


3. Evolution in silico and optimization of RNA structures
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random individuals. The primer pair used for ganomic
DNA  amplification 15 5°-Ti TTCT-
CATTTA-3' (forward) and 5'-TCTTTGTCTTCTGT-
TCCACC-3 (reverse). Reactions were performed in
25 l using 1 uret of Tag DNA polymerass with each
primer at 0.4 uM; 200 uM each dATP, dTTP, dGTP,
and dCTP; and PCR butfer [10 mM tris-HCl (pH 8.3),
50 mM KCL,.1.5 mM MgCL] in a cycle condition of
84°C for 1 min and then 35 cycles of 84°C for 30 s,
55°C for 30 5, and 72°C for 30 s followed by 72°C for
& min. PCR products were purified (Qiagen), digested
with Xmn |, and separated in a 2% agarose gel.

32. Anonsanse mutation may affect mRNA stability and
result in degradation of the franscript [L. Maguat,
Am. J, Hum, Genet. 59, 279 (1996)].

33. Data not shown; a dot blot with poly (A)* RNA from
50 human tissues (The Human ANA Master Biot,
7770-1, Clontech Laboratories) was hybridized with
a proba from exons 29 1o 47 of MYD15 using the
same condition as Northem blot analysss (13).

34, Smith-Magenis syndrome (SMS) is due 1o delations
of 17p11.2 of various sizes, the smallest of which
includes MYO15 and perhaps 20 other genes [(6);
K-5 Chen, L Potockd, J. R. Lupski, MROD Res. Rev.
2, 122 (1996)]. MYD15 expression is easily datected
in the pituitary gland (data not shown). Haploinsuffi-
ciency for MYOT5 may explain a portion of the SMS

phenotype such as short stature. Morm a few
SMS patients have sensorineural loss, pos-
sibly becausa of a point mutation in MYOT5 in trans
to the SMS 17p11.2 deletion.

35. R. A, Fridell, data not shown.

36. K. B. Avraham al al., Mature Genet. 11, 360 (1995);
X-Z. Liu ef ai,, ibid. 17, 268 (1997); F. Gibson et af,,
Nature 374, 62 (1895); D. Wl af al., ibid., p. 60.

37. RNAwas from cochiea lab-
ymths; nblamad from human I'etusss al 1E| lo 22

tin

established by the Human Research Oomrnlltae at
the Brigham and Women's Hospital. Only samples
without evidence of degradation wera pocled for
poly (A)* selection over cligo{dT) columns. First-

strand CONA was prepared using an Advantage RT-
for-PCR kit (Clontech Laboratonies). A portion of the
first-strand cONA (4%) was amplified by PCR with
Advantage cONA polymarase mix (Clontech Labora-
tories) using human MYD15-specific obgonuclectide
primers (forward, 5'-GCATGACCTGCCGGUTAAT-

GGG-3'; reverse, 5'-CTCACGGCT TCTGCATGGT-

GCTCGGECTGGEE-3'). Cycling conditions were 40 5
at 94°C; 40 s at 667C (3 cycles), 60°C (5 cyclas), and
55°C (29 cycles); and 45 s at 68°C. PCR products.
were visualized by ethidium bromide staining after
fractionation in a 1% agarose gel. A 688-bp PCR

Continuity in Evolution: On the
Nature of Transitions

Walter Fontana and Peter Schuster

Todistinguish continuous from discontinuous evelutionary change, a relation of nearness
between phenotypes is needed. Such a relation is based on the probability of one
phenotype being accessible from another through changes in the genotype. This near-
ness relation is exemplified by calculating the shape neighborhood of a transfer RNA
secondary structure and provides a characterization of discontinuous shape transfor-
mations in ANA. The simulation of replicating and mutating RNA populations under
selection shows that sudden adaptive progress coincides mostly, but not always, with
discontinuous shape transformations. The nature of these transformations illuminates
the key role of neutral genetic drift in their realization.

A much-debated issue in evolutionary bi-
ology concerns the extent to which the
history of life has proceeded gradually or has
been puncruated by discontinuous transi-
tions at the level of phenotypes (1). Qur
goal is to make the notion of a discontinu-
ous transition more precise and to under-
stand how it arises in a model of evolution-
ary adaptation.

We focus on the narrow domain of RNA
secondary structure, which is currently the
simplest compurationally tractable, yet re-
alistic phenotype (2). This choice enables
the definition and exploration of concepts
that may prove useful in a wider context.
BNA secondary structures represent a
coarse level of analysis compared with the
three-dimensional structure at atomic reso-
lution. Yer, secondary structures are empir-
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ically well defined and obtain their biophys-
ical and biochemical importance from
ing a scaffold for the tertiary structure. For
the sake of brevity, we shall refer to second-
ary structures as “shapes.” RNA combines
in a single molecule both genotype (repli-
catable sequence) and phenotype (select-
able shape), making it ideally suited for in
vitro evolution experiments (3, 4).

To generate evolutionary histories, we
used a stochastic continuous time model of
an RNA population replicating and mutat-
ing in a capacity-constrained flow reactor
under selection (5, 6). In the laboratory, a
goal might be to find an RNA apramer
binding specifically to a molecule (4). Al-
though in the experiment the evolutionary
end product was unknown, we thought of
its shape as being specified implicitly by the
imposed selection criterion. Because our in-
tent is to study evolutionary histories rather
than end products, we defined a target
shape in advance and assumed the replica-
tion rate of a sequence to be a function of
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product is expected from amplification of the human
MYO15 cDNA. Ampification of human genomic
DNA with this primer pair would result in a 2803-bp
fragment.
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the similarity between its shape and the
targer. An actual situation may involve
more than one best shape, but this does not
affect our conclusions.

An instance representing in its qualita-
tive features all the simulations we per-
formed is shown in Fig. 1A, Starting with
identical sequences folding into a random
shape, the simulation was stopped when the
population became dominated by the tar-
get, here a canonical tRNA shape. The
black curve traces the average distance to
the target (inversely related to fimess) in
the population against time. Aside from a
short initial phase, the entire history is
dominated by steps, that is, flat periods of
no apparent adaptive progress, interrupted
by sudden approaches roward the target
structure (7). However, the dominant
shapes in the popularion not only change at
tht.'se murkud events I)Kll undergu st'vcral
fitness-neutral transformations during the
periods of no apparent progress. Although
discontinuities in the fitness trace are evi-
dent, it is entirely unclear when and on the
basis of what the series of successive phe-
notypes itself can be called continuous or
discontinuous.

A set of entities is organized into a (to-
pological) space by assigning to each entity
a system of neighborhoods. In the present
case, there are two kinds of entities: se-
quences and shapes, which are related by a
thermodynamic folding procedure. The set
of possible sequences (of fixed length) is
naturally organized into a space because
point mutations induce a canonical neigh-
borhood. The neighborhood of a sequence
consists of all its one-error mutants. The
problem is how to organize the set of pos-
sible shapes into a space. The issue arises
because, in contrast to sequences, there are
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A symbolic notation of RNA secondary structure that is equivalent to the conventional graphs



5’-end 3’-end
GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGACGGUCCCAUCGGUAcCuUcCccA

RNAStudio.Ink
GGCGCGCCCGGCGCC
GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGACGGUCCCAUCGGUACUCcA

UGGUUACGCGUUGGGGUAACGAAGAUUCCGAGAGGAGUUUAGUGACUAGAGG

Folding of RNA sequences into secondary structures of minimal free energy, DG,>%



Hamming distance dy(S,S,) =4

The Hamming distance between structures in parentheses notation forms a metric
in structure space



Replication rate constant:
f,=g/[a+ Ddq®] .
Ddg 0= dyy(S,.,Sy) v e

Evaluation of RNA secondary structures yields replication rate constants



Stock Solution —> Reaction Mixture ——>
e

U (]

Replication rate constant:
f,=g/[a+ Ddq®]
Ddg %= dy(Sy.Sp)

Selection constraint:
# RNA molecules 1s
controlled by the flow

N(@)~N +N

Constant mutation rate:

p =0.001 per site and
replication

The flowreactor as a
device for studies of
evolution in vitro and
in silico
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Genotype-Phenotype Mapping
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Evolutionary dynamics
including molecular phenotypes
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In silico optimization in the flow reactor: trajectory



Final structure of the optimization process

Average structure distance to target Ddg
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Transition inducing point mutations

Change in RNA sequences during the final five relay steps 39 A 44
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In silico optimization in the flow reactor: Trajectory and relay steps
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In silico optimization in the flow reactor: Main transitions
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Three important steps in the formation of the tRNA clover leaf from a randomly chosen
initial structure corresponding to three main transitions.



AUGC GC

Movies of optimization trajectories over the AUGC and the GC alphabet
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Statistics of the lengths of trajectories from initial structure to target (AUGC-sequences)



Alphabet Runtime Transitions  Main transitions  No. of runs

AUGC 385.6 22.5 12.6 1017
GUC 448.9 30.5 16.5 611
GC 2188.3 40.0 20.6 107

Statistics of trajectories and relay series (mean values of log-normal distributions)



Massif Central

Examples of smooth landscapes on Earth

Mount Fuji



Dolomites

Examples of rugged landscapes on Earth Bryce Canyon
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Fitness

1\ Start of Walk

Genotype Space

Evolutionary optimization in absence of neutral paths in sequence space



Fitness

\L End of Walk
Adaptive Periods

Random Drift Periods

1\ Start of Walk

Genotype Space

Evolutionary optimization including neutral paths in sequence space




Grand Canyon

Example of a landscape on Earth with ‘neutral’
ridges and plateaus



Neutral ridges and plateus




4. Random walks and ,ensemble learning*
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Spread of population in sequence space during a quasistationary epoch: t= 150



Spread of population in sequence space during a quasistationary epoch: t= 170



Spread of population in sequence space during a quasistationary epoch: t =200
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Spread of population in sequence space during a quasistationary epoch: t= 350
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Spread of population in sequence space during a quasistationary epoch: t= 500
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Spread of population in sequence space during a quasistationary epoch: t= 650
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Spread of population in sequence space during a quasistationary epoch: t= 820
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Spread of population in sequence space during a quasistationary epoch: t= 825
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Spread of population in sequence space during a quasistationary epoch: t= 830
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Spread of population in sequence space during a quasistationary epoch: t= 835




Spread of population in sequence space during a quasistationary epoch: t= 840



Spread of population in sequence space during a quasistationary epoch: t= 845




Spread of population in sequence space during a quasistationary epoch: t= 850



Spread of population in sequence space during a quasistationary epoch: t= 855




Element of class 2: The ant worker
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Foraging behavior of ant colonies
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Ant colony Food source detected

Foraging behavior of ant colonies

Food source



Ant colony Pheromone trail laid down Food source

Foraging behavior of ant colonies
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Ant colony Pheromone controlled trail Food source

Foraging behavior of ant colonies



RNA model

Foraging behavior of ant colonies

Element

RNA molecule

Individual worker ant

Mechanism relating elements

Mutation in quasi-species

Genetics of kinship

Search process

Optimization of RNA structure

Recruiting of food

Search space

Sequence space

Three-dimensional space

Random step

Mutation

Element of ant walk

Self-enhancing process

Replication

Secretion of pheromone

Interaction between elements

Mean replication rate

Mean pheromone concentration

Goal of the search

Target structure

Food source

Temporary memory

RNA sequences in population

Pheromone trail

‘Learning’ entity

Population of molecules

Ant colony

Learning at population or colony level by trial and error

Two examples: (1) RNA model and (i1) ant colony




5. Sequence-structure maps, neutral networks, and intersections



Minimum free energy

criterion
/> GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGACGGUCCCAUCGGUACUCCA
éStd > UGGUUACGCGUUGGGGUAACGAAGAUUCCGAGAGGAGUUUAGUGACUAGAGG
3?d trial >  CUUCUUGAGCUAGUACCUAGUCGGAUAGGAUUUCCUAUCUCCAGGGAGGAUG
g:ﬁ - —>  CUUUUCUUCACGUUAGAUGUGUAAUGGACAUGUGUUUAUUUAGGAAAGGCGC
\ AUAACGUGAGUGUCUAAUACUGAUCGCUCCGGAGGGUGGUGGCGUUGUUAAU

Inverse folding of RNA secondary structures

The inverse folding algorithm searches for sequences that form a given RNA
secondary structure under the minimum free energy criterion.
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Mapping from sequence space into structure space and into function
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Real numbers

Structure space

Sequence space



Function

Sequence space Structure space Real numbers

The pre-image of the structure S, in sequence space is the neutral network G,



Neutral networks are sets of sequences forming the same structure.
G, 1s the pre-image of the structure S, in sequence space:

G, = y_l(sk) n {yj | y(Ij) =S, }

The set 1s converted into a graph by connecting all sequences of
Hamming distance one.

Neutral networks of small RNA molecules can be computed by
exhaustive folding of complete sequence spaces, 1.e. all RNA
sequences of a given chain length. This number, N=4" | becomes
very large with increasing length, and is prohibitive for numerical
computations.

Neutral networks can be modelled by random graphs in sequence
space. In this approach, nodes are inserted randomly into sequence
space until the size of the pre-image, 1.e. the number of neutral
sequences, matches the neutral network to be studied.
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Mc> Agp - ... network Gy 1s connected 3 0.423 GUC.AUG

A <A - ... network Gy is not connected 4 0.370 AUGC

Mean degree of neutrality and connectivity of neutral networks
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A multi-component neutral network
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AUG T

AUGC 0.275 A 0.064
UGC 0.263 A 0.071

GC 0.052 A 0.033

3-End

Degree of neutrality 1|

0.217 A0.051
0.279 A 0.063
0.257 A0.070

0.057 A 0.034

0.207 £ 0.055

0.289 + 0.062

0.251 = 0.068

0.060 £ 0.033

3-End

0.073 A 0.032
0.201 A 0.056
0.313 A 0.058
0.250 A 0.064

0.068 A 0.034

Degree of neutrality of cloverleaf RNA secondary structures over different alphabets



From sequences to shapes and back: a case study in
RNA secondary structures
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SUMMARY

RNA folding is viewed here as a map assigning secondary structures to sequences. At fixed chain length
the number of sequences far exceeds the number of structures. Frequencies of structures are highly non-
uniform and follow a generalized form of Zipf’s law: we find relatively few common and many rare ones.
By using an algorithm for inverse folding, we show that sequences sharing the same structure are
distributed randomly over sequence space. All common structures can be accessed from an arbitrary
sequence by a number of mutations much smaller than the chain length. The sequence space is percolated
by extensive neutral networks connecting nearest neighbours folding into identical structures. Implications
for evolutionary adaptation and for applied molecular evolution are evident: finding a particular
structure by mutation and selection is much simpler than expected and, even if catalytic activity should
turn out to be sparse in the space of RNA structures, it can hardly be missed by evolutionary processes.

Proc. R. Soc. Lond. B (1994) 255, 279284 279
Printed in Great Britain
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Figure 4. Neutral paths. A neutral path is defined by a series
of nearest neighbour sequences that fold into identical
structures. Two classes of nearest neighbours are admitted:
neighbours of Hamming distance 1, which are obtained by
single base exchanges in unpaired stretches of the structure,
and neighbours of Hamming distance 2, resulting from base
pair exchanges in stacks. Two probability densities of
Hamming distances are shown that were obtained by
searching for neutral paths in sequence space: (i) an upper
bound for the closest approach of trial and target sequences
(open circles) obtained as endpoints of neutral paths
approaching the target from a random trial sequence (185
targets and 100 trials for each were used); (ii) a lower bound
for the closest approach of trial and target sequences (open
diamonds) derived from secondary structure statistics
(Fontana et al. 1993a; see this paper, §4); and (iii) longest
distances between the reference and the endpoints of
monotonously diverging neutral paths (filled circles) (500
reference sequences were used).

© 1994 The Royal Society

Reference for postulation and in silico verification of neutral networks
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The compatible set € of a structure S, consists of all sequences which form
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GENERIC PROPERTIES OF COMBINATORY
MAPS: NEUTRAL NETWORKS OF RNA
SECONDARY STRUCTURES!

B CHRISTIAN REIDYS*,, PETER F. STADLER*,}
and PETER SCHUSTER*,,8§,>
*Santa Fe Institute,
Santa Fe, NM 87501, U.S.A.

f¥Los Alamos National Laboratory,
Los Alamos, NM 87545, U.S.A.

fInstitut fiir Theoretische Chemie der Universitdt Wien,
A-1090 Wien, Austria

§Institut fiir Molekulare Biotechnologie,
D-07708 Jena, Germany

(E.mail: pks@ thi.univie.ac.at)

Random graph theory is used to model and analyse the relationships between sequences and
secondary structures of RNA molecules, which are understood as mappings from sequence
space into shape space. These maps are non-invertible since there are always many orders of
magnitude more sequences than structures. Sequences folding into identical structures form
neutral networks. A neutral network is embedded in the set of sequences that are compatible
with the given structure. Networks are modeled as graphs and constructed by random choice
of vertices from the space of compatible sequences. The theory characterizes neutral
networks by the mean fraction of neutral neighbors (A). The networks are connected and
percolate sequence space if the fraction of neutral nearest neighbors exceeds a threshold
value (A > A*). Below threshold (A < A*), the networks are partitioned into a largest “giant”
component and several smaller components. Structures are classified as “common” or
“rare” according to the sizes of their pre-images, i.e. according to the fractions of sequences
folding into them. The neutral networks of any pair of two different common structures
almost touch each other, and, as expressed by the conjecture of shape space covering
sequences folding into almost all common structures, can be found in a small ball of an
arbitrary location in sequence space. The results from random graph theory are compared to
data obtained by folding large samples of RNA sequences. Differences are explained in
terms of specific features of RNA molecular structures. © 1997 Society for Mathematical
Biology

THEOREM 5. INTERSECTION-THEOREM. Let s and s' be arbitrary secondary
structures and C[s). C[s'] their corresponding compatible sequences. Then,

Cls]InC[s'] # 2.

Proof. Suppose that the alphabet admits only the complementary base pair [XY] and we
ask for a sequence x compatible to both s and s'. Then j(s,s') = D,, operates on the set of
all positions {x,,...,x,}. Since we have the operation of a dihedral group, the orbits are
either cycles or chains and the cycles have even order. A constraint for the sequence
compatible to both structures appears only in the cycles where the choice of bases is not
independent. It remains to be shown that there is a valid choice of bases for each cycle,
which is obvious since these have even order. Therefore, it suffices to choose an alternating
sequence of the pairing partners X and Y. Thus, there are at least two different choices for
the first base in the orbit. u

Remark. A generalization of the statement of theorem 5 to three differ-
ent structures is false.

Reference for the definition of the intersection
and the proof of the intersection theorem



g uonewiroyuoo ewndogng

E
a_b L4 A\ ]

3
5’-end

N 1
" 1
LI .
~
~ 1
] Ogal
. . D-0-0-0-6-0-8-0-0-0-0-0-9-0
.. > Q@ ITITITIIITITIT)
OpgOaOaOaOy Dy DaDa a0 08080
CC

0g uoneuLojuod AS10Ud 931 WNWIUIA]

two neutral networks is compatible

A sequence at the intersection of
with both structures









A ribozyme switch

E.A.Schultes, D.B.Bartel,
Science 289 (2000), 448-452

minus the background levels observed in the HSP in
the control (Sar1-GDP—containing) incubation that
prevents COPIl vesicle formation. In the microsome
control, the level of p115-SMARE associations was
less than 0.1%.

46. C. M. Carr, E. Grote, M. Munson, F. M. Hughson, P. |.
Novick, /. Cell Biol. 146, 333 (1999).

47. C. Ungermann, B. |. Nichols, H. R. Pelham, W. Wick-
ner, J. Cell Biol. 140, 61 (1998).

48. E Grote and P, |. Novick, Mol. Biol. Cell 10, 4149
(1999).

49, P. Uetz et al., Nature 403, 623 (2000).

50, GST-SNARE proteins were expressed in bacteria and
purified on glutathione-5epharose beads using stan-
dard methods. Immobilized GST-SNARE protein (0.5
M) was incubated with rat liver cytosol (20 mg) or
purified recombinant p115 (0.5 M) in 1 ml of NS
buffer containing 1% BSA for 2 hours at 4°C with
rotation. Beads were briefly spun (3000 rpm for 10 s)
and sequentially washed three times with N5 buffer
and three times with NS buffer supplemented with
150 mM MNaCl. Bound proteins were eluted three
times in 50 pl of 50 mM tris-HCl (pH 8.5), 50 mM
reduced glutathione, 150 mM NacCl, and 0.1% Triton

REPORTS

X-100 for 15 min at 4°C with intermittent mixing,
and elutes were pooled. Proteins were precipitated by
MeOH/CH,Cl and separated by SD5-polyacrylamide
gel electropharesis (PAGE) followed by immunoblot-
ting using p115 mAb 13F12.

51. V. Rybin et al., Nature 383, 266 (1996).

52. K.G. Hardwick and H. R_ Pelham, J. Cell Biol. 119, 513
(1992).

53. A. P, Newman, M. E. Groesch, 5. Ferro-Navick, EMBO
J- 17, 3609 (1992).

54, A Spang and R Schekman, /. Cell Biol. 143, 589 (1998),

55. M. F. Rexach, M. Latterich, R. W. Schekman, /. Cell
Biol. 126, 1133 (1994).

56. A Mayer and W, Wickner, J. Cell Biol, 136, 307 (1997).

57. M. D. Turner, H. Plutner, W. E. Balch, J. Blol. Chem.
272, 13479 (1997).

58. A Price, D. Seals, W. Wickner, C. Ungermann, /. Cell
Biol. 148, 1231 (2000),

59. X. Cao and C. Barlowe, /. Cell Biol. 149, 55 (2000).

60. G. G. Tall, H. Hama, D. B. DeWald, B. F. Horazdovsky,
Mol. Biol. Cell 10, 1873 (1993).

61. C. G. Burd, M. Peterson, C. R. Cowles, 5. D. Emr, Mol,
Biol. Cell 8, 1089 (1397).

One Sequence, Two Ribozymes:
Implications for the Emergence
of New Ribozyme Folds

Erik A. Schultes and David P. Bartel*

We describe a single RMA sequence that can assume either of two ribozyme
folds and catalyze the two respective reactions. The two ribozyme folds share
no evolutionary history and are completely different, with no base pairs (and
prabably no hydrogen bonds) in common. Minor variants of this sequence are
highly active for one or the other reaction, and can be accessed from prototype
ribozymes through a series of neutral mutations. Thus, in the course of evo-
lution, new RNA folds could arise from preexisting folds, without the need to
carry inactive intermediate sequences, This raises the possibility that biological
RMAs having no structural or functional similarity might share a common
ancestry. Furthermore, functional and structural divergence might, in some
cases, precede rather than follow gene duplication.

Related protein or RNA sequences with the
same folded conformation can often perform
very different biochemical functions, indi

ate isolates have the same fold and function, it
is lhnught that l.hey descended from a common
gh a series of mutational variants

that new biochemical functions can arise ﬁ'om
preexisting folds. But what evolutionary mech-
anisms give rise to sequences with new macro-
molecular folds? When considering the origin
of new folds, it is useful to picture, among all
sequence possibilities, the distribution of se-
quences with a particular fold and function.

that were eech functional. Hence, sequence het-
erogeneity among divergent isolates implies the
existence of paths through sequence space that
have allowed neutral drift from the ancestral
sequence to each isolate. The set of all possible
neutral paths composes a “neutral network,”
connecting in sequence space those widely dis-
persed seq sharing a particular fold and

This distribution can range very far in seq
space (1), For example, only seven nucleotides
are strictly conserved among the group I self-

activity, such that any sequence on the network
can potentially access very distant sequences by
neutral ions (3-5).

splicing introns, yet secondary (and p ly
tertiary) structure within the core of the ri-
bozyme is preserved (2). Because these dispar-

Institute for Bi dical Research and De-
partment of Biology, Massachusetts Institute of Tech-
nology, 9 Cambridge Center, Cambridge, MA 02142,
USA

*To whom correspond, should be d. E-
mail: dbartel@wi.mit.edu

Theoretical analyses using algorithms for
predicting RNA secondary structure have
suggested that different neutral networks are
interwoven and can approach each other very
closely (3, 5-&). Of particular interest is
whether ribozyme neutral networks approach
each other so closely that they intersect, If so,
a single sequence would be capable of fold-
ing into two different conformations, would
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have two different catalytic activities, and
could access by neutral drift every sequence
on both networks. With intersecting net-
works, RNAs with novel structures and ac-
tivities could arise from previously existing
rlhozymcs, without the need to carry non-

as lutionary inter-
mediates. l-icre, we explore the proximity of
neutral networks experimentally, at the level
of RNA function. We describe a close appo-
sition of the neutral networks for the hepatitis
delta virus (HDV) self-cleaving ribozyme
and the class III self-ligating ribozyme.

In choosing the two ribozymes for this in-
vestigation, an important criterion was that they
share no evolutionary history that might con-
found the evolutionary interpretations of our
results. Chuosmg at least one artificial -
b dependent evolutionary his-
tories. The class 1II ligase is a synthetic ri-
bozyme isolated previously from a pool of ran-
dom RNA sequences (9). It joins an oligonu-
cleotide substrate to its 5' terminus. The
prototype ligase sequence (Fig. 1A) is a short-
ened version of the most active class 11l variant
isolated after 10 cycles of in vitro selection and

lution. This minimal retains the
activity of the full-length isolate (10). The HDV
ribozyme carries out the site-specific self-cleav-
age reactions needed during the life cycle of
HDV, a satellite virus of hepatitis B with a
circular, single-stranded RNA genome (17).
The prototype HDV construct for our study
(Fig. 1B) is a shortened version of the antige-
nomic HDV ribozyme (/2), which undergoes
self-cleavage at a rate similar to that reported
for other antigenomic constructs (13, 14).

The prototype class III and HDV ribozymes
have no more than the 25% sequence identity
expected by chance and no fortuitous strue-
tural similarities that might favor an intersec-
tion of their two neutral networks. Neverthe-
less, seq; can be designed that simul
neously satisfy the base-pairing requirements

21 JULY 2000 WVOL 289 SCIENCE www.sciencemag.org
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Reproduction of the original figure of the
serial transfer experiment with Qf RNA

D.R.Mills, R,L,Peterson, S.Spiegelman,
An extracellular Darwinian experiment
with a self-duplicating nucleic acid
molecule. Proc.Natl.Acad.Sci.USA
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CLASS I

region 1 iy region 2
TCT8-6,9 5 ' gagaaAUACCAgugacaacucucgagaucacCCUUGGAAG 3'
TCT8-5 AUACCAucguguaagcaagagcacgaCCUUGGCAGugugug
TCT8-1,10 gAUACCAacagcauau----uugcuguCCUUGGAAGcaacgaga
TCT8-4, 8 gugAUACCAgcaucguc--—--—- uugaugcCCUUGGCAGcacuuca
TCT8-7 uugucgaaucggAUACCAéEéau ---------- gcéEECCUUGGAAGcag
TR8-14 gAUACCA;EEEE;hau————uugcuguCCUUGGAAGcaacuaua
TR8-8 cucucgaaAUACCAacuacucucaca———éEZEECCUUGGAAG
TR8-5 uucaugucgcuugAUACCAﬁEgaca —————————— aGEECCUUGGAAGca
CLASS II
region 2* region 1
TCT8-3 5'ugacucgaacCCUUGGAAGaccugagu-—--- acagguAUACCAg 3
TCT8-11 uCCUUGGAAG;Z; ——————————— ué;;;AUACCAauugaguggccauaug
TR8-28 uaucgaguggCCUUGGCAGgE;;ggc ——————— céEEBAUACCAcca
TR8-29 cgagauucaaCCUUGGAAGﬁE;;u ————————— cQEEéAUACCAuuguu
TR8-9 ucagaaCCUUGGAAGEggaazéuaagaazggadEAUACCA

Sequences of aptamers binding theophyllin, caffeine, and related compounds

R.D.Jenison, S.C.Gill, A.Pardi, B.Poliski, High-resolution molecular discrimination by RNA. Science
263 (1994), 1425-1429
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Secondary structures of aptamers binding theophyllin, caffeine, and related compounds



Table 1. Competition binding analysis with TCT8-4 RNA. The chemical structures are shown for a

additional methy| group series of derivatives used in competitive binding experiments with TCT8-4 RNA (Fig. 2) (20). The

right column represents the affinity of the competitor relative to theophylline, Ky(c)/K(t), where K, (c)

is the individual competitor dissociation constant and K4(t) is the competitive dissociation constant

/ of theophylline. Certain data (denoted by =) are minimum values that were limited by the solubility

0 CH, of the competitor. Each experiment was carried out in duplicate. The average error is shown.
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Fig. 3. Schematic representation of the RNA
(purple) binding site for theophylline (blue).

Schematic drawing of the aptamer binding site for the theophylline molecule
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Formation of secondary structure of the tobramycin binding RNA aptamer

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, Saccharide-RNA recognition in an aminoglycoside
antibiotic-RNA aptamer complex. Chemistry & Biology 4:35-50 (1997)



The three-dimensional structure of the
tobramycin aptamer complex

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel,
Chemistry & Biology 4:35-50 (1997)
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