary base pair [XY] and we
ask for a sequence x compatible to both s and s'. Then j(s,s') = D,, operates on the set of
all positions {x,,...,x,}. Since we have the operation of a dihedral group, the orbits are
either cycles or chains and the cycles have even order. A constraint for the sequence
compatible to both structures appears only in the cycles where the choice of bases is not
independent. It remains to be shown that there is a valid choice of bases for each cycle,
which is obvious since these have even order. Therefore, it suffices to choose an alternating
sequence of the pairing partners X and Y. Thus, there are at least two different choices for
the first base in the orbit. |

Remark. A generalization of the statement of theorem 5 to three differ-
ent structures is false.

Reference for the definition of the intersection
and the proof of the intersection theorem
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Distance in sequence space from intersection

Two neutral walks through sequence space with conservation of structure and catalytic activity
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AACCAGQGUCGGAACACIUAU GACUGG|C AC C 14 G GGGAG ~AGGUICUUUU|HUA GlA CUAGGCCLGP
AACCAGUCGGAACHCIUA GACUGG|CACICICCU UG GGl G GGGAGUGCCURA ~AGGIUICUUU U~ UA GJA CUAGG C CjLas2
AACCAGUCGGAJACACIUA GACUGGICAC|CCC Ul GGG GGGAGUGCCUA ~AGGUCUUUUI-UA G|A CUAGGC Cf LiGaos
AACCAGUCGGAJACACIUA U GACUGG|CHC|CCC UG GGl G GGGAGUGCCUA ~GGGUICUTUU-U A G|A] C U A GG C C| LIGJOA
AARCCAGUCGGAIACACIWIAUUAGACUGG|CACclcC UG GGl G GGGAGUGCCUA - GGGUCUUUU-U A G|A| CUAQGGCC|UG3s
AARMCCAGUCGGAIACACCAUUAGACUGG|CAC|Cce UG GGG GGGAGUGCCUA -G GGUICU U UULU A GlA CUAGGCC UGS
AACCAGUCGGAACANCCAUUVAGACUGGS|CAcIcce U G| GGGAG ~GEGUICUUUUCUAG|A CUAGG LiGa4
AACCAGUCGGAJACACCAUUAGACUGG|CACIdee hu G GGGAGUUCCUA ~GEGUCUUUUCUAGIA LiGaz
AACCAGUCGGAACACCAUUAGACUGG|CcACcclce Ul§ GGG GGGAGUUICCUA ~-GAGIUICUUUUCUA GlA Ligao
AACCAGUCGGAJACACCAUUAGACUGG|CAC|cecc UlE GGl G GGGAGUUJCCUA ~GAGUCUUUUCUAGIAICUARA - LiGae
AACCAGUCGGAIACANCCAUUAGACUGG|CcACclgdce Ul GLGI G GGGAGUUCCUA ~HAGCCUUUUCUAGGCUARA - LIG28
AACCAGUCGGAIACACCAUUAGACUGGIcAlcGCC UGG CG GGGAGU : ~GAGCCUUUUCUAGGCUARA - uiG2a
AACCAGUCGGAJACNCCAUUAGACUGGIcACGCcCcUCCcuUldGea GGGAGUUGICUA ~GAGCCUUUUCUAGGCUARAA - LG22
AACCAGUCGGAIACANCCAUUAGACUGG|cACGCCUCCUlGGCG GGGAGUUG GlUA ~GAGCCUUUUCUAGGCUAR - uazo0
AACCAGUCGGAACACCAUUAGACUGG CGCCUCCUGGLG GGGAGUUGGUC ~GAGCCUUUUCUAGGCURA - LIG18
AARCCAGUCGGA|JACACCAUUAGACUGG CGCCUCCUGGCGUICGGGAGUUGGUC ~GAGCCUUUUCUAGGCUAA - Lia1e
AACCAGUCGGAIACACCAUUAGACUGGGlaAlcGccucculdeca CGGGAGUUGGGCC ~GBAGCCUUUUCUAGGCUAA - LGs
AACCAGUCGG A|A ACCAUUAGACUGGGCCBCCUCCU[GGCGGCGEGAGUUGGS ~GAGCCUUUUCUAGGCUARA - uat2
AACCAGUCGG A|A BACCAUUAGACUGGGCCGCCUCCUGGCGGCGGEAGUUGGGC ~GAGCCUUUUCUAGGCUAA - Lia1o
AARCCAGUCGGAJUCCCAUUAGACUGGGCCGCCUCCU GCGGCOGGEGGAGUUGGGC AGCCUUUUCUAGGCUAA - LGs
ARCCAGUCGGAMUCCCAUUAGACUGGGCCGCCUCCU GCGGCGEGAGUUGGGC|GAGGGAGGA AGCCUUUUCUAGGCUAA - LG8
AACCAGUCGGAJAUCCCAUUAGACUGGGCCGCCUCCU GCGGCGGGAGUUGGGCAGGGRGGJ!AChGCCUUUUCUﬁGGCUhA« uas
GAACCAGUCGGANUCCCAUUAGACUGGEGCCGECCUCCU GCGGCGGCECAGUUGGGCGIAGGGAGGAACAGCCUUUUCUAGGCUARA - GCCCA LGa
GAACCAGUCGGAJUCCCAUUAGACUGGGCCGCCUCCU GCGGCGGGkGUUGGGCUAGGGJ‘LGGAACRGCCUUUUCUAGGCU}\JL-GGCCCA LGz
GHACCJ\GUCGGAUCCCRUUhGACUGGGCCGCCUCCUCGCGGCGGGAGUUGGGCU&GGG.&GGHﬁCAGCCUUUUCUAGGCUAA-GGCCCA uat

GJ\J\CCRGUCGGACUCCCRUUAGACUGGGCCGCCUCCUCGCGGCGGGhGUUGGGCUAGGGRGGAACHGCCUUU CUAGGCUAA-GGCCCA INT

GRACCRGUCQGhCUCCCAUUJ\GkCUGGGCCGCCUCCUCGCGGCGGGAGUUGGGCUAGGGRGGA}\CAGCCUUU CUAGGCUAA-GGCCCA HDVt
GAACCA UC—-GACUCCCAUURG&CUGGGCCGCCUCCUCGCGGCGGGAGUUGGGCURGGGAGGAACAGCCUUU CUAGGCUARA-GGCCCA HDV2
GIGACCAUUCIIGACUCCCAUUAGACUGG CCGCCUCCUCGCGGCGGGAGUUGGGCUAGGGAGGAACAGCCUUUY CUAGGCUAA-GGCCCA HOV4
GIGACCAIUUCI-GACUCCCAUUAGACUGG CCGCCUCCUCGCGGCGGEGAGUUGGGCUAGGGAGGAACAGCCUU CUAGGCUAA-GGAICCA HDVe
GIGGACCAUUCI-GACUCCCAUUAGACUGG CCGCCUCCUCGCGGCEEGAGUUGBGGCUAGGGAGGAACAGCCcUYe CUAGGCUAA-GGIACCA HOV?
GlgacCcAaUUCI-GACUC AUUAGACUGG C(‘.‘GCCUCCUCGCGGC'a_GGaGUUGGGCUJ\GGG&GGAACAGCCUUC CUAGGCUAA-GGAICCA HOV
GIGACCA|BDCHGACUC AUUAGACUGGUCCGCCUCCUCGBCGGCCOGAGUUGGGC AGGGAGGAACAGCCUVUICCICUAGGCUAA-GG|AlcCA HDVIM
GIGACC AUUC] - AUUAGACUGGUCCGCCUCCUCGCGGCCCGAGUUGGEGC GGGAGGAACAGCCUUCCClC GGCUAA-GGAICCA HDVI3
GIGIACC AU C) AUUAGACUGGUCCGCCUCCUCGCGGCCCOGAGUUGEGClA GGGAGGRACAGCCUUICCICIAU[GGCUAA-GGAlCCA HDVIS
GIGlA C C AU UCl- G AUUAGACUGGUCCGECCUCCUCGCEECCcQGaA UGGGCAUGGGAGGAACAGCCUU|CCICIAUGGCUAA-GG|A/CCA HOVIT
GIGACCAUUC G AUUAGACUGGUCCGCCUCCUCGCGBGCICTGA UGGCGCAUGGGAAGIGACAGCCUU|CC|CIAUGGCUAA-GGlAlCcCA HOVIO
GIGIA C C AU C| - GlG UaAGACUGGUCCGCcCcUCccUcGeaeocdaealcqueeaclavcacalaelalacascecuule CIARUGGCUAA-GGAICCA HDV21
GIGACCAUUC -GG VAGACUGGUCCGCCUCCUCGCGGCCOGAICdUGGGCAUGGGAlAG ACAGCCUUICCICIAUGGCUAA-GGAICCA HOV2
GIGACCAUUC -GG G cceeoCocuceocUCcGeGaQegealcquececla AGIGIACAGCCUUCCICIAUVGEGCUAA -GG CA HOvas
GiGACCARU Cl-{GlG G CCGCCUCCUCGCGGCICOGAlCUGGGCAUGGGAlAlG AGCCUUCCICIAUGGCUAA-GGAGICA HDOV2?
GIGACCAQUC| -GG G CCGCCUCCUCGCGGCCOGAlcAUGGGCla AlG AGCCUUICCICIAUIGGCUAA-GGIAGCA HDVZO
GIGIA C C AJUIU Cl - G|G G CCGCCUCCUCGCGGLCOGAlCAQUGEEClA AGIGUUAGCCUUICCICIAUIGG CUAA|GIGGAGICA HDVI0
G AlUU O+ GG -G CCAICCUCCUCGCGGUCQ COQuGGeGCla AGGUUAGCCUUICCICIAUGGCUAA|IGIGG|AGICA HDVS2
G AUUC -GG -G CCIMCCUCCUCGCGGUCCQ CQUGGGCA AGIGUUAGCCUU|CCICIAUGGCUAAGIGGAGICA HDVS3
G AUUC -GG G CClaACCuUCCUCGCGGUC T CQuGe GG Cla AGIGU CCUUICGICIAUIGGCUARIGIGGIAGICA HDV34
e | AUU Cl -GG G cCpccuccucegeGeiue g CQUGGGClA AGIGUUUUICCUVUICGICIAUGGCUAA|GIG G|A HDV36
G| AU U O -GG G CCACCUCCUCGCGGUCC COQUGGGCIAUCCIGAAGIGUUUUCCUU|[CGGAUGECUARGGala HDV38
G AU Cl - GIG G CCIAICCUCCUCGCGGUCC CQuUGG G GIGUUUUCCUUICGGAUGGCUAAIGIGGA HDV40
G AU C - GG G CCACCUCCUCGCGGUCQ COUGGaGC G cCcuuy GGCUAA|GGGA HDVa2
G A IJC..;1 G U“UCGC “G G CU A AG Hov e
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Sequence of mutants from the intersection to both reference ribozymes
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From sequences to shapes and back: a case study in
RNA secondary structures

PETER SCHUSTER"?3 WALTER FONTANA?, PETER F.STADLER??
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! Institut fiir Molekulare Biotechnologie, Beutenbergstrasse 11, PF 100813, D-07708 Jena, Germany
* Institut fiir Theoretische Chemie, Universitdt Wien, Austria
8 Santa Fe Institute, Santa Fe, U.S.A.

SUMMARY

RNA folding is viewed here as a map assigning secondary structures to sequences. At fixed chain length
the number of sequences far exceeds the number of structures. Frequencies of structures are highly non-
uniform and follow a generalized form of Zipf’s law: we find relatively few common and many rare ones.
By using an algorithm for inverse folding, we show that sequences sharing the same structure are
distributed randomly over sequence space. All common structures can be accessed from an arbitrary
sequence by a number of mutations much smaller than the chain length. The sequence space is percolated
by extensive neutral networks connecting nearest neighbours folding into identical structures. Implications
for evolutionary adaptation and for applied molecular evolution are evident: finding a particular
structure by mutation and selection is much simpler than expected and, even if catalytic activity should
turn out to be sparse in the space of RNA structures, it can hardly be missed by evolutionary processes.

Proc. R. Soc. Lond. B (1994) 255, 279284 279
Printed in Great Britain
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Figure 4. Neutral paths. A neutral path is defined by a series
of nearest neighbour sequences that fold into identical
structures. Two classes of nearest neighbours are admitted:
neighbours of Hamming distance 1, which are obtained by
single base exchanges in unpaired stretches of the structure,
and neighbours of Hamming distance 2, resulting from base
pair exchanges in stacks. Two probability densities of
Hamming distances are shown that were obtained by
searching for neutral paths in sequence space: (i) an upper
bound for the closest approach of trial and target sequences
(open circles) obtained as endpoints of neutral paths
approaching the target from a random trial sequence (185
targets and 100 trials for each were used); (ii) a lower bound
for the closest approach of trial and target sequences (open
diamonds) derived from secondary structure statistics
(Fontana et al. 1993a; see this paper, §4); and (iii) longest
distances between the reference and the endpoints of
monotonously diverging neutral paths (filled circles) (500
reference sequences were used).

© 1994 The Royal Society

Reference for postulation and in silico verification of neutral networks
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