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Evolution in silico

W. Fontana, P. Schuster, 
Science 280 (1998), 1451-1455
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A symbolic notation of RNA secondary structure that is equivalent to the conventional graphs
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Hamming distance  d (S ,S ) = H 1 2 4

d (S ,S ) = 0H 1 1

d (S ,S ) = d (S ,S )H H1 2 2 1

d (S ,S )  d (S ,S ) + d (S ,S )H H H1 3 1 2 2 3¶

(i)
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The Hamming distance between  structures in parentheses notation forms a metric 
in structure space
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Replication rate constant:

fk = g / [a + DdS
(k)]

DdS
(k) = dH(Sk,St)

Evaluation of RNA secondary structures yields replication rate constants



Stock Solution Reaction Mixture

Replication rate constant:

fk = g / [a + DdS
(k)]

DdS
(k) = dH(Sk,St)

Selection constraint:

# RNA molecules is 
controlled by the flow

NNtN ±≈)(

Constant mutation rate:

p = 0.001 per site and 
replication

The flowreactor as a 
device for studies of 
evolution in vitro and 
in silico
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target structure
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The molecular quasispecies
in sequence space
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including molecular phenotypes



In silico optimization in the flow reactor:   trajectory
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Final structure of the optimization process



4443
A

ve
ra

ge
 s

tr
uc

tu
re

 d
is

ta
nc

e 
to

 ta
rg

et
  

d S
   

D

Evolutionary trajectory

1250

10

0

44

42

40

38

36
Relay steps N

um
ber of relay step

Time 

Reconstruction of the last step 43 Á 44
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Reconstruction of last-but-one step 42 Á 43 (Á 44)
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Reconstruction of step 41 Á 42 (Á 43 Á 44)
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Reconstruction of step 40 Á 41 (Á 42 Á 43 Á 44)
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Transition inducing point mutations Neutral point mutations

Change in RNA sequences during the final five relay steps 39 Á 44



In silico optimization in the flow reactor: Trajectory and relay steps
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Neutral genotype evolution during phenotypic stasis 



In silico optimization in the flow reactor: Main transitions

Main  transitionsRelay steps
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Three important steps in the formation of the tRNA clover leaf from a randomly chosen 
initial structure corresponding to three main transitions.



AUGC GC

Movies of optimization trajectories over the AUGC and the GC alphabet



Runtime of trajectories
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Statistics of the lengths of trajectories from initial structure to target (AUGC-sequences)



 Alphabet Runtime Transitions Main transitions  No. of runs 
     

AUGC 385.6 22.5 12.6 1017 
GUC 448.9 30.5 16.5 611 
GC 2188.3 40.0 20.6 107 

 

Statistics of trajectories and relay series (mean values of log-normal distributions)



Massif Central

Mount FujiExamples of smooth landscapes on Earth



Dolomites

Examples of rugged landscapes on Earth Bryce Canyon
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Evolutionary optimization in absence of neutral paths in sequence space
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Evolutionary optimization including neutral paths in sequence space



Grand Canyon

Example of a landscape on Earth with ‘neutral’ 
ridges and plateaus



Neutral ridges and plateus
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Variation in genotype space during optimization of phenotypes

Mean Hamming distance within the population and drift velocity of the population center
in sequence space. 



Spread of population in sequence space during a quasistationary epoch:  t = 150



Spread of population in sequence space during a quasistationary epoch:  t = 170



Spread of population in sequence space during a quasistationary epoch:  t = 200



Spread of population in sequence space during a quasistationary epoch:  t = 350



Spread of population in sequence space during a quasistationary epoch:  t = 500



Spread of population in sequence space during a quasistationary epoch:  t = 650



Spread of population in sequence space during a quasistationary epoch:  t = 820



Spread of population in sequence space during a quasistationary epoch:  t = 825



Spread of population in sequence space during a quasistationary epoch:  t = 830



Spread of population in sequence space during a quasistationary epoch:  t = 835



Spread of population in sequence space during a quasistationary epoch:  t = 840



Spread of population in sequence space during a quasistationary epoch:  t = 845



Spread of population in sequence space during a quasistationary epoch:  t = 850



Spread of population in sequence space during a quasistationary epoch:  t = 855



Element of class 2:  The ant worker



Ant colony                                 Random foraging      Food source

Foraging behavior of ant colonies



Ant colony                              Food source detected                           Food source

Foraging behavior of ant colonies



Ant colony                          Pheromone trail laid down                        Food source

Foraging behavior of ant colonies



Ant colony                         Pheromone controlled trail                        Food source

Foraging behavior of ant colonies



 RNA model Foraging behavior of ant colonies  

Element RNA molecule Individual worker ant 

Mechanism relating elements Mutation in quasi-species Genetics of kinship 

Search process Optimization of RNA structure Recruiting of food 

Search space Sequence space Three-dimensional space 

Random step  Mutation  Element of ant walk 

Self-enhancing process Replication Secretion of pheromone 

Interaction between elements Mean replication rate Mean pheromone concentration 

Goal of the search Target structure Food source  

Temporary memory RNA sequences in population Pheromone trail 

‘Learning’ entity Population of molecules Ant colony 

 

Learning at population or colony level by trial and error

Two examples: (i) RNA model and (ii) ant colony
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Minimum free energy
criterion

Inverse folding of RNA secondary structures

1st
2nd
3rd  trial
4th
5th

The inverse folding algorithm searches for sequences that form a given RNA 
secondary structure under the minimum free energy criterion. 





Sk I.   = ( )ψ
fk f Sk   = ( )

Sequence space Structure space Real  numbers

Mapping from sequence space into structure space and into function
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Sk I.   = ( )ψ
fk f Sk   = ( )

Sequence space Structure space Real  numbers

The pre-image of the structure Sk in sequence space is the neutral network Gk



Neutral networks are sets of sequences forming the same structure. 
Gk is the pre-image of the structure Sk in sequence space:

Gk = y-1(Sk) π {yj | y(Ij) = Sk}

The set is converted into a graph by connecting all sequences of 
Hamming distance one.

Neutral networks of small RNA molecules can be computed by 
exhaustive folding of complete sequence spaces, i.e. all RNA 
sequences of  a given chain length. This number, N=4n , becomes 
very large with increasing length, and is prohibitive for numerical  
computations. 

Neutral networks can be modelled by random graphs in sequence 
space. In this approach, nodes are inserted randomly into sequence 
space until the size of the pre-image, i.e. the number of neutral 
sequences, matches the neutral network to be studied.
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  network  is  connectednotGk

Connectivity threshold:

Alphabet size   :       = 4k ñ kAUGC

G  S Sk k k= ( )    | ( ) =  y y-1 U { }I Ij j

k lcr

2 0.5

3 0.423

4 0.370

GC,AU

GUC,AUG

AUGC

Mean degree of neutrality and connectivity of neutral networks



A connected neutral network



Giant Component

A multi-component neutral network
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Reference for postulation and in silico verification of neutral networks



GkNeutral Network

Structure S  k

Gk  Cà k

Compatible Set  Ck

The compatible set Ck of a structure Sk consists of all sequences which form 
Sk as its minimum free energy structure (the neutral network Gk) or one of its
suboptimal structures.



Structure S  0

Structure S  1

The intersection of two compatible sets is always non empty:  C0 Ú C1 â Ù



Reference for the definition of the intersection 
and the proof of the intersection theorem
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A ribozyme switch

E.A.Schultes, D.B.Bartel, 
Science 289 (2000), 448-452



Two ribozymes of chain lengths n = 88 nucleotides: An artificial ligase (A) and a natural cleavage 
ribozyme of hepatitis-d-virus (B)



The sequence at the intersection: 

An RNA molecules which is 88 
nucleotides long and can form both 
structures



Two neutral walks through sequence space with conservation of structure and catalytic activity



Evolution of RNA molecules based on Qβ phage

D.R.Mills, R.L.Peterson, S.Spiegelman, An extracellular Darwinian experiment with a 
self-duplicating nucleic acid molecule. Proc.Natl.Acad.Sci.USA 58 (1967), 217-224
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Quart.Rev.Biophys. 4 (1971), 213-253

C.K.Biebricher, Darwinian selection of self-replicating RNA molecules. Evolutionary 
Biology 16 (1983), 1-52

G.Bauer, H.Otten, J.S.McCaskill, Travelling waves of in vitro evolving RNA.
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C.K.Biebricher, W.C.Gardiner, Molecular evolution of RNA in vitro. Biophysical 
Chemistry 66 (1997), 179-192

G.Strunk, T.Ederhof, Machines for automated evolution experiments in vitro based on 
the serial transfer concept. Biophysical Chemistry 66 (1997), 193-202



RNA  sample

Stock solution:  Q  RNA-replicase, ATP, CTP, GTP and UTP, bufferb

Time
0 1 2 3 4 5 6 69 70

The serial transfer technique applied to RNA evolution in vitro



Reproduction of the original figure of the
serial transfer experiment with Q  RNAβ

D.R.Mills, R,L,Peterson, S.Spiegelman, 

. Proc.Natl.Acad.Sci.USA 
 (1967), 217-224

An extracellular Darwinian experiment 
with a self-duplicating nucleic acid 
molecule
58



Decrease in mean fitness
due to quasispecies formation

The increase in RNA production rate during a serial transfer experiment



Evolutionary design of RNA molecules

D.B.Bartel, J.W.Szostak, In vitro selection of RNA molecules that bind specific ligands. 
Nature 346 (1990), 818-822

C.Tuerk, L.Gold, SELEX - Systematic evolution of ligands by exponential enrichment: RNA 
ligands to bacteriophage T4 DNA polymerase. Science 249 (1990), 505-510

D.P.Bartel, J.W.Szostak, Isolation of new ribozymes from a large pool of random sequences. 
Science 261 (1993), 1411-1418

R.D.Jenison, S.C.Gill, A.Pardi, B.Poliski, High-resolution molecular discrimination by RNA. 
Science 263 (1994), 1425-1429

Y. Wang, R.R.Rando, Specific binding of aminoglycoside antibiotics to RNA. Chemistry & 
Biology 2 (1995), 281-290 

Jiang, A. K. Suri, R. Fiala, D. J. Patel, Saccharide-RNA recognition in an aminoglycoside 
antibiotic-RNA aptamer complex. Chemistry & Biology 4 (1997), 35-50
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Genetic
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Desired Properties
? ? ?

Selection

Amplification

Diversification

Selection cycle used in
applied molecular evolution
to design molecules with
predefined properties 
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The SELEX technique for the evolutionary design of aptamers



Sequences of aptamers binding theophyllin, caffeine, and related compounds

R.D.Jenison, S.C.Gill, A.Pardi, B.Poliski, High-resolution molecular discrimination by RNA. Science 
263 (1994), 1425-1429



Secondary structures of aptamers binding theophyllin, caffeine, and related compounds



additional methyl group

Dissociation constants and specificity of 
theophylline, caffeine, and related derivatives 
of uric acid for binding to a discriminating 
aptamer TCT8-4



Schematic drawing of the aptamer binding site for the theophylline molecule
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Formation of secondary structure of the tobramycin binding RNA aptamer

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, Saccharide-RNA recognition in an aminoglycoside 
antibiotic-RNA aptamer complex. Chemistry & Biology 4:35-50 (1997)



The three-dimensional structure of the 
tobramycin aptamer complex

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, 
Chemistry & Biology 4:35-50 (1997)
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Web-Page for further information:

http://www.tbi.univie.ac.at/~pks
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