Design of Nucleic Acid Molecules for Predefined Purposes

Peter Schuster

Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA

Viennano 2007

Wiener Neustadt, 14.03.2007

Web-Page for further information:

http://www.tbi.univie.ac.at/~pks

- 1. Nucleic acid structures
- 2. DNA nanotechnology
- 3. RNA A magic molecule
- 4. Evolutionary optimization of structure
- 5. RNA design

1. Nucleic acid structures

- 2. DNA nanotechnology
- 3. RNA A magic molecule
- 4. Evolutionary optimization of structure
- 5. RNA design

Canonical Watson-Crick base pairs:

cytosine – guanine uracil – adenine (RNA) thymine – adenine (DNA)

W.Saenger, Principles of Nucleic Acid Structure, Springer, Berlin 1984

The ,replication fork' in DNA replication

The mechanism of DNA replication is ,semi-conservative'

 1. Nucleic acid structures

2. DNA nanotechnology

- 3. RNA A magic molecule
- 4. Evolutionary optimization of structure
- 5. RNA design

Principle of DNA design shown for DNA-rod formation

3D structure of a Holliday junction

N.D. Seeman, P.S. Lukeman. Nucleic acid nanostructure. Bottom-up control of geometry on the nanoscale. *Rep.Prog.Phys.* **68**:237-270, 2005.

Usage of Holliday junctions to construct DNA lattices

Cube designed from DNA molecules

Truncated octahedron designed from DNA molecules

CURRENT CRYSTALLIZATION PROTOCOL

- 1. Nucleic acid structures
- 2. DNA nanotechnology

3. RNA - A magic molecule

- 4. Evolutionary optimization of structure
- 5. RNA design

- 1. Nucleic acid structures
- 2. DNA nanotechnology
- 3. RNA A magic molecule

4. Evolutionary optimization of structure

5. RNA design

Evolution of RNA molecules based on $Q\beta$ phage

D.R.Mills, R.L.Peterson, S.Spiegelman, *An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule*. Proc.Natl.Acad.Sci.USA **58** (1967), 217-224

S.Spiegelman, *An approach to the experimental analysis of precellular evolution*. Quart.Rev.Biophys. **4** (1971), 213-253

C.K.Biebricher, *Darwinian selection of self-replicating RNA molecules*. Evolutionary Biology **16** (1983), 1-52

G.Bauer, H.Otten, J.S.McCaskill, *Travelling waves of* in vitro evolving RNA. *Proc.Natl.Acad.Sci.USA* **86** (1989), 7937-7941

C.K.Biebricher, W.C.Gardiner, *Molecular evolution of RNA* in vitro. Biophysical Chemistry **66** (1997), 179-192

G.Strunk, T.Ederhof, *Machines for automated evolution experiments* in vitro based on the serial transfer concept. Biophysical Chemistry 66 (1997), 193-202

F.Öhlenschlager, M.Eigen, 30 years later – A new approach to Sol Spiegelman's and Leslie Orgel's in vitro evolutionary studies. Orig.Life Evol.Biosph. 27 (1997), 437-457

The mechanism of single stranded RNA replication

RNA sample

Stock solution: Qβ RNA-replicase, ATP, CTP, GTP and UTP, buffer

Serial transfer technique for RNA evolution in the test tube

The increase in RNA production rate during a serial transfer experiment

Punktmutation

Insertion

Deletion

DIE NATURWISSENSCHAFTEN

58. Jahrgang, 1971

Heft to Oktobe

which even in its simplest forms always appears to be

associated with complex macroscopic (i.e. multimolec-ular systems, such as the living cell. As a consequence of the exciting discoveries of "molecular biology", a common version of the subce-question is: Which case first, the previous of the subce-coil? – a modern variant of the old "chicker-and-the-egg" problem. The term "first" is usually meant to define a causal rather than a temporal relationship, assoassociated with complex macroscopic fi.e. multimolec-

define a causal rather than a temporal relationship, sho the words "protein" and "suckie acid" may be sub-stituted by "function" and "information". The question in this form, when applied to the interplay of nucleic acids and proteins as presently encountered in the living cull, leads ad abaurdum, because "function"

Selforganization of Matter and the Evolution of Biological Macromolecules

MANERED EDGEN* Max-Planck-Institut für Biophysikalische Chemie

Karl-Friedrich-Bonhoeffer-Institut, Göttingen-Nikolausberg

J. Introduction	V. Selforganization via Cyclic Catelysis: Proteins 498
1.4. Cause and Effect	V.4. Recognition and Catalwais by Enzymes
1.2. Prerecruisitos of Selforganization	V.2. Selforranizing Enzyme Cycles (Theory)
L2.1, Evolution Must Start from Random Events 467	V.2.1. Catalytic Networks
1.2.2. Instruction Requires Information 467	V.2.2. The Selfreproducing Loop and Its Variants 400
I.2.3. Information Originates or Gains Value by	V.2.3. Competition between Different Cycles:
Selection	Selection
L.2.4. Selection Occurs with Special Substances	V.3. Can Proteins Reproduce Themselves? 501
under Special Conditions	and with the state of the state
at the second state of the state of the state	VI. Sufferdaring by Encoded Catalytic Paneton
11. Phenomenological Tabley of Salebox	VI.1 The Requirement of Cooperation between Nucleic
IL1. The Concept "Information"	Acids and Proteins
II.2. Phenomenological Equations	VI.2. A Selfreproducing Hyper-Cycle
II.3. Selection Strains	VI.2.1. The Model
ILA. Selection Equilibrium 479	VI.2.2. Theoretical Treatment
II.5. Quality Factor and Error Distribution 480	VI.3. On the Origin of the Code
ILG. Kinetics of Scientificon	VII. Evolution Exteriments
III. Stachastic Approach to Soloction	VII i The Off-Bapiltone Statem 111
TTL I Instantian of a Deterministic Theorem of Solution, 484	VIL2 Demaining Exclusion in the Test Taba 543
111.7 Electronic account Confibrian States 454	VII.1 Countination Calention Oradian (11)
111.2. Physical and the Should State	VIL4 "Mines One" Exercisents 514
171.4. Stochastic Models as Markov Chains	the sum on aspending to the training of
111.4 Quantitative Discussion of Three Prototypes of	VIII. Conclusion
Selection 457	VIII.1. Limits of Theory
	VIII.2. The Concept "Value"
IV. Selforganisation Based on Complementary Recogni-	VIII.3. "Dissignation" and the "Origin of Information" 516
tiou: Nucleic Acids	VIII.4. The Principles of Selection and Evolution 517
IV.4. True "Selfinstruction"	VIII.5. "Indeterminate", but "Inevitable" 568
IV.2. Complementary Instruction and Selection	VIII.6. Can the Phenomenon of Life be Explained by Oar
(Theory)	Present Concepts of Physics ?
IV.3. Complementary Base Recognition (Experimental	
Dirta)	IX. Deutsche Zuzanenenfassung
IV.3.1. Single Pair Formation	ite at the set of the
IV.3.2. Cooperative Interactions in Oligo- and	Acknowsidgements
Polynncieotidas	Lineature
IV.J.J. Conclusions about Recognition 496	Literature

I. Introduction

I.I. "Cause and Effect"

The question about the origin of life often appears as a In equasion about the edge of microtent appears as a question about "cause and effect". Feyskel theories of macroscopic processes annuly involve answers to such questions, even if a statistical interpretation is given to the relation between "cause" and "effect". It is mainly due to the nature of this question that many scientists believe that our present physics does and offer any obvious explanation for the existence of life.

 Partiy presented as the "Robbins Lectures" at Pomona College, California, in spring 1970. 234 Naturvissessehaften 1971

Die Naturwissenschaften 64. Jahrgang High 11 November 1977

The Hypercycle

A Principle of Natural Self-Organization

Part A: Emergence of the Hypercycle

Manfred Eigen

Max-Planck-Institut für biophysikalische Chemie, D-3400 Göttingen

Peter Schuster

Institut für theoretische Chemie und Strahlenchemie der Universität, A-1090 Wien

This paper is the first part of a trilogy, which comprises a detailed study of a special type of functional regarization and demonstratus its relevance with respect to the origin and realization of life. Self-replicative macromolecules, such as RNA or DNA in a suit-Self-replaced or materiableoutes, staft as KNA or DNA in a sun-able extrements exhibit a behavior, which we ray call Derivitian and which can be formully represented by the concept of the quasi-points. A quasi-species is defined as u given distribution of macro-moleculus species with closely interrelated sequences, dominated by one or several (degenerate) master copies. External constraints enforce the selection of the best adapted distribution, commonly referred to as the wild-type. Most important for Darwanian behavfor one the oriteria for internal stability of the quasi-species. If for one the extern for internal statisticy of the quasi-species. It these externa as violated, the information stored in the nucleotide sequence of the master copy will desintegrate renversibly leading to an error extintrophy. As a consequence, identic, and evolution of RNA or DNA molecules is limited with respect to the amount of RNA or DNA monutes a minor with respect to the amount of information that can be stored in a single replicative unit. An analysis of experimental data regarding RNA and DNA replication at various leach of organization reveals, that a sufficient amount of information for the build up of a translation patchney can of information for the build up of a transition ratchinery can be painted only via integration of several different replacative multi-lor reproductive cycleto through (severiceal) Takages. A stable func-tional integrations than will rates the system to a new level of originization and Davidly enlarge to information capacity considerably. The hypercycle appears to be such a form of organization.

Preview on Part B: The Abstract Hypercycle

The mathematical analysis of dynamical systems using methods of differential topology, yields the result that there is only one type of mediatelenas which fulfills the following requirements: Ope of manhadram when rutum the colouring requirements: The informations showd in each single replacitive any(or response-tive cycls) must be maintained, i.e., the respective master copies must competitive theorem of the state of distributions. Despite their competitive behavior there units must establish a cooperation which includes all functionally integrated species. On the other which includes all functionally infigurated species. On the other hand, the cryst as a whole stud construct to compute acrosply with aty other single entity or linked anountible which does not countribut as its insugraved function. These tragutements are cratical for a selection of the best adopted interactions theorem on the selection of the best adopted interactions. Only

Naturwissenschaften 64, 541-565 (1977) D by Springer-Verlag 197

hypercyclic organizations are able to fulfil these requirements. Non-cyclic limitages among, the autonomous reproduction cycles, such as clasins or branched, true-like natworks are devoid of such prop-The mathematical methods used for proving these assertious are

fixed-point, Lyaprnov and trajectorial analysis in higher-dimen-sional phase spaces, spanned by the concentration coordinates of the cooperating portners. The self-organizing properties of hypersy-cles are elucidated, using analytical as well as numerical techniques

Proving on Part C: The Realized Report of

A realistic model of a hypercycle relevant with respect to the origin of the genetic code and the translation machinery is recseated. It includes the following features referring to natural systems: 1) The hypersystems a sufficiently emple surseture to adult an origination, with finite probability ander purblotic conditions. 3 It permits a continuous emergence from closely interrelated

(), RNA-like) procursors, originally bring members of a stable RNA quari-species and having been amplified to a level of higher aban

3) The expansion structure and the properties of single (ano-tions) units of this logarcycle are still reflected in the present gaments code in the translation apparatus of the proharyotic cell, as well as in certain bacturial vipous.

J. The Paradigm of Unity and Diversity in Evolution

Why do millions of species, plants and animals, exist, while there is only one basic molecular machinery of the cell: one universal genetic code and unique chiralities of the macromolecules?

The geneticists of our day would not hesitate to give an immediate answere to the first part of this question. Diversity of species is the outcome of the tremendous branching process of evolution with its myriads of single sters of reproduction and mutation. It in-

M.Eigen P.Schuster The Hypercycle

A Principle of Natural Self-Organization

Chemical kinetics of molecular evolution

M. Eigen, P. Schuster, 'The Hypercycle', Springer-Verlag, Berlin 1979

$$dx_i / dt = \sum_j f_j Q_{ji} x_j - x_i \Phi$$

$$\Phi = \sum_j f_j x_i; \quad \sum_j x_j = 1; \quad \sum_i Q_{ij} = 1$$

$$[I_i] = x_i \ge 0; \quad i = 1, 2, ..., n;$$

$$[A] = a = constant$$

$$Q_{ij} = (1-p)^{\ell-d(i,j)} p^{d(i,j)}$$

$$p \dots Error rate per digit$$

$$\ell \dots Chain length of the polynucleotide$$

$$d(i,j) \dots Hamming distance between I_i and I_j$$

Chemical kinetics of replication and mutation as parallel reactions

The error threshold in replication

random individuals. The primer pair used for genomic DNA amplification is 5'-TCTCCCTGGATTCT-CATTTA-3' (forward) and 5'-TCTTTGTCTTCTGT TCCACC-3' (reverse). Reactions were performed in 25 µl using 1 unit of Tag DNA polymerase with each primer at 0.4 µM; 200 µM each dATP, dTTP, dGTP, and dCTP; and PCR buffer [10 mM tris-HCI (pH 8.3) 50 mM KCl₂,1.5 mM MgCl₂] in a cycle condition of 94°C for 1 min and then 35 cycles of 94°C for 30 s. 55°C for 30 s, and 72°C for 30 s followed by 72°C for 6 min. PCR products were purified (Qiagen), digested with Xmn L and senarated in a 2% agarose gel.

- 32. A nonsense mutation may affect mRNA stability and result in degradation of the transcript [L. Maguat, Am. J. Hum. Genet. 59, 279 (1996)]
- 33. Data not shown: a dot blot with poly (A)+ RNA from 50 human tissues (The Human BNA Master Blot. 7770-1, Clontech Laboratories) was hybridized with a probe from exons 29 to 47 of MYO15 using the same condition as Northern blot analysis (13).
- 34. Smith-Magenis syndrome (SMS) is due to deletions of 17p11.2 of various sizes, the smallest of which includes MYO15 and perhaps 20 other genes ((6): K-S Chen, L. Potocki, J. R. Lupski, MRDD Res. Rev. 2 122 (1996)] MYO15 expression is easily detected in the pituitary gland (data not shown). Haploinsufficiency for MYO15 may explain a portion of the SMS

Continuity in Evolution: On the Nature of Transitions

Walter Fontana and Peter Schuster

To distinguish continuous from discontinuous evolutionary change, a relation of nearness between phenotypes is needed. Such a relation is based on the probability of one phenotype being accessible from another through changes in the genotype. This nearness relation is exemplified by calculating the shape neighborhood of a transfer RNA secondary structure and provides a characterization of discontinuous shape transformations in RNA. The simulation of replicating and mutating RNA populations under selection shows that sudden adaptive progress coincides mostly, but not always, with discontinuous shape transformations. The nature of these transformations illuminates the key role of neutral genetic drift in their realization.

A much-debated issue in evolutionary biology concerns the extent to which the history of life has proceeded gradually or has been punctuated by discontinuous transitions at the level of phenotypes (1). Our goal is to make the notion of a discontinuous transition more precise and to understand how it arises in a model of evolutionary adaptation.

We focus on the narrow domain of RNA secondary structure, which is currently the simplest computationally tractable, yet realistic phenotype (2). This choice enables the definition and exploration of concepts that may prove useful in a wider context. RNA secondary structures represent a coarse level of analysis compared with the three-dimensional structure at atomic resolution. Yet, secondary structures are empir-

Institut für Theoretische Chemie, Universität Wien, Währingerstrasse 17, A-1090 Wien, Austria, Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA, and International Institute for Applied Systems Analysis (IIASA), A-2361 Laxenburg, Austria.

ically well defined and obtain their biophysical and biochemical importance from being a scaffold for the tertiary structure. For the sake of brevity, we shall refer to secondary structures as "shapes." RNA combines in a single molecule both genotype (replicatable sequence) and phenotype (selectable shape), making it ideally suited for in vitro evolution experiments (3, 4).

phenotype such as short stature. Moreover, a few

SMS natients have sensorineural hearing loss, pos-

sibly because of a point mutation in MYO15 in trans

X-7 Liu et al ihid 17 268 (1997): E Gibson et al

vrinths) obtained from human fetuses at 18 to 22

weeks of development in accordance with guidelines

established by the Human Research Committee at

the Brigham and Women's Hospital. Only samples

without evidence of degradation were pooled for

poly (A)* selection over oligo(dT) columns. First-

strand cDNA was prepared using an Advantage RT-

for-PCR kit (Clontech Laboratories). A portion of the

first-strand cDNA (4%) was amplified by PCR with

Advantage cDNA polymerase mix (Clontech Labora-

tories) using human MYO15-specific oligonucleotide

primers (forward, 5'-GCATGACCTGCCGGCTAAT

GGG-3': reverse, 5'-CTCACGGCTTCTGCATGGT-

GCTCGGCTGGC-3'). Cycling conditions were 40 s

at 94°C; 40 s at 66°C (3 cycles), 60°C (5 cycles), and

55°C (29 cycles); and 45 s at 68°C. PCB products

were visualized by ethidium bromide staining after

fractionation in a 1% agarose gel. A 688-bp PCR

Nature 374, 62 (1995): D. Weil et al. ibid. p. 60.

37. RNA was extracted from cochlea (membranous lab-

36. K. B. Avraham et al., Nature Genet. 11, 369 (1995);

to the SMS 17n11.2 deletion.

35. R. A. Fridell, data not shown

To generate evolutionary histories, we used a stochastic continuous time model of an RNA population replicating and mutating in a capacity-constrained flow reactor under selection (5, 6). In the laboratory, a goal might be to find an RNA aptamer binding specifically to a molecule (4). Although in the experiment the evolutionary end product was unknown, we thought of its shape as being specified implicitly by the imposed selection criterion. Because our intent is to study evolutionary histories rather than end products, we defined a target shape in advance and assumed the replication rate of a sequence to be a function of because, in contrast to sequences, there are

product is expected from amplification of the human MYO15 cDNA. Amplification of human genomic DNA with this primer pair would result in a 2903-bp fragment

38. We are grateful to the people of Bengkala, Bali, and the two families from India. We thank J. R. Lupski and K.-S. Chen for providing the human chromosome 17 cosmid library. For technical and computational assistance, we thank N. Dietrich, M. Fergusson A Guota E Sorbello R Torkzadeh C Varner M. Walker, G. Bouffard, and S. Beckstrom-Sternberg (National Institutes of Health Intramural Se quencing Center). We thank J. T. Hinnant, I. N. Arhya, and S. Winata for assistance in Bali, and T. Barber, S. Sullivan, E. Green, D. Drayna, and J. Battey for helpful comments on this manuscript. Supported by the National Institute on Deafness and Other Communication Disorders (NIDCD) (Z01 DC 00035-01 and Z01 DC 00038-01 to T.B.F. and E.R.W. and R01 DC 03402 to C.C.M.), the National Institute of Child Health and Human Development (R01 HD30428 to S.A.C.) and a National Science Foundation Graduate Research Fellowship to F.J.P. This paper is dedicated to J. B. Snow Jr. on his retirement as the Director of the NIDCD.

9 March 1998; accepted 17 April 1998

the similarity between its shape and the target. An actual situation may involve more than one best shape, but this does not affect our conclusions.

An instance representing in its qualitative features all the simulations we performed is shown in Fig. 1A. Starting with identical sequences folding into a random shape, the simulation was stopped when the population became dominated by the target, here a canonical tRNA shape. The black curve traces the average distance to the target (inversely related to fitness) in the population against time. Aside from a short initial phase, the entire history is dominated by steps, that is, flat periods of no apparent adaptive progress, interrupted by sudden approaches toward the target structure (7). However, the dominant shapes in the population not only change at these marked events but undergo several fitness-neutral transformations during the periods of no apparent progress. Although discontinuities in the fitness trace are evident, it is entirely unclear when and on the basis of what the series of successive phenotypes itself can be called continuous or discontinuous.

A set of entities is organized into a (topological) space by assigning to each entity a system of neighborhoods. In the present case, there are two kinds of entities: sequences and shapes, which are related by a thermodynamic folding procedure. The set of possible sequences (of fixed length) is naturally organized into a space because point mutations induce a canonical neighborhood. The neighborhood of a sequence consists of all its one-error mutants. The problem is how to organize the set of possible shapes into a space. The issue arises

Evolution in silico

W. Fontana, P. Schuster, Science 280 (1998), 1451-1455

Replication rate constant:

$$f_{k} = \gamma / [\alpha + \Delta d_{S}^{(k)}]$$
$$\Delta d_{S}^{(k)} = d_{H}(S_{k}, S_{\tau})$$

Selection constraint:

Population size, N = # RNA molecules, is controlled by the flow

$$N(t) \approx \overline{N} \pm \sqrt{\overline{N}}$$

Mutation rate:

 $p = 0.001 / site \times replication$

The flowreactor as a device for studies of evolution *in vitro* and *in silico*

Phenylalanyl-tRNA as target structure

In silico optimization in the flow reactor: Evolutionary Trajectory

28 neutral point mutations during a long quasi-stationary epoch

entry	GGUAUGGGCGUUGAAUAGUAGGGUUUAAACCAAUCGGCCAACGAUCUCGUGUGCGCAUUUCAUAUCCCGUACAGAA
8	.((((((((((((((()))))))))((((((
exit	GGUAUGGGCGUUGAAUAAUAGGGUUUAAACCAAUCGGCCAACGAUCUCGUGUGCGCAUUUCAUAUCCAUACAGAA
entry	GGUAUGGGCGUUGAAUAAUAGGGUUUAAACCAAUCGGCCAACGAUCUCGUGUGCGCAUUUCAUAUACCAUACAGAA
9	.((((((((((((((((((((()))))))))))))))))
exit	UGGAUGGACGUUGAAUAACAAGGUAUCGACCAAACAACCAAC
entry	UGGAUGGACGUUGAAUAACAAGGUAUCGACCAAACAACCAAC
10	((((((((((())))))))))))))))
exit	UGGAUGGACGUUGAAUAACAAGGUAUCGACCAAACAACCAAC

Transition inducing point mutations change the molecular structure Neutral point mutations leave the molecular structure unchanged

Neutral genotype evolution during phenotypic stasis

- 1. Nucleic acid structures
- 2. DNA nanotechnology
- 3. RNA A magic molecule
- 4. Evolutionary optimization of structure

5. RNA design

Evolutionary design of RNA molecules

D.B.Bartel, J.W.Szostak, **In vitro** *selection of RNA molecules that bind specific ligands*. Nature **346** (1990), 818-822

C.Tuerk, L.Gold, **SELEX** - Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249 (1990), 505-510

D.P.Bartel, J.W.Szostak, *Isolation of new ribozymes from a large pool of random sequences*. Science **261** (1993), 1411-1418

R.D.Jenison, S.C.Gill, A.Pardi, B.Poliski, *High-resolution molecular discrimination by RNA*. Science **263** (1994), 1425-1429

Y. Wang, R.R.Rando, *Specific binding of aminoglycoside antibiotics to RNA*. Chemistry & Biology **2** (1995), 281-290

Jiang, A. K. Suri, R. Fiala, D. J. Patel, *Saccharide-RNA recognition in an aminoglycoside antibiotic-RNA aptamer complex*. Chemistry & Biology **4** (1997), 35-50

Selection of molecules with predefined properties in laboratory experiments

The SELEX technique for the evolutionary design of strong binders called aptamers

tobramycin

5'-GGCACGAGGUUUAGCUACACUCGUGCC-3'

Secondary structure of the tobramycin binding RNA aptamer with $K_D = 9 nM$

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, Saccharide-RNA recognition in an aminoglycoside antibiotic-RNA aptamer complex. *Chemistry & Biology* **4**:35-50 (1997)

The three-dimensional structure of the tobramycin aptamer complex

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, Chemistry & Biology **4**:35-50 (1997)

Dissociation constants and specificity of theophylline, caffeine, and related derivatives of uric acid for binding to a discriminating aptamer TCT8-4 **Table 1.** Competition binding analysis with TCT8-4 RNA. The chemical structures are shown for a series of derivatives used in competitive binding experiments with TCT8-4 RNA (Fig. 2) (20). The right column represents the affinity of the competitor relative to theophylline, $K_d(c)/K_d(t)$, where $K_d(c)$ is the individual competitor dissociation constant and $K_d(t)$ is the competitive dissociation constant of theophylline. Certain data (denoted by >) are minimum values that were limited by the solubility of the competitor. Each experiment was carried out in duplicate. The average error is shown.

Compound	Structure	<i>K</i> _d (c) (μM)	$K_{\rm d}({\rm c})/K_{\rm d}({\rm t})$
Theophylline		0.32 ± 0.13	1
CP-theophylline		0.93 ± 0.20	2.9
Xanthine	HN L H	8.5 <u>+</u> 0.40	27
1-Methylxanthine		9.0 ± 0.30	28
3-Methylxanthine	HN KH	2.0 ± 0.7	6.3
7-Methylxanthine		> 500	>1500
3,7-Dimethylxanthine	HN KN OKN KN CH3	> 500	> 1500
1,3-Dimethyluric acid		> 1000	>3100
Hypoxanthine	HN TN	49 <u>+</u> 10	153
Caffeine		3500 ± 1500	10,900

(purple) binding site for theophylline (blue).

Schematic drawing of the aptamer binding site for the theophylline molecule

Hammerhead ribozyme – The smallest RNA based catalyst

H.W.Pley, K.M.Flaherty, D.B.McKay, *Three dimensional structure of a hammerhead ribozyme*. Nature **372** (1994), 68-74

W.G.Scott, J.T.Finch, A.Klug, *The crystal structures of an all-RNA hammerhead ribozyme: A proposed mechanism for RNA catalytic cleavage*. Cell **81** (1995), 991-1002

J.E.Wedekind, D.B.McKay, *Crystallographic structures of the hammerhead ribozyme: Relationship to ribozyme folding and catalysis*. Annu.Rev.Biophys.Biomol.Struct. 27 (1998), 475-502

G.E.Soukup, R.R.Breaker, *Design of allosteric hammerhead ribozymes activated by ligand-induced structure stabilization*. Structure **7** (1999), 783-791

Hammerhead ribozymes with allosteric effectors

A ribozyme switch

E.A.Schultes, D.B.Bartel, Science **289** (2000), 448-452

minus the background levels observed in the HSP in the control (Sar1-GDP-containing) incubation that prevents COPII vesicle formation. In the microsome control, the level of p115-SNARE associations was less than 0.1%.

- C. M. Carr, E. Grote, M. Munson, F. M. Hughson, P. J. Novick, J. Cell Biol. 146, 333 (1999).
- C. Ungermann, B. J. Nichols, H. R. Pelham, W. Wickner, J. Cell Biol. 140, 61 (1998).
- 48. E. Grote and P. J. Novick, Mol. Biol. Cell 10, 4149 (1999).
- 49. P. Uetz et al., Nature 403, 623 (2000).

50. GST-SNARE proteins were expressed in bacteria and purified on glutathione-Sepharose beads using standard methods. Immobilized GST-SNARE protein (0.5 μM) was incubated with rat liver cytosol (20 mg) or purified recombinant p115 (0.5 μM) in 1 ml of NS buffer containing 1% BSA for 2 hours at 4°C with rotation. Beads were briefly spun (3000 rpm for 10.s) and sequentially washed three times with NS buffer and three times with NS buffer supplemented with 150 ml NaCL Bound proteins were eluted three times in 50 μJ of 50 ml tris-HCl (pH 8.5), 50 ml reduced glutathione. 150 ml NaCL, and 0.1% Tirtion 0.1% Tirtion M NaCL.

REPORTS

X-100 for 15 min at 4°C with intermittent mixing, and elutes were pooled. Proteins were precipitated by MeOH/CH₃Cl and separated by SDS-polyacrylamide gel electrophoresis (PAGE) followed by immunoblotting using p115 mAb 13F12.

- 51. V. Rybin et al., Nature 383, 266 (1996).
- K. G. Hardwick and H. R. Pelham, J. Cell Biol. 119, 513 (1992).
- A. P. Newman, M. E. Groesch, S. Ferro-Novick, EMBO J. 11, 3609 (1992).
- A. Spang and R. Schekman, J. Cell Biol. 143, 589 (1998).
 M. F. Rexach, M. Latterich, R. W. Schekman, J. Cell Biol. 126 (113) (1994).
- A. Mayer and W. Wickner, J. Cell Biol. 136, 307 (1997).
 M. D. Turner, H. Plutner, W. E. Balch, J. Biol. Chem. 272, 13479 (1997).
- A. Price, D. Seals, W. Wickner, C. Ungermann, J. Cell Biol. 148, 1231 (2000).
- 59. X. Cao and C. Barlowe, J. Cell Biol. 149, 55 (2000). 60. G. G. Tall, H. Hama, D. B. DeWald, B. F. Horazdovsky,
- Mol. Biol. Cell 10, 1873 (1999). 61. C. G. Burd, M. Peterson, C. R. Cowles, S. D. Emr, Mol.
- Biol. Cell 8, 1089 (1997).

One Sequence, Two Ribozymes: Implications for the Emergence of New Ribozyme Folds

Erik A. Schultes and David P. Bartel*

We describe a single RNA sequence that can assume either of two ribozyme folds and catalyze the two respective reactions. The two ribozyme folds share no evolutionary history and are completely different, with no base pairs (and probably no hydrogen bonds) in common. Minor variants of this sequence are highly active for one or the other reaction, and can be accessed from prototype ribozymes through a series of neutral mutations. Thus, in the course of evolution, new RNA folds could arise from preexisting folds, without the need to carry inactive intermediate sequences. This raises the possibility that biological RNAs having no structural or functional similarity might share a common ancestry. Furthermore, functional and structural divergence might, in some cases, precede rather than follow gene duplication.

Related protein or RNA sequences with the same folded conformation can often perform very different biochemical functions, indicating that new biochemical functions can arise from preexisting folds. But what evolutionary mechanisms give rise to sequences with new macromolecular folds? When considering the origin of new folds, it is useful to picture, among all sequence possibilities, the distribution of sequences with a particular fold and function. This distribution can range very far in sequence space (1). For example, only seven nucleotides are strictly conserved among the group I selfsplicing introns, yet secondary (and presumably tertiary) structure within the core of the ribozyme is preserved (2). Because these disparate isolates have the same fold and function, it is thought that they descended from a common ancestor through a series of mutational variants that were each functional. Hence, sequence heterogeneity among divergent isolates implies the existence of paths through sequence space that have allowed neutral drift from the ancestral sequence to each isolate. The set of all possible neutral paths composes a "neutral network," connecting in sequence space those widely dispersed sequences sharing a particular fold and activity, such that any sequence on the network can potentially access very distant sequences by neutral mutations (3–5).

Theoretical analyses using algorithms for predicting RNA secondary structure have suggested that different neutral networks are interwoven and can approach each other very closely (3, 5–8). Of particular interest is whether ribozyme neutral networks approach each other so closely that they intersect. If so, a single sequence would be capable of folding into two different conformations, would M. R. Peterson, C. G. Burd, S. D. Emr, Curr. Biol. 9, 159 (1999).

- M. G. Waters, D. O. Clary, J. E. Rothman, J. Cell Biol. 118, 1015 (1992).
- D. M. Walter, K. S. Paul, M. G. Waters, J. Biol. Chem. 273, 29565 (1998).
- 513 65. N. Hui et al., Mol. Biol. Cell 8, 1777 (1997).
 - 66. T. E. Kreis, EMBO J. 5, 931 (1986).
 - H. Plutner, H. W. Davidson, J. Saraste, W. E. Balch J. Cell Biol. 119, 1097 (1992).
 - 68. D. S. Nelson et al., J. Cell Biol. 143, 319 (1998)

69. We thank G. Waters for p115 CDNA and p115 mAbs; G. Warren for p97 and p47 antibodies; R. Scheller for rbet1, membrin, and sec22 cDNAs; H. Plutner for excellent technical assistance; and P. Tan for help during the initial phase of this work. Supported by NIH grants GM 33301 and GM42336 and National Cancer institute grant CA58669 (W.E.B.), a NIH National Research Service Award (B.D.M.), and a Wellcome Trust International Traveling Fellowship (B.B.A.)

20 March 2000; accepted 22 May 2000

have two different catalytic activities, and could access by neutral drift every sequence on both networks. With intersecting networks, RNAs with novel structures and activities could arise from previously existing ribozymes, without the need to carry nonfunctional sequences as evolutionary intermediates. Here, we explore the proximity of neutral networks experimentally, at the level of RNA function. We describe a close apposition of the neutral networks for the hepatitis delta virus (HDV) self-cleaving ribozyme and the class III self-ligating ribozyme.

In choosing the two ribozymes for this investigation, an important criterion was that they share no evolutionary history that might confound the evolutionary interpretations of our results. Choosing at least one artificial ribozyme ensured independent evolutionary histories. The class III ligase is a synthetic ribozyme isolated previously from a pool of random RNA sequences (9). It joins an oligonucleotide substrate to its 5' terminus. The prototype ligase sequence (Fig. 1A) is a shortened version of the most active class III variant isolated after 10 cycles of in vitro selection and evolution. This minimal construct retains the activity of the full-length isolate (10). The HDV ribozyme carries out the site-specific self-cleavage reactions needed during the life cycle of HDV, a satellite virus of hepatitis B with a circular, single-stranded RNA genome (11). The prototype HDV construct for our study (Fig. 1B) is a shortened version of the antigenomic HDV ribozvme (12), which undergoes self-cleavage at a rate similar to that reported for other antigenomic constructs (13, 14).

The prototype class III and HDV ribozymes have no more than the 25% sequence identity expected by chance and no fortuitous structural similarities that might favor an intersection of their two neutral networks. Nevertheless, sequences can be designed that simultaneously satisfy the base-pairing requirements

Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA.

^{*}To whom correspondence should be addressed. Email: dbartel@wi.mit.edu

Two ribozymes of chain lengths n = 88 nucleotides: An artificial ligase (A) and a natural cleavage ribozyme of hepatitis- δ -virus (B)

An RNA molecule, which is 88 nucleotides long and which can form both structures.

Two neutral walks through sequence space with conservation of structure and catalytic activity

hairpin formation. Nucleic Acids Res. 34:3568-3576 (2006)

Acknowledgement of support

Fonds zur Förderung der wissenschaftlichen Forschung (FWF) Projects No. 09942, 10578, 11065, 13093 13887, and 14898

Project No. Mat05

Jubiläumsfonds der Österreichischen Nationalbank Project No. Nat-7813

European Commission: Contracts No. 98-0189, 12835 (NEST)

Austrian Genome Research Program – GEN-AU: Bioinformatics Network (BIN)

Österreichische Akademie der Wissenschaften

Siemens AG, Austria

Universität Wien and the Santa Fe Institute

Universität Wien

Coworkers

Peter Stadler, Bärbel M. Stadler, Universität Leipzig, GE

Paul E. Phillipson, University of Colorado at Boulder, CO

Heinz Engl, Philipp Kügler, James Lu, Stefan Müller, RICAM Linz, AT

Jord Nagel, Kees Pleij, Universiteit Leiden, NL

Walter Fontana, Harvard Medical School, MA

Christian Reidys, Christian Forst, Los Alamos National Laboratory, NM

Ulrike Göbel, Walter Grüner, Stefan Kopp, Jaqueline Weber, Institut für Molekulare Biotechnologie, Jena, GE

Ivo L.Hofacker, Christoph Flamm, Andreas Svrček-Seiler, Universität Wien, AT

Kurt Grünberger, Michael Kospach, Andreas Wernitznig, Stefanie Widder, Stefan Wuchty, Universität Wien, AT

Jan Cupal, Stefan Bernhart, Lukas Endler, Ulrike Langhammer, Rainer Machne, Ulrike Mückstein, Hakim Tafer, Thomas Taylor, Universität Wien, AT

Universität Wien

Web-Page for further information:

http://www.tbi.univie.ac.at/~pks