What is special about autocatalysis?

Peter Schuster

Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA

Advances in Chemical Reaction Network Theory ESI Wien, 15.– 19.10.2018 Web-Page for further information:

http://www.tbi.univie.ac.at/~pks

- 1. Autocatalysis in chemistry
- 2. Autocatalysis in the batch reactor
- 3. Autocatalysis in the flow reactor
- 4. Autocatalysis and the logistic equation
- 5. Natural selection
- 6. Concluding remarks

1. Autocatalysis in chemistry

- 2. Autocatalysis in the batch reactor
- 3. Autocatalysis in the flow reactor
- 4. Autocatalysis and the logistic equation
- 5. Natural selection
- 6. Concluding remarks

Definition of autocatalytic reactions:

Reactions that show an acceleration of the rate as a function of time.

Wilhelm Ostwald, 1890

$$A + X \xrightarrow{k} 2X$$
$$\frac{dx}{dt} = ka x = k (a(0) + x(0) - x)x$$

$$x(t) = \frac{\left(a(0) + x(0)\right)x(0)}{x(0) + a(0)e^{-k\left(a(0) + x(0)\right)t}}$$

$$x(0) = 0 \implies x(t) = 0$$

Wilhelm Ostwald, 1853 – 1932

autocatalysis

 $A + n X \leftrightarrow (n+1) X$

first order: n = 1

self-enhancement exponential growth

Darwinian selection of the fittest

PCR-amplification

asexual reproduction of viroids, viruses, and bacteria

second and higher order: $n \ge 2$

(strong) self-enhancement hyperexponential growth nonlinear dynamics

bistability, oscillations, chaos and spatial patterns

oscillatory chemical reactions Turing patterns, etc. symbioses

Exceptions: plus-minus replication, sexual reproduction

PERSPECTIVE

www.rsc.org/dalton

Nonlinear chemical dynamics

Francesc Sagués^a and Irving R. Epstein^b

- ^a Departament de Química Física, Universitat de Barcelona, Diagonal 647, E-08028, Barcelona, Spain. E-mail: f.sagues@qf.ub.es
- ^b Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University, Waltham, MA 02454, USA

Received 6th November 2002, Accepted 6th January 2003 First published as an Advance Article on the web 10th March 2003

Francesc Sagués graduated in Chemistry and later on received his Ph.D. from Universitat de Barcelona in 1983. In the same year and from the same University he completed graduate studies in Physics. He was a Fulbright postdoctoral fellow at the Physics Department, University of Texas at Austin in 1985–86. He is presentely Professor of Physical Chemistry at the Chemistry Department of Universitat de Barcelona. He serves on the steering committee of the European Science Foundation programme on "Stochastic Dynamics: Fundamentals and Applications". His current research interests include the study of nonlinear dynamics, patterns and noise effects in nonequilibrium chemical systems and in complex self-assembling fluids.

Francesc Sagués

Irving R. Epstein received his A.B. (1966), M.A. (1968) and Ph.D. (1971) degrees from Harvard University. He was a Marshall Scholar at Balliol College, Oxford, in 1966–67, receiving a Diploma in Advanced Mathematics, and a NATO postdoctoral fellow at the Cavendish Laboratory, Cambridge in 1971, before joining Brandeis University, where he is Professor of Chemistry and has served as Dean of Arts and Sciences (1992–94) and Provost and Senior Vice President for Academic Affairs (1994–2001). He has been the recipient of Guggenheim and Humboldt Fellowships and chaired the first Gordon Research Conference on Chemical Oscillations. He serves on the Editorial Board of Chaos and on the Board of Directors of the New England Complex Systems Institute. His current research interests include nonlinear dynamics, pattern formation and neuroscience.

Irving R. Epstein

Brusselator model	Oregonator model
$\begin{array}{c} A \leftrightarrow X \\ B + X \leftrightarrow Y + D \\ 2X + Y \leftrightarrow 3X \\ X \leftrightarrow E \end{array}$	$\begin{array}{c} A + Y \ \leftrightarrow \ X \\ X + Y \ \leftrightarrow \ P \\ B + X \ \leftrightarrow \ 2X + Z \\ 2X \ \leftrightarrow \ Q \\ Z \ \leftrightarrow \ f \ Y \end{array}$

A + B = D + E f A + 2B = f P + Q

termolecular reaction step

Glandsdorff, Nicolis and Prigogine, 1971 modeling with f = 1:

Field, Körös, and Noyes, 1972

Reaction	Rate Constant	Ref.
1. $Br^{-} + 2H^{+} + BrO_3^{-} \Rightarrow HOBr + HBrO_2$	$k_1 = 2.1 \text{ M}^{-2} \text{sec}^{-1}$	6
2. $Br^- + HBrO_2 + H^+ = 2HOBr$	$k_{-1} = 1.0 \times 10^4 \text{ M}^{-1} \text{sec}^{-1}$ $k_7 = 2.0 \times 10^9 \text{ M}^{-2} \text{sec}^{-1}$	6 6
3. $Br^{-} + HOBr + H^{+} \rightleftharpoons Br_{1} + H_{2}O$	$k_{-2} = 5.0 \times 10^{-5} \text{ M}^{-1} \text{sec}^{-1}$ $k_{2} = 8.0 \times 10^{9} \text{ M}^{-2} \text{sec}^{-1}$	6 6
$\mathbf{A} = \mathbf{H}^{+} + \mathbf{C} \mathbf{H}^{-} \left(\mathbf{C} \mathbf{O} \mathbf{O} \mathbf{H} \right)_{\mathbf{C}} = \left(\mathbf{O} \mathbf{H} \right)_{\mathbf{C}} = \mathbf{C} \mathbf{H} \mathbf{C} \mathbf{O} \mathbf{O} \mathbf{H} + \mathbf{H}^{+}$	$k_{-3} = 110. \sec^{-1}(a)$ $k_{-3} = 1.3 \times 10^{-2} \text{ M}^{-1} \text{ sec}^{-1}$	6
$f = f + cn_2 (coor n_2 \rightarrow cor n_2 c \rightarrow cor coor + n_2)$	$k_{-4} = 1.3 \times 10^{-4} \text{ M}^{-1} \text{sec}^{-1}$ $k_{-4} = 1.3 \times 10^{4} \text{ M}^{-1} \text{sec}^{-1}$	19
5. $Br_2 + (OH)_2 C = CHCOOH = H^* + Br + BrCH(COOH)_2$	$k_5 = 6.0 \times 10^6 \text{ M}^{-1} \text{ sec}^{-1}$ $k_{-5} = 0.$	19 22
6. HOBr + (OH) ₂ C = CHCOOH \Rightarrow H ₂ O + BrCH (COOH) ₂	$k_{6}^{-} = 0.$	This work
7. $HBrO_2 + BrO_3^- + H^+ \rightleftharpoons 2BrO_2^- + H_2O$	$k_{-6} = 0.$ $k_7 = 1.0 \times 10^4 \text{ M}^{-2} \text{sec}^{-1}$	6
8. $BrO_{n} + Ce(III) + H^+ \rightleftharpoons Ce(IV) + HBrO_n$	$k_{-7} = 2.0 \times 10^7 \text{ M}^{-1} \text{sec}^{-1}(a)$ $k_{-} = 6.5 \times 10^5 \text{ M}^{-2} \text{sec}^{-1}$	6 This work
$\mathbf{P} = \mathbf{P} \cdot $	$k_{-1} = 2.4 \times 10^7 \text{ M}^{-1} \text{sec}^{-1}$	This work
9. $Ce(IV) + BIO_2 + H_2O = BIO_3 + 2H^2 + Ce(III)$	$k_{g} = 9.6 \times 10^{-1} \text{ M}^{-1} \text{ sec}^{-1} (a, b)$ $k_{-9} = 0.$	6
0. $2HBrO_2 = HOBr + BrO_3^{-} + H^+$	$k_{10} = 4.0 \times 10^7 \text{ M}^{-1} \text{sec}^{-1}$ = 2.0 × 10 ⁻¹⁰ M ⁻² rec ⁻¹	6
1. $Ce(IV) + CH_2(COOH)_2 \rightarrow CH(COOH)_2 + Ce(III) + H^+$	$k_{11} = 1.7 \times 10^{-1} \text{ M}^{-1} \text{sec}^{-1}$	6,22,25
2. $(COOH)_2 + Ce(IV) + H_2O \rightarrow HOCH(COOH)_2 + Ce(III) + H^+$	$([MA] \ll 0.5 M)$ $k_{12} = 1.0 \times 10^5 M^{-1} sec^{-1}(a)$	This work
3. Ce (IV) + BrCH (COOH) ₂ + H ₂ O \rightarrow Br ⁻ + HOČ(COOH) ₂ + Ce (III) + H ⁺	$k_{13} = 8.5 \times 10^{-2} \text{ M}^{-1} \text{sec}^{-1}(a)$	6,22,25
4. CH (COOH) ₂ + BrCH (COOH) ₂ + H ₂ O \rightarrow HOC(COOH) ₂ + CH ₂ (COOH) ₂ + Br ⁻ + H ⁺	$(BrMA \ll 0.1M)$ $k_{14} = 1.0 \times 10^5 \text{ M}^{-1} \text{sec}^{-1}(a,b)$	This work
5. $HOC(COOH)_2 + Ce(IV) \rightarrow O = C(COOH)_2 + Ce(III) + H^+$	$k_{15} = 1.0 \times 10^5 \text{ M}^{-1} \text{sec}^{-1} (b)^{-1}$	This work
6. $HOC(COOH)_2 + BrCH(COOH)_2 + H_2O \rightarrow HOCH(COOH)_2 + Br^- + HOC(COOH)_2 + H^+$	$k_{16} = 1.0 \times 10^5 \text{ M}^{-1} \text{sec}^{-1} (a,b)$	This work
7. Ce (IV) + HOCH (COOH) ₂ \rightarrow HOC(COOH) ₂ + Ce (III) + H ⁺	$k_{17} = 1.0 \times 10^5 \text{ M}^{-1} \text{sec}^{-1}(b)$	This work
8. Ce (IV) + O = C (COOH) ₂ \rightarrow O = C (COO·) (COOH) + Ce (III) + H ⁺	$k_{18} = 1.0 \times 10^5 \text{ M}^{-1} \text{sec}^{-1}(b)$	This worl
9. $O = C(COO^{-})(COOH) + Ce(IV) + H_2O \rightarrow HCOOH + Ce(III) + H^+ + 2CO_2$	$k_{19} = 1.0 \times 10^5 \text{ M}^{-1} \text{sec}^{-1}(b)$	This worl
20. $O = C(COO^{-1})(COOH^{-1}) + BrCH(COOH^{-1}) + H_2O \rightarrow HOC(COOH^{-1})_2 + O = C(COOH^{-1})_2 + Br^{-1} + H^{+1}$	$k_{20} = 1.0 \times 10^5 \text{ M}^{-1} \text{sec}^{-1} (a,b)$	This worl

D. Edelson, R.J. Field, R.M. Noyes. Mechanistic details of the Belousov-Zhabotinskii oscillations. Internat. J. Chem. Kinetics 7, 417-432 (1975)

Fig. 1. Sequence of snapshots of target patterns in the aqueous Belousov-Zhabotinsky (BZ) reaction. Patterns emerge from an initially homogeneous red solution. Catalyst/indicator is ferroin. Red areas are more reduced; blue areas are more oxidized.

V. K. Vanag, I. R. Epstein. Internat.J.Developmental Biology 53, 673-681

Fig. 3. Stationary planforms observed in the disc reactor. Standard patterns: (a) hexagonal array of "clear" spots from region IIa ($[KI]_B = 2.0 \times 10^{-3} \text{ M}$; [$CH_2(COOH)_2]_B = 2.25 \times 10^{-3} \text{ M}$); (b) array of parallel stripes (bands) from region IIb ($[KI]_B = 2.0 \times 10^{-3} \text{ M}$, $[CH_2(COOH)_2]_B = 2.5 \times 10^{-3} \text{ M}$). Non-standard patterns: (c) array of symmetric triangles from region IIc ($[KI]_B = 3.0 \times 10^{-3} \text{ M}$, $[CH_2(COOH)_2]_B = 3.2 \times 10^{-3} \text{ M}$); (d) array of "dark" hexabands from region IId ($[KI]_B = 2.5 \times 10^{-3} \text{ M}$), $[CH_2(COOH)_2]_B = 3.2 \times 10^{-3} \text{ M}$); (d) array of "dark" hexabands from region IId ($[KI]_B = 2.5 \times 10^{-3} \text{ M}$). All patterns are at the same scale: view size $1.7 \times 1.7 \text{ mm}$.

B. Rudovics, E. Dulos, P. De Kepper. Physica Scripta T67, 43-50, 1996

1. Autocatalysis in chemistry

2. Autocatalysis in the batch reactor

- 3. Autocatalysis in the flow reactor
- 4. Autocatalysis and the logistic equation
- 5. Natural selection
- 6. Concluding remarks

batch reactor

two basic features:

- (i) homogeneous medium achieved by stirring
- (ii) temperature control

facilitates modeling enormously!

By Echis at English Wikipedia, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=29915305

$$A + X \xleftarrow{k}{h} 2X$$
$$\frac{dx}{h} = k a x - h x^{2} = -\frac{da}{dt}$$
$$a(0) = a_{0}, x(0) = x_{0}, a(t) + x(t) = c = \text{const}$$

$$x(t) = \frac{k c x_0}{(k+h) x_0 + (k a_0 - h x_0) \exp(-k c t)}$$

rate of reaction for $a = \text{const:} \gamma_1 x - \gamma_2 x^2$

stationary states: (i) state of extinction S_0 : $\overline{x} = 0$ (ii) state of reproduction S_1 : $\overline{x} = \frac{\gamma_1}{\gamma_2}$.

Springer Series in Synergetics

Peter Schuster

Stochasticity in Processes

Fundamentals and Applications to Chemistry and Biology

COMPLEXITY

$$P_{M} = \operatorname{Prob}\{A(t) = M\} \qquad C = A(t) + X(t)$$
$$A(t) = M; \ M \in \mathbb{N}, \ M \in [0, C - 1]$$
$$X(t) = C - M = L; \ C, L \in \mathbb{N}, \ C - M = L \in [1, C]$$

$$\frac{dP_M}{dt} = k (M+1) (C - M - 1) P_{M+1} + h (C - M + 1) (C - M) P_{M-1} - A + X \leftrightarrow 2 X - (k M (C - M) + h (C - M) (C - M - 1)) P_M$$

$$\frac{\mathrm{d}P_M}{\mathrm{dt}} = k \left(M+1\right) \left(C-M-1\right) P_{M+1} + \\ - k M \left(C-M\right) P_M \qquad \qquad \mathsf{A} + \mathsf{X} \to 2 \mathsf{X}$$

E. Arslan, I.J. Laurenzi. J.Chem.Phys.128,e015101, 2008

The master equation of the autocatalytic reaction $A + X \leftrightarrow 2 X$

 $A + X \rightarrow 2 X$ and $2 X \rightarrow A + X$

The reversible autocatalytic reaction

 $A + X \leftrightarrow 2 X$

can't become extinct (X(t) = 0).

The reflecting barrier of $A + X \leftrightarrow 2 X$ at X(t) = 1

A(t) + X(t) = M + L = C

 $\left\{ \text{ A , X } \right\} \rightarrow \left\{ \text{ A-1 , X+1} \right\}$

autocatalysis first order: $A + X \rightarrow 2 X$, single trajectory

autocatalysis first order: $A + X \rightarrow 2 X$, single trajectory and deterministic solution

autocatalysis first order: $A + X \rightarrow 2 X$, bundle of trajectories

autocatalysis first order: $A + X \rightarrow 2 X$, bundle and deterministic solution

autocatalysis first order: A + X \rightarrow 2 X, expectation value and one σ error band

autocatalysis first order: $A + X \rightarrow 2 X$, expectation value and deterministic solution

autocatalysis first order: A + X \rightarrow 2 X, measuring stochastic delay δ

			Initial particle numbers X ₀							
N		1	2	3	5	7	10			
100	t(ΔX_{max})	6.03856	5.12539	4.75684	4.1744	3.92167	3.42010			
	ΔX_{max}	13.1546	6.93289	4.57133	2.79113	1.88634	1.34232			
	$\Delta X_{max} X_0 / N$	0.1316	0.1387	0.1372	0.1396	0.1320	0.1342			
400	t(ΔX_{max})	18.1088	15.9382	14.6904	13.2155	12.4069	11.4706			
	ΔX_{max}	53.9348	27.8792	18.6441	12.0256	8.48329	5.96725			
	$\Delta X_{max} X_0 / N$	0.1348	0.1393	0.1398	0.1503	0.1485	0.1492			
1000	t(ΔX_{max})	82.5046	73.5525	69.1473	61.5956	59.5409	55.4158			
	ΔX_{max}	136.575	71.6853	47.7226	30.1260	21.6830	14.1515			
	$\Delta X_{max} X_0 / N$	0.1366	0.1434	0.1432	0.1506	0.1518	0.1415			

stochastic delay: $\delta = \Delta X_{max} X_0 / N$

$$A + X \xrightarrow{k} 2X$$

k = 0.01, 0.001, 0.0001; sample size: 10 000

- 1. Autocatalysis in chemistry
- 2. Autocatalysis in the batch reactor

3. Autocatalysis in the flow reactor

- 4. Autocatalysis and the logistic equation
- 5. Natural selection
- 6. Concluding remarks

$$\frac{da}{dt} = r \cdot c_0 - k \, a \, x + h \, x^2 - r \, a = -k \, a \, x + h \, x^2 + r \, (c_0 - a)$$
$$\frac{dx}{dt} = k \, a \, x - h \, x^2 - r \, x = x \, (k \, a - h \, x - r)$$

stationary states: $S_0 = (c_0, 0)$ and $S_1 = ((c_0 + r)/(1+K), K(c_0 + r)/(1+K) - r/h)$

Approach of the reaction $A+X\rightarrow 2X$ towards the steady state in the flow reactor initial condition *empty reactor*: A(0) = 0, X(0) = 1, 2, 3, ...

example of a deterministic bifurcation

Approach of the reaction $A+X\rightarrow 2X$ towards the steady state in the flow reactor initial condition *empty reactor*: A(0) = 0, X(0) = 1, 2, 3, ...

anomalous fluctuations

example of a stochastic bifurcation

Approach of the reaction $A+X\rightarrow 2X$ towards the steady state in the flow reactor initial condition *empty reactor*: A(0) = 0, X(0) = 1, 2, 3, ...

Four phases of the autocatalytic process:

- (i) phase I: the empty reactor is filled with resource A,
- (ii) phase II: random events select the state towards which the trajectory converges,
- (iii) phase III: the trajectory approches the long-time state, and
- (iv) phase IV: the trajectory fluctuates around the long-time state.

Approach of the reaction $A+X\rightarrow 2X$ towards the steady state in the flow reactor initial condition *empty reactor*: A(0) = 0, X(0) = 1, convergence towards S_1

Approach of the reaction $A+X\rightarrow 2X$ towards the steady state in the flow reactor initial condition *empty reactor*: A(0) = 0, X(0) = 1, convergence towards S_0

Approach of the reaction $A+X\rightarrow 2X$ towards the steady states in the flow reactor initial condition *empty reactor*: A(0) = 0, X(0) = 1

Approach of the reaction $A+X\rightarrow 2X$ towards the steady states in the flow reactor initial condition *empty reactor*: A(0) = 0, X(0) = 1; deterministic solution dashed

		initial particle numer X(0)									
		1		2	3		4		5		
state	S ₀	S ₁	S ₀	S ₁	S ₀	S ₁	S ₀	S ₁	S ₀	S ₁	
part.no.	275	725	74	926	17	983	6	994	4	996	
E±σ	27.5 ± 3.5	72.5 ± 3.5	7.4±3.2	92.6±3.2	1.7 ± 1.0	98.3 ± 1.0	0.6±0.7	99.4 ± 0.7	0.4 ± 0.7	99.6±0.7	

autocatalysis, irreversible, first order, A + X \rightarrow 2X: r = 0.5; N = 1000; k = 0.01; sample size: 10 \times 100

The stochastic trajectory approaches the steady states S_0 and S_1 with probabilities that depend strongly on the initial condition X(0).

Approach of the reaction A+X \rightarrow 2X towards the steady state S₁ in the flow reactor initial condition *empty reactor*: A(0) = 0, X(0) = 1; k = 0.01, 0.02, 0.05, 0.10

Popul.size	reaction rate parameter <i>k</i>							
N	0.	01	0.	05	0.10			
	S ₀	S ₁	So	S ₁	So	S ₁		
100	1000	0	691	301	509	491		
400	766	234	363	637	269	731		
1000	506	494	243	757	178	822		

autocatalysis irreversible, first order, A + X \rightarrow 2X: r = 2.0; seed = 491; sample size: 1000

 S_0 : state of extinction, A = C, X = 0

S₁: state of reproduction, A = r / k, X = C - r/k

C = A + X

three classes of fluctuations with autocatalytic processes

(i)	thermal fluctuations	all chemical reactions	$\sigma \propto \sqrt{N}$
(ii)	stochastic delay	autocatalytic reactions	$\delta = \frac{X_0}{N} (\Delta X)_{\max} \cong \alpha = \text{const}$
(iii)	anomalous fluctuations	bistability	$\sigma = f(\Delta \overline{X}, \Delta \overline{P})$

Thermal fluctuations are universal in chemical kinetics in the sense that they occur with every reaction.

Stochastic delay is special for autocatalytic process with very small initial concentrations of the autocatalyst.

Anomalous fluctuations occur in systems with stochastic bifurcation points. F. de Pasquale, P. Tartaglia, P. Tombesi. Lettere al Nuovo Cimento 28, 141- 145, 1980.

- 1. Autocatalysis in chemistry
- 2. Autocatalysis in the batch reactor
- 3. Autocatalysis in the flow reactor

4. Autocatalysis and the logistic equation

- 5. Natural selection
- 6. Concluding remarks

Thomas Robert Malthus, 1766 – 1834

Leonhard Euler, 1717 – 1783

geometric progression

exponential function

population: $\Pi = \{X\}$

the consequence of finite resources

$$\frac{dx}{dt} = f x \left(1 - \frac{x}{C} \right) \implies x(t) = \frac{C x_0}{x_0 + (C - x_0) \exp(-ft)}$$

the logistic equation: Verhulst 1838

Verhulst or logistic equation:

$$\frac{\mathrm{d}x}{\mathrm{dt}} = f\left(1 - \frac{x}{C}\right)x \text{ with } x(0) = x_0$$
$$x(t) = \frac{C x_0}{x_0 + (C - x_0)e^{-rt}}$$

basic structure of the equation:

$$\frac{\mathrm{d}x}{\mathrm{dt}} = \gamma_1 x - \gamma_2 x^2$$

chemical models:

reversible autocatalytic reaction

annihilation reaction

absorbing barrier: $X = 0 \rightarrow dx/dt = 0$

 $A + X \rightarrow 2X$ and $2X \rightarrow A + X$ $A + X \rightarrow 2X$ and $2X \rightarrow \emptyset$

reversible autocatalytic reaction

reflecting barrier

annihilation reaction

logistic growth: $A + X \rightarrow 2X, 2X \rightarrow \emptyset$, expectation value and deterministic solution

logistic equation, f = 0.2, h = 0.001, 0.00025, 0.0001; seed: s = 491; sample size: 10 000 and 1000 for N=1000

Popul.size		Initial particle numbers X ₀							
Ν		1	2	3	5	7	10		
100	$t(\Delta X_{max})$	30.7891	26.8607	24.8953	22.3875	20.2627	18.9629		
	ΔX_{max}	13.7409	7.70646	5.36579	3.22743	2.55490	1.90572		
	$\Delta X_{max} X_0 / N$	0.1374	0.1541	0.1610	0.1614	0.1788	0.1906		
400	$t(\Delta X_{max})$	36.8968	32.7972	30.2315	27.2430	25.6571	24.0319		
	$\Delta {\rm X}_{\rm max}$	54.9010	29.7009	20.1191	12.4348	8.34684	6.44130		
	$\Delta X_{max} X_0 / N$	0.1372	0.1485	0.1589	0.1554	0.1461	0.1610		
1000	$t(\Delta X_{max})$	82.5046	73.5525	69.1473	61.5956	59.5409	55.4158		
	ΔX_{max}	136.575	71.6853	47.7226	30.1260	21.6830	14.1515		
	$\Delta X_{max} X_0 / N$	0.1366	0.1434	0.1432	0.1506	0.1518	0.1415		

stochastic delay:
$$\delta = \Delta X_{max} X_0 / N$$

logistic equation:
$$X(t) = \frac{CX_0}{X_0 + (C - X_0)e^{-ft}}, X_0 = X(0)$$

annihilation reaction: (A) + X \rightarrow 2 X , 2 X \rightarrow Ø

	X ₀									
	1 2		3		4		5			
	Х	extinct	Х	extinct	Х	extinct	Х	extinct	Х	extinct
numbers	99443	557	99478	522	99988	12	99984	16	99999	1
E±σ	9944.3 ± 7.5	55.7 ± 7.5	9947.8±9.3	52.2 ± 9.3	9998.8±1.0	1.2 ± 1.0	9998.4 \pm 0.8	1.6 ± 0.8	9999.9 ± 0.3	0. 1± 0.3

extinction in the logistic equation: N = 100; f = 0.2; h = 0.001, sample size: 10×10000 .

state of reproduction, S_1 and state of extinction S_0 X: $\lim_{t\to\infty} E(X(t)) = C$ and extinct: $\lim_{t\to\infty} X(t) = 0$

bistability in the logistic equation:

- 1. Autocatalysis in chemistry
- 2. Autocatalysis in the batch reactor
- 3. Autocatalysis in the flow reactor
- 4. Autocatalysis and the logistic equation

5. Natural selection

6. Concluding remarks

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f x \left(1 - \frac{x}{C} \right) \implies \frac{\mathrm{d}x}{\mathrm{d}t} = f x - \frac{x}{C} f x$$
$$f x \equiv \Phi(t), C = 1: \quad \frac{\mathrm{d}x}{\mathrm{d}t} = x \left(f - \Phi \right)$$

$$X_1, X_2, ..., X_n: [X_i] = x_i; \sum_{i=1}^n x_i = C = 1$$

$$\frac{\mathrm{d}x_j}{\mathrm{d}t} = x_j \left(f_j - \sum_{i=1}^n f_i x_i \right) = x_j \left(f_j - \Phi \right) ; \quad \Phi = \sum_{i=1}^n f_i x_i$$

Darwin

$$\frac{\mathrm{d}\Phi}{\mathrm{d}t} = 2\left(\langle f^2 \rangle - \langle \bar{f} \rangle^2\right) = 2\operatorname{var}\{f\} \ge 0$$

generalization of the logistic equation to n variables yields selection

$$\Pi = \{X_1, \dots, X_n\}$$

$$N(t) = (N_1(t), \dots, N_n(t)); \quad C(t) = \sum_{j=1}^n N_j(t)$$

$$C(t) = \frac{C(0)K}{C(0) + (K - C(0))e^{-\Phi}}$$
with $\Phi = \int_0^t \phi(\tau) d\tau$ and $\phi(t) = \frac{1}{C(t)} \sum_{i=1}^n f_i N_i(t)$

$$I_{\text{time t}}$$

$$x_{j}(t) = \frac{N_{j}(t)}{C(t)} = \frac{x_{j}(0)e^{f_{j}t}}{\sum_{i=1}^{n} x_{i}(0)e^{f_{i}t}}$$

N(0) = (1,4,9,16,25)f = (1.10,1.08,1.06,1.04,1.02)

15

20

population:

$$\Pi = \{X_1, X_2, X_3, \dots, X_n\}$$

$$* \xrightarrow{r \cdot c_0} A$$

$$A + X_j \xrightarrow{f_j} 2X_j, j = 1, 2, \dots, n$$

$$A \xrightarrow{r} \varnothing$$

$$X_j \xrightarrow{r} \varnothing, j = 1, 2, \dots, n$$

$$\frac{da}{dt} = c_0 r - a \left(\sum_{j=1}^n f_j x_j + r\right)$$

$$\frac{dx}{dt} = x (f_j a - r), j = 1, 2, \dots, n$$

selection in the flow reactor

			Population	size N = 100		Population size N = 200			
$\Delta f/f$	t _e	$A(t_e)$	X ₁ (t _e)	X ₂ (t _e)	X₃(t _e)	$A(t_e)$	X ₁ (t _e)	X ₂ (t _e)	X₃(t _e)
0.0	600	1.5 ± 1.3	30.5 ± 3.9	34.2 ± 4.6	33.4 ± 4.1	0.5 ± 0.9	30.6 ± 4.6	30.9 ± 5.0	32.0 ± 4.7
0.02	600	1.8 ± 1.4	41.8 ± 4.8	<mark>32.9</mark> ±3.8	23.4 ± 4.0	0.6 ± 0.8	50.4 ± 5.7	27.7 ± 4.9	17.3 ± 2.6
0.04	400	2.4 ± 2.1	45.4 ± 5.0	31.3 ± 4.5	19.9 ± 2.5	0.7 ± 0.8	58.3 ± 4.6	25.6 ± 4.5	11.0 ± 2.9
0.1	400	2.1 ± 1.7	59.8 ±5.5	28.0 ± 4.1	10.0 ± 2.9	0.4 ± 0.5	73.9 ± 4.1	20.6 ± 3.5	4.8 ± 1.9
0.2	400	$\textbf{1.9} \pm 1.1$	68.3 ± 4.5	<mark>23.1</mark> ± 3.7	6.7 ± 2.8	0.5 ± 0.7	76.6 ± 4.1	19.3 ± 2.8	3.6 ± 1.7
0.4	400	2.3 ± 1.8	71.7 ± 6.0	<mark>20.8</mark> ±5.2	5.2 ± 2.4	0.9 ± 0.6	82.0 ± 4.2	13.8 ± 3.8	3.3 ± 1.7
1.0	200	2.7 ± 2.4	78.4 ± 4.7	15.8 ± 3.3	3.1 ± 1.5	0.9 ± 0.9	83.6 ± 4.0	12.6 ± 3.2	2.9 ± 1.5
1.8	200	4.3 ± 1.1	80.8 ± 2.9	13.6 ± 3.1	1.3 ±1.2	1.5 ± 1.3	83.8 ± 3.3	12.7 ± 2.5	2.0 ± 1.7

n = 3: $X_1, f_1 = f + \Delta f / 2f$; $X_2, f_2 = f$; $X_3, f_3 = f - \Delta f / 2f$; f = 0.1

initial particle numbers: $X_1(0) = X_2(0) = X_3(0) = 1$

probability of selection

new variables: z = x + y $\zeta = \sqrt{k_2}x - \sqrt{k_1}y$ $= \kappa_2 x - \kappa_1 y$ $\frac{\mathrm{d}a}{\mathrm{d}t} = -\left(\gamma z - (\kappa_1 - \kappa_2)\zeta\right)a + (c_0 - a)r,$ $\frac{\mathrm{d}z}{\mathrm{d}t} = (\gamma a - r)z + (\kappa_2 - \kappa_1)a\zeta,$ $\frac{\mathrm{d}\zeta}{\mathrm{d}t} = -(\gamma a + r)\zeta.$ $\gamma = \sqrt{k_1k_2}$

 $S_0 = (\overline{a}, \overline{x}, \overline{y}) = (c_0, 0, 0) \qquad S_1 = \left(\frac{r}{\gamma}, \frac{\gamma c_0 - r}{(\gamma + k_2)}, \frac{\gamma c_0 - r}{(\gamma + k_1)}\right)$

plus-minus replication

plus-minus replication in the flow reactor

the logic of DNA (or RNA) replication and mutation

Charles Weissmann 1931-

RNA replication by $Q\beta$ -replicase

C. Weissmann, *The making of a phage*. FEBS Letters **40** (1974), S10-S18

Christof K. Biebricher, 1941-2009

DSI+1 K_{PR} ,IE、 K_{A5'} K_{D5'} k_{3'5'} **k**_{D3} k 5'3' (5) E 15 k5'3 K3'5 KA5' ie' **K**osi k_P K_{DS2} IEs DS i+ ักรา İEŔ. KFP2 KDP2 x(t)concentration of RNA Darwinian selection saturation or exponentiell linear product inibition $x(t) \propto \left(1 + \exp(-\chi t)\right)^{-1}$ $x(t) \propto \exp(kt)$ $x(t) \propto \gamma t$ time t

kinetics of RNA replication

C.K. Biebricher, M. Eigen, W.C. Gardiner, Jr. *Biochemistry* **22**:2544-2559, 1983

- 1. Autocatalysis in chemistry
- 2. Autocatalysis in the batch reactor
- 3. Autocatalysis in the flow reactor
- 4. Autocatalysis and the logistic equation
- 5. Natural selection

6. Concluding remarks

Autocatalysis is commonly not represented by a single elementary step but appears as the results of complex many-step reaction networks.

Complex autocatalytic processes in reaction networks often give rise to simple over-all kinetics under suitable conditions.

Fluctuations in autocatalytic processes consist of (i) stochastic delay and (ii) anomalous fluctuations besides the common thermal fluctuations.

Thank you for your attention!

Web-Page for further information:

http://www.tbi.univie.ac.at/~pks