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Anteil an vorteilhafter Variante
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Beispiele zerkliifteter Landschaften
Bryce Canyon




Mittlere Fitnel3

Ende

I

Start der Optimierung

Sequenzraum

Optimierung auf einer FitneBlandschaft ohne selektive Neutralitit




Mittlere Fitnel3

T

Start der Optimierung

I

Start der Optimierung

I

Start der Optimierung

Sequenzraum

Optimierung auf einer FitneBlandschaft ohne selektive Neutralitit




Mittlere Fitnel3

\

Adaptive Perioden

SN

Start der Optimierung

\l, Ende

Evolutiondre Optimierung auf einer Landschaft mit neutralen Zonen

Sequenzraum




Grand Canyon

Beispiel einer Landschaft mit neutralen Graten
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»eee Variations neither useful not injucious would not be
affected by natural selection, and would be left eithex a
fluctaating element, as pethaps we see in cextain
,oo{gm.o'c,o/zic species, or would ultimateg become fixed,
owing to the nature of the otganism and the nature of

[

the conditions. ...

Charles Darwin, Origin of species (1859)



THE NEUTRAL THEORY
OF MOLECULAR EVOLUTION

The molecular clock of evolution MOTOO KIMURA

National Institute of Genetics, Japan

Motoo Kimura’s population genetics of
neutral evolution.

Evolutionary rate at the molecular level.
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FIGURE 2. The two bacterial phylogenies, taken from the universal phylogenetic tree
determined from rRNA sequence comparisons (Woese, 1987).

Evolution at the molecular level.
R.K. Selander, A.G. Clark, T.S. Whittam, eds. Sinauer Associates, 1991.



Generation time 10 000 generations | 10° generations 10" generations
RNA molecules 10 sec 27.8 h=1.16d 115.7d 3.17a
1 min 6.94 d 1.90 a 19.01 a
Bacteria 20 min 138.9d 38.03 a 380 a
10 h 1140 a 1140 a 11408 a
Higher multicelluar 10d 274 a 27380 a 273 800 a
organisms 20 a 20 000 a 2x10"a 2x10%a

Time scales of evolutionary change




Bacterial Evolution

S. F. Elena, V. S. Cooper, R. E. Lenski. Punctuated evolution caused by selection of
rare beneficial mutants. Science 272 (1996), 1802-1804

D. Papadopoulos, D. Schneider, J. Meier-Eiss, W. Arber, R. E. Lenski, M. Blot.
Genomic evolution during a 10,000-generation experiment with bacteria.
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lawn of E.coli

nutrient agar

Serial transfer of Escherichia coli
cultures 1in Petri dishes

1day T 6.67 generations
1 month T 200 generations
1 year 12400 generations
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Fig. 1. Change in average cell size (1 fl = 107 '° L)
in a population of E. coli during 3000 generations
of experimental evolution. Each point is the mean
of 10 replicate assays (22). Error bars indicate
95% confidence intervals. The solid line shows the
best fit of a step-function model to these data
(Table 1).
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Fig. 2. Correlation between average cell size and
mean fitness, each measured at 100-generation
intervals for 2000 generations. Fitness is ex-
pressed relative to the ancestral genotype and
was obtained from competition experiments be-
tween derived and ancestral cells (6, 7). The open
symbols indicate the only two samples assigned
to different steps by the cell size and fitness data.

Epochal evolution of bacteria in serial transfer experiments under constant conditions

S. F. Elena, V. S. Cooper, R. E. Lenski. Punctuated evolution caused by selection of rare beneficial mutants.

Science 272 (1996), 1802-1804
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Variation of genotypes in a bacterial serial transfer experiment

D. Papadopoulos, D. Schneider, J. Meier-Eiss, W. Arber, R. E. Lenski, M. Blot. Genomic evolution during a
10,000-generation experiment with bacteria. Proc.Natl.Acad.Sci.USA 96 (1999), 3807-3812
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Stock solution: Qb RNA-replicase, ATP, CTP, GTP and UTP, buffer

The serial transfer technique applied to RNA evolution in vitro



Reproduction of the original figure of the
serial transfer experiment with Qf RNA

D.R.Mills, R,L,Peterson, S.Spiegelman,
An extracellular Darwinian experiment
with a self-duplicating nucleic acid
molecule. Proc.Natl.Acad.Sci.USA

58 (1967), 217-224
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was initiated by the addition of o2 pug ts-1 (temperature-sensitive RNA)
and incubated at 35 °C for 20 min, whereupon o002 ml was drawn for
counting and 0'02 ml was used to prime the second reaction (first transfer),
and so on. After the first 13 reactions, the incubation periods were reduced
to 1§ min (transfers 14-29). Transfers 30-38 were incubated for 10 min.
Transfers 39-52 were incubated for 7 min, and transfers 53-74 were incu-
bated for § min. The arrows above certain transfers (o, 8, 14, 29, 37, 53,and
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D.B.Bartel, J.W.Szostak, In vitro selection of RNA molecules that bind specific ligands.
Nature 346 (1990), 818-822

C.Tuerk, L.Gold, SELEX - Systematic evolution of ligands by exponential enrichment: RNA
ligands to bacteriophage T4 DNA polymerase. Science 249 (1990), 505-510

D.P.Bartel, J.W.Szostak, Isolation of new ribozymes from a large pool of random sequences.
Science 261 (1993), 1411-1418

R.D.Jenison, S.C.Gill, A.Pardi, B.Poliski, High-resolution molecular discrimination by RNA.
Science 263 (1994), 1425-1429

Y. Wang, R.R.Rando, Specific binding of aminoglycoside antibiotics to RNA. Chemistry &
Biology 2 (1995), 281-290

Jiang, A. K. Suri, R. Fiala, D. J. Patel, Saccharide-RNA recognition in an aminoglycoside
antibiotic-RNA aptamer complex. Chemistry & Biology 4 (1997), 35-50



cNo new principle will declare itself
from below a heap of facts.

Sir Peter Medawar, 1985
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Replication of DNA is a higly complex copying
mechanism involving more than ten different protein
molecules. Complementarity is determined by
Watson-Crick base pairs:

GIC and A=T

James Watson and Francis Crick, 1953
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dXi/dt = fiXi - XiCD =Xi(fi-CD)

O = Zj fi Xj , Zj Xj =1 5 1,] :1,2,...,11

[Ii] = Xi/E 0 ; i=1,2,...,n;

[A] = a = constant
f;, = max {t}; 1=1,2,....,n}

xp() A1 for t A

Reproduction of organisms or replication of molecules as the basis of selection



Plus Strand

Plus Strand

Minus Strand

Plus Strand

Point Mutation

GAAUCCCGAA —> GAAUCCCGUCCCGAA

Insertion

GAAUCCCGAA —> GAAUCCzA

Deletion

The origins of changes in RNA sequences are replication errors called mutations.
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The Hypercycle

Chemical Kinetics of molecular
evolution

M. Eigen, P. Schuster, "The Hypercycle’,
Springer-Verlag, Berlin 1979
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Chemical kinetics of replication and mutation as parallel reactions

dx; / dt =ZJ %QJIX] - x; @
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[;]1=x;£0; 1=1,2,..n;

[A] = a = constant

Qj = (1-p)" 40 pdid)

| Error rate per digit
0........ Chain length of the
polynucleotide

d(i,j) .... Hamming distance
between I; and Ij



Master sequence

Mutant cloud
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The molecular quasispecies in sequence space
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Definition of RNA structure



Optimization of RNA molecules in silico
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Evolution in silico

W. Fontana, P. Schuster,
Science 280 (1998), 1451-1455
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random individuals. The primer pair used for ganomic
DONA - amplification  Is  5'-TCTCCCTGGATTCT-
CATTTA-3' (forward) and 5'-TCTTTGTCTTCTGT-
TCCACC-3 (reverse). Reactions were performed in
25 l using 1 uret of Tag DNA polymerass with each
primer at 0.4 uM; 200 uM each dATP, dTTP, dGTP,
and dCTP; and PCR butfer [10 mM tris-HCl (pH 8.3),
50 mM KCL,.1.5 mM MgCL] in a cycle condition of
84°C for 1 min and then 35 cycles of 84°C for 30 s,
55°C for 30 5, and 72°C for 30 s followed by 72°C for
B min. PCR products were purified (Qiagen), digested
with Xmn |, and separated in a 2% agarose gel.

32. Anonsanse mutation may affect mRNA stability and
result in degradation of the franscript [L. Maguat,
Am. J, Hum, Genet. 59, 279 (1996)].

33, Data not shown; a dot blot with poly (A} RNA from
50 human tissues (The Human ANA Master Biot,
7770-1, Clontech Laboratories) was hybridized with
a proba from exons 29 1o 47 of MYD15 using the
same congition as Northemn biot analysis (13).

34, Smith-Magenis syndrome (SMS) is due 1o delations
of 17p11.2 of various sizes, the smallest of which

2, 122 (1996)). MYD15 expressicn s easily detected
in the pituitary gland (data not shown). Haploinsuffi-
ciency for MYOT5 may explain a portion of the SMS

phenotype such as short stature. Moreover, a few

SMS patients have sensorineural hearing loss, pos-

sibly becausa of a point mutation in MYOT5 in trans

to the SMS 17p11.2 deletion.

R. A, Fridell, data not shown.

K. B. Avraham et al., Nature Genel. 11, 369 (1995);

X-Z. Liu ef ai,, ibid. 17, 268 (1997); F. Gibson et af,,

Nature 374, 62 (1895); D. Wl af al., ibid., p. 60.

37. RNAwas from cochiea lab-
ymths; nblamad rmem nurnen I'etusss al 1E| lo 22

g8

established by the Humnn Rasearch Oomrnlltae at
the Brigham and Women's Hospital. Only samples
without evidence of degradation wera pocled for
poly (A)* selection over cligo{dT) columns. First-
strand CONA was prepared using an Advantage RT-
for-PCR kit (Clontech Laboratonies). A portion of the
first-strand cONA (4%) was amplified by PCR with
Advantage cONA polymarase mix (Clontech Labora-
tories) using human MYD15-specific obgonuclectide
primers (forward, 5'-GCATGACCTGCCGGCTAAT-
GGG-3'; reverse, 5'-CTCACGGCT TCTGCATGGT-
GCTCGGECTGGEE-3'). Cycling conditions were 40 5
at 94°C; 40 s at 667C (3 cycles), 60°C (5 cyclas), and
55°C (29 cycles); and 45 s at 68°C. PCR products.
were visualized by ethidium bromide staining after
fractionation in a 1% agarose gel. A 688-bp PCR

Continuity in Evolution: On the
Nature of Transitions

Walter Fontana and Peter Schuster

Todistinguish continuous from discontinuous evelutionary change, a relation of nearness
between phenotypes is needed. Such a relation is based on the probability of one
phenotype being accessible from another through changes in the genotype. This near-
ness relation is exemplified by calculating the shape neighborhood of a transfer RNA
secondary structure and provides a characterization of discontinuous shape transfor-
mations in ANA. The simulation of replicating and mutating RNA populations under
selection shows that sudden adaptive progress coincides mostly, but not always, with
discontinuous shape transformations. The nature of these transformations illuminates
the key role of neutral genetic drift in their realization.

A much-debated issue in evolutionary bi-
ology concerns the extent to which the
history of life has proceeded gradually or has
been punctuated by discontinuous transi-
tions at the level of phenotypes (1). Qur
goal is to make the notion of a discontinu-
ous transition more precise and to under-
stand how it arises in a model of evolution-
ary adaptation.

We focus on the narrow domain of RNA
secondary structure, which is currently the
simplest compurationally tractable, yet re-
alistic phenotype (2). This choice enables
the definition and exploration of concepts
that may prove useful in a wider context.
BNA secondary structures represent a
coarse level of analysis compared with the
three-dimensional structure at atomic reso-
lution. Yer, secondary structures are empir-

Ingtitut for Theoretische Chemie, Universitat Wien, Wihr-
Ingerstrassa 17, A-1090 Wien, Austria, Santa Fe Institute,
1399 Hyde Park Road, Santa Fe, NM 87501, USA, and
International Institute for Applied Systems Analysis
(IASA), A-2361 Laxenburg, Austria,

ically well defined and obtain their biophys-
ical and biochemical importance from be-
ing a scaffold for the tertiary structure. For
the sake af brevity, we shall refer ro second-
ary structures as “shapes.” RNA combines
in a single molecule both genotype (repli-
catable sequence) and phenotype (select-
able shape), making it ideally suited for in
vitro evolution experiments (3, 4).

To generate evolutionary histories, we
used a stochastic continuous time model of
an RNA population replicating and mutat-
ing in a capacity-constrained flow reactor
under selection (5, 6). In the laboratory, a
goal might be to find an RNA aptamer
binding specifically to a molecule (4). Al-
though in the experiment the evolutionary
end product was unknown, we thought of
its shape as being specified implicitly by the
imposed selection criterion. Because our in-
tent is to study evolutionary histories rather
than end products, we defined a target
shape in advance and assumed the replica-
tion rate of a sequence to be a function of

d REPORTS

product is expected from amplification of the human

MYO15 cDNA. Ampification of human genomic

DNA with this primer pair would result in a 2803-bp
it
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the similarity between its shape and the
targer. An actual situation may involve
more than one best shape, but this does not
affect our conclusions.

An instance representing in its qualita-
tive features all the simulations we per-
formed is shown in Fig. 1A, Starting with
identical sequences folding into a random
shape, the simulation was stopped when the
population became dominated by the tar-
get, here a canonical tRNA shape. The
black curve traces the average distance to
the target (inversely related to fimess) in
the population against time. Aside from a
short initial phase, the entire history is
dominated by steps, thart is, flat periods of
no apparent adaptive progress, interrupted
by sudden approaches roward the target
structure (7). However, the dominant
shapes in the population not only change at
tht.'se murkud events I)Kll undergu st'vcral
fitness-neutral transformations during the
periods of no apparent progress. Although
discontinuities in the fitness trace are evi-
dent, it is entirely unclear when and on the
basis of what the series of successive phe-
notypes itself can be called continuous or
discontinuous.

A set of entities is organized into a (to-
pological) space by assigning to each entity
a system of neighborhoods. In the present
case, there are two kinds of entities: se-
quences and shapes, which are related by a
thermodynamic folding procedure. The set
of possible sequences (of fixed length) is
naturally organized into a space because
point mutations induce a canonical neigh-
borhood. The neighborhood of a sequence
consists of all its one-error mutants. The
problem is how to organize the set of pos-
sible shapes into a space. The issue arises
because, in contrast to sequences, there are

www.sciencemag.org * SCIENCE = VOL. 280 = 19 MAY 19958 1451



Optimized element: RNA structure




Stock Solution —> Reaction Mixture ——>
e

Replication rate constant:
fi=9/[a+ Ddg ®]
Ddg ®= dy(S.Sp)

Selection constraint:

# RNA molecules is
controlled by the flow

N@t)~N +N

The flowreactor as a
device for studies of
evolution in vitro and
in silico
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Master sequence

Mutant cloud

mutations

“Off-the-cloud”
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The molecular quasispecies

in sequence space



Replication rate constant:
fi=0/[a+ Ddg®] .
Dds ©)= dy(S,.Sy) Er

Evaluation of RNA secondary structures yields replication rate constants
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CCCCC OO0ty SCTRREDDD NPT )N (et 333))..0)))) ...
UGGAUGGACGUUGAAUAACAAGGUAUCGECCAAACAACCAACGAGUAAGUGUGUACGCCCCACACAGCGUCCCAAG

Transition inducing point mutations

Neutral genotype evolution during phenotypic stasis

dajs Aejaa Jo JaquinN



¢

™ 4
9 1 5 |

: KT

! M4 2

[ | —

1 Y

i

E ‘,"-",,,""".'u‘- b >

1 ]
o P S
(&) : ’IJ ':'
C 1 ’ _—
IS : ': :, 10
0 ) !
= ’ (T
2 &
é 0
&
(4] _
I B

20x10°  4.0x10° 6.0x10° 8.0x10° 1.0x10° 1.2x10°  1.4x10’

Replications

Variation in genotype space during optimization of phenotypes
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in sequence space.



Spread of population in sequence space during a quasistationary epoch: t= 150



Spread of population in sequence space during a quasistationary epoch: t=170



Spread of population in sequence space during a quasistationary epoch: t =200
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Spread of population in sequence space during a quasistationary epoch: t =350



Spread of population in sequence space during a quasistationary epoch: t= 500
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Spread of population in sequence space during a quasistationary epoch: t= 650
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Spread of population in sequence space during a quasistationary epoch: t =830



Spread of population in sequence space during a quasistationary epoch: t =835




Spread of population in sequence space during a quasistationary epoch: t =840



Spread of population in sequence space during a quasistationary epoch: t= 845




Spread of population in sequence space during a quasistationary epoch: t =850



Spread of population in sequence space during a quasistationary epoch: t= 855




AUGC GC

Movies of optimization trajectories over the AUGC and the GC alphabet



Alphabet Runtime  Transitions  Main transitions  No. of runs

AUGC 385.6 22.5 12.6 1017
GUC 448.9 30.5 16.5 611
GC 2188.3 40.0 20.6 107

Statistics of trajectories and relay series (mean values of log-normal distributions)
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From sequences to shapes and back: a case study in
RNA secondary structures

PETER SCHUSTER"?3 WALTER FONTANA?, PETER F.STADLER??
aNDp IVO L. HOFACKER?

! Institut fiir Molekulare Biotechnologie, Beutenbergstrasse 11, PF 100813, D-07708 Jena, Germany
* Institut fiir Theoretische Chemie, Universitdt Wien, Austria
8 Santa Fe Institute, Santa Fe, U.S.A.

SUMMARY

RNA folding is viewed here as a map assigning secondary structures to sequences. At fixed chain length
the number of sequences far exceeds the number of structures. Frequencies of structures are highly non-
uniform and follow a generalized form of Zipf’s law: we find relatively few common and many rare ones.
By using an algorithm for inverse folding, we show that sequences sharing the same structure are
distributed randomly over sequence space. All common structures can be accessed from an arbitrary
sequence by a number of mutations much smaller than the chain length. The sequence space is percolated
by extensive neutral networks connecting nearest neighbours folding into identical structures. Implications
for evolutionary adaptation and for applied molecular evolution are evident: finding a particular
structure by mutation and selection is much simpler than expected and, even if catalytic activity should
turn out to be sparse in the space of RNA structures, it can hardly be missed by evolutionary processes.

Proc. R. Soc. Lond. B (1994) 255, 279284 279
Printed in Great Britain
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Figure 4. Neutral paths. A neutral path is defined by a series
of nearest neighbour sequences that fold into identical
structures. Two classes of nearest neighbours are admitted:
neighbours of Hamming distance 1, which are obtained by
single base exchanges in unpaired stretches of the structure,
and neighbours of Hamming distance 2, resulting from base
pair exchanges in stacks. Two probability densities of
Hamming distances are shown that were obtained by
searching for neutral paths in sequence space: (i) an upper
bound for the closest approach of trial and target sequences
(open circles) obtained as endpoints of neutral paths
approaching the target from a random trial sequence (185
targets and 100 trials for each were used); (ii) a lower bound
for the closest approach of trial and target sequences (open
diamonds) derived from secondary structure statistics
(Fontana et al. 1993a; see this paper, §4); and (iii) longest
distances between the reference and the endpoints of
monotonously diverging neutral paths (filled circles) (500
reference sequences were used).

© 1994 The Royal Society

Reference for postulation and in silico verification of neutral networks
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Evolution of aptamers with a new specificity and new
secondary structures from an ATP aptamer

ZHEN HUANG!' and JACK W. SZOSTAK?
"Department of Chemistry, Brooklyn College, Ph.D. Programs of Chemistry and Biochemistry, The Graduate School of CUNY,

Brooklyn, New York 11210, USA
2Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA

ABSTRACT

Small changes in target specificity can sometimes be achieved, without changing aptamer structure, through mutation of a few
bases. Larger changes in target geometry or chemistry may require more radical changes in an aptamer. In the latter case, it is
unknown whether structural and functional solutions can still be found in the region of sequence space close to the original
aptamer. To investigate these questions, we designed an in vitro selection experiment aimed at evolving specificity of an ATP
aptamer. The ATP aptamer makes contacts with both the nucleobase and the sugar. We used an affinity matrix in which GTP
was immobilized through the sugar, thus requiring extensive changes in or loss of sugar contact, as well as changes in
recognition of the nucleobase. After just five rounds of selection, the pool was dominated by new aptamers falling into three
major classes, each with secondary structures distinct from that of the ATP aptamer. The average sequence identity between the
original aptamer and new aptamers is 76%. Most of the mutations appear to play roles either in disrupting the original
secondary structure or in forming the new secondary structure or the new recognition loops. Our results show that there are
novel structures that recognize a significantly different ligand in the region of sequence space close to the ATP aptamer. These
examples of the emergence of novel functions and structures from an RNA molecule with a defined specificity and fold provide
a new perspective on the evolutionary flexibility and adaptability of RNA.

Keywords: Aptamer; specificity; fold; selection; RNA evolution

RNA 9:1456-1463, 2003

Evidence for neutral networks and shape space covering



Evidence for neutral networks and
intersection of apatamer functions
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Evolutionary Landscapes for the Acquisition of New Ligand Recognition

by RNA Aptamers

Daniel M. Held, S. Travis Greathouse, Amit Agrawal, Donald H. Burke

Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA

Received: 15 November 2002 [ Accepted: 8 April 2003

Abstract. The evolution of ligand specificity under-
lies many important problems in biology, from the
appearance of drug resistant pathogens to the
re-engineering of substrate specificity in enzymes. In
studying biomolecules, however, the contributions
of macromolecular sequence to binding specificity
can be obscured by other selection pressures critical
to Dbioactivity. Evolution of ligand specificity
in vitro—unconstrained by confounding biological
factors—is addressed here using variants of three
flavin-binding RNA aptamers. Mutagenized pools
based on the three aptamers were combined and
allowed to compete during in vitro selection for
GMP-binding activity. The sequences of the resulting
selection isolates were diverse, even though most were
derived from the same flavin-binding parent. Indi-
vidual GMP aptamers differed from the parental fla-
vin aptamers by 7 to 26 mutations (20 to 57% overall
change). Acquisition of GMP recognition coincided
with the loss of FAD (flavin-adenine dinucleotide)
recognition in all isolates, despite the absence of a
counter-selection to remove FAD-binding RNAs. To
examine more precisely the proximity of these two
activities within a defined sequence space, the com-
plete set of all intermediate sequences between an
FAD-binding aptamer and a GMP-binding aptamer
were synthesized and assayed [or activity. For this set
of sequences, we observe a portion of a neutral net-
work for FAD-binding function separated from
GMP-binding function by a distance of three muta-

Correspondence to: Donald H. Burke; email: dhburke@indi-
ana.edu

tions. Furthermore, enzymatic probing of these ap-
tamers revealed gross structural remodeling of the
RMNA coincident with the switch in ligand recognition.
The capacity for neutral drift along an FAD-binding
network in such close approach to RNAs with GMP-
binding activity illustrates the degree of phenotypic
buffering available to a set of closely related RNA
sequences—defined as the set’s functional tolerance
for point mutations—and supports neutral evolu-
tionary theory by demonstrating the facility with
which a new phenotype becomes accessible as that
buffering threshold is crossed.

Key words: Aptamers — RNMNA structure — Phen-
otypic buffering — Fitness landscapes — Neutral
evolutionary theory — Flavin — GMP

Introduction

RNA aptamers targeting small molecules serve as
useful model systems for the study of the evolution
and biophysics of macromolecular binding interac-
tions. Because of their small sizes, the structures of
several such complexes have been determined to
atomic resolution by NMR spectrometry or X-ray
crystallography (reviewed by Herman and Patel
2000). Moreover, aptamers can be subjected to mu-
tational and evolutionary pressures for which sur-
vival is based entirely on ligand binding, without the
complicating effects of simultaneous selection pres-
sures for bioactivity, thus allowing the relative con-
tributions of each activity to be evaluated separately.
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GENERIC PROPERTIES OF COMBINATORY
MAPS: NEUTRAL NETWORKS OF RNA
SECONDARY STRUCTURES!
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Random graph theory is used to model and analyse the relationships between sequences and
secondary structures of RNA molecules, which are understood as mappings from sequence
space into shape space. These maps are non-invertible since there are always many orders of
magnitude more sequences than structures. Sequences folding into identical structures form
neutral networks. A neutral network is embedded in the set of sequences that are compatible
with the given structure. Networks are modeled as graphs and constructed by random choice
of vertices from the space of compatible sequences. The theory characterizes neutral
networks by the mean fraction of neutral neighbors (A). The networks are connected and
percolate sequence space if the fraction of neutral nearest neighbors exceeds a threshold
value (A > A*). Below threshold (A < A*), the networks are partitioned into a largest “giant”
component and several smaller components. Structures are classified as “common” or
“rare” according to the sizes of their pre-images, i.e. according to the fractions of sequences
folding into them. The neutral networks of any pair of two different common structures
almost touch each other, and, as expressed by the conjecture of shape space covering
sequences folding into almost all common structures, can be found in a small ball of an
arbitrary location in sequence space. The results from random graph theory are compared to
data obtained by folding large samples of RNA sequences. Differences are explained in
terms of specific features of RNA molecular structures. © 1997 Society for Mathematical
Biology

THEOREM 5. INTERSECTION-THEOREM. Let s and s' be arbitrary secondary
structures and C[s). C[s'] their corresponding compatible sequences. Then,

Cls]InC[s'] # 2.

Proof. Suppose that the alphabet admits only the complementary base pair [XY] and we
ask for a sequence x compatible to both s and s'. Then j(s,s') = D,, operates on the set of
all positions {x,,...,x,}. Since we have the operation of a dihedral group, the orbits are
either cycles or chains and the cycles have even order. A constraint for the sequence
compatible to both structures appears only in the cycles where the choice of bases is not
independent. It remains to be shown that there is a valid choice of bases for each cycle,
which is obvious since these have even order. Therefore, it suffices to choose an alternating
sequence of the pairing partners X and Y. Thus, there are at least two different choices for
the first base in the orbit. |

Remark. A generalization of the statement of theorem 5 to three differ-
ent structures is false.

Reference for the definition of the intersection
and the proof of the intersection theorem
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A ribozyme switch

E.A.Schultes, D.B.Bartel, Science
289 (2000), 448-452

minus the background levels observed in the HSP in
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One Sequence, Two Ribozymes:
Implications for the Emergence
of New Ribozyme Folds

Erik A. Schultes and David P. Bartel*

We describe a single RMA sequence that can assume either of two ribozyme
folds and catalyze the two respective reactions. The two ribozyme folds share
no evolutionary history and are completely different, with no base pairs (and
prabably no hydrogen bonds) in common. Minor variants of this sequence are
highly active for one or the other reaction, and can be accessed from prototype
ribozymes through a series of neutral mutations. Thus, in the course of evo-
lution, new RNA folds could arise from preexisting folds, without the need to
carry inactive intermediate sequences, This raises the possibility that biological
RMAs having no structural or functional similarity might share a common
ancestry. Furthermore, functional and structural divergence might, in some
cases, precede rather than follow gene duplication.

Related protein or RNA sequences with the
same folded conformation can often perform
very different biochemical functions, indi

ate isolates have the same fold and function, it
is lhnught that l.hey descended from a common
gh a series of mutational variants

that new biochemical functions can arise ﬁ'om
preexisting folds. But what evolutionary mech-
anisms give rise to sequences with new macro-
molecular folds? When considering the origin
of new folds, it is useful to picture, among all
sequence possibilities, the distribution of se-
quences with a particular fold and function.

that were eech functional. Hence, sequence het-
erogeneity among divergent isolates implies the
existence of paths through sequence space that
have allowed neutral drift from the ancestral
sequence to each isolate. The set of all possible
neutral paths composes a “neutral network,”
connecting in sequence space those widely dis-
persed seq sharing a particular fold and

This distribution can range very far in seq
space (1), For example, only seven nucleotides
are strictly conserved among the group I self-

activity, such that any sequence on the network
can potentially access very distant sequences by
neutral ions (3-5).

splicing introns, yet secondary (and p ly
tertiary) structure within the core of the ri-
bozyme is preserved (2). Because these dispar-

Mhitet Institute for Biomedical Research and De-
partment of Biology, Massachusetts Institute of Tech-
nology, 9 Cambridge Center, Cambridge, MA 02142,
USA

*To whom correspond, should be d. E-
mail: dbartel@wi.mit.edu

Theoretical analyses using algorithms for
predicting RNA secondary structure have
suggested that different neutral networks are
interwoven and can approach each other very
closely (3, 5-&). Of particular interest is
whether ribozyme neutral networks approach
each other so closely that they intersect, If so,
a single sequence would be capable of fold-
ing into two different conformations, would
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have two different catalytic activities, and
could access by neutral drift every sequence
on both networks. With intersecting net-
works, RNAs with novel structures and ac-
tivities could arise from previously existing
rlhozymcs, without the need to carry non-

as lutionary inter-
mediates. l-icre, we explore the proximity of
neutral networks experimentally, at the level
of RNA function. We describe a close appo-
sition of the neutral networks for the hepatitis
delta virus (HDV) self-cleaving ribozyme
and the class III self-ligating ribozyme.

In choosing the two ribozymes for this in-
vestigation, an important criterion was that they
share no evolutionary history that might con-
found the evolutionary interpretations of our
results. Chuosmg at least one artificial -
b dependent evolutionary his-
tories. The class 111 hgasc is a synthetic ri-
bozyme isolated previously from a pool of ran-
dom RNA sequences (9). It joins an oligonu-
cleotide substrate to its 5' terminus. The
prototype ligase sequence (Fig. 1A) is a short-
ened version of the most active class 11l variant
isolated after 10 cycles of in vitro selection and

lution. This minimal retains the
activity of the full-length isolate (10). The HDV
ribozyme carries out the site-specific self-cleav-
age reactions needed during the life cycle of
HDV, a satellite virus of hepatitis B with a
circular, single-stranded RNA genome (17).
The prototype HDV construct for our study
(Fig. 1B) is a shortened version of the antige-
nomic HDV ribozyme (/2), which undergoes
self-cleavage at a rate similar to that reported
for other antigenomic constructs (13, 14).

The prototype class III and HDV ribozymes
have no more than the 25% sequence identity
expected by chance and no fortuitous strue-
tural similarities that might favor an intersec-
tion of their two neutral networks. Neverthe-
less, seq; can be designed that simul
neously satisfy the base-pairing requirements

21 JULY 2000 WVOL 289 SCIENCE www.sciencemag.org
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Komplexitat

4.10 Die Zunahme der Komplexitat ist ein wesentlicher Aspekt der biologi-
schen Evolution, wobei hohere Komplexitdt sowoh! durch VergréBerung der
Zah! von miteinander in Wechselwirkung stehenden Eiementen als auch
durch Differenzierung der Funktionen dieser Elemente entstehen kann. In
dieser Abbildung wird zwischen drei Phasen oder Strategien der Evolution
von Komplexitét unterschieden. Untere Kurve: Zunahme der GenomgrofBe;
logarithmische Auftragung der Zahl der Basenpaare im Genom von Zellen
seit Beginn der biologischen Evolution (Daten aus Abbildung 2.3). Mittlere
Kurve: Zunahme der Zah! der Zelltypen in der Evolution der Metazoa (Daten
aus Abbildung 4.8). Obere Kurve: Zunahme des relativen Gehirngewichts
(bezogen auf die Korperoberflache) bei Saugetieren (Daten aus Wilson
1985). Fur die Abszisse wurden zwei Skaleneinteilungen verwendet, eine fur
den Zeitraum >10° Jahre, eine andere fiir den Zeitraum <10° Jahre vor der
Gegenwart. Oberhalb der Abszisse sind die Namen einiger wichtiger taxo-
nomischer Einheiten angeflihrt, deren Evolution in etwa beim jeweiligen
Wortbeginn einsetzt.

Wolfgang Wieser. Die Erfindung der Individualitdt oder die zwei Gesichter der Evolution. Spektrum

Akademischer Verlag, Heidelberg 1998.

A.C.Wilson. The Molecular Basis of Evolution. Scientific American, Oct.1985, 164-173.
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