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Abstract: The analysis of RNA folding landscapes yields insights into the kinetic fold-
ing behavior not available from classical structure prediction methods. This is espe-
cially important for multi-stable RNAs whose function is related to structural changes,
as in the case of riboswitches. However, exact methods such as barrier tree analysis
scale exponentially with sequence length. Here we present an algorithm that com-
putes a projection of the energy landscape into two dimensions, namely the distances
to two reference structures. This yields an abstraction of the high-dimensional energy
landscape that can be conveniently visualized, and can serve as the basis for estimating
energy barriers and refolding pathways. With an asymptotic time complexity of�(n7)
the algorithm is computationally demanding. However, by exploiting the sparsity of
the dynamic programming matrices and parallelization for multi-core processors, our
implementation is practical for sequences of up to 400 nt, which includes most RNAs
of biological interest.

1 Introduction

Structure formation of RNA molecules is crucial for the function of non-coding RNAs

(ncRNAs) as well as for coding mRNAs with regulatory elements like riboswitches and

attenuators. Some RNAs possess distinct meta-stable structures with different biological

activity. A prime example are riboswitches that regulate gene expression depending on

the presence or absence of a small ligand molecule. The pathogenity of viral agents like

viroids is achieved by distinct meta stable structures of their ’genome’. While efficient

RNA folding algorithms such as mfold [Zuk89] or the Vienna RNA package [HFS+94]

can be used to compute most equilibrium properties of an RNA molecule, they provide

little information on folding dynamics. In this case one has to resort to either stochas-

tic simulation of the folding process [FHMS+01, IS00, GFW+08] or analysis of the en-

ergy landscape based on enumeration or sampling. In particular the barriers program

[FHSW02] is used to find all local minima in the energy landscape and their connecting

transition states and energy barriers. The algorithm is based on a complete enumeration of

all low-energy conformations [WFHS99] in the landscape and therefore scales exponen-

tially with sequence length. In contrast, the paRNAss tool [GHR99] relies on sampling

structures and clustering in order to detect multi-stable RNAs but gives no information on

energy barriers.

The dynamic programming (DP) approach to RNA folding can also be extended to obtain
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more information on the energy landscape: Cupal et al. [CHS96] proposed an algorithm

that computes the density of states, i.e. the number of structures that fall into a particular

energy bin, by extending the usual DP table into a third dimension corresponding to the

energy bins. The RNAbor algorithm [FMC07], uses the base pair distance to a reference

structure as the additional dimension and computes the optimal secondary structure as well

as partition function for each distance class (δ-neighborhood).

Both approaches can be viewed as a one-dimensional projection of the high dimensional

energy landscape, which however results into a drastic loss of information. Here, we

describe a related method that employs the distances to two reference structures in order

to compute a 2D projection which retains enough information to predict qualitative folding

behavior and is easy to visualize. In particular, we define a κ� λ - neighborhood to be all

secondary structures s with dBP(s1� s) = κ and dBP(s2� s) = λ, where dBP(sa� sb) is the
base pair distance of sa and sb, and proceed to compute minimum free energy (MFE)

structure, as well as partition function and Boltzmann weighted structure samples for each

κ� λ - neighborhood .

2 Methods

2.1 Minimum free energy algorithm

In the following we will write (i� j) to denote a base pair between the ith and jth nu-

cleotide. A secondary structure s is regarded as a set of base pairs, the base pair dis-

tance between two structures is defined as dBP(s1� s2) = |s1 ∪ s2| − |s1 ∩ s2| and
equals the number of base pairs present in either but not both structures. We will write

s[i� j] = {(p� q) ∈ s : i ≤ p < q ≤ j}, to identify the substructure on the sequence
interval [i� j]. E(s) denotes the free energy of structure s.

For reference, we reproduce below the classic recurrences for MFE folding, which we

will extend to the κ� λ - neighborhood in the following section. Note that the recursions

employ an unambiguous decomposition of secondary structures as implemented in the

Vienna RNA package [HFS+94].

Fi�j = min

�

Fi�j−1� min
i<k≤j

Fik + Ck+1�j

�

Ci�j = min

�

H(i� j)� min
i<k<l<j

Ckl + I(i� j; k� l)� min
i<u<j

Mi+1�u + M̂u+1�j−1 + a

�

Mi�j = min

�

min
i<u<j

(u− i− 1)c + Cu+1�j + b� min
i<u<j

Mi�u + Cu+1�j + b� Mi�j−1 + c

�

M̂i�j = min
�

M̂i�j−1 + c� Cij + b
�

(1)

The upper triangular matrices Fi�j , Ci�j ,Mi�j and M̂i�j contain the optimal folding energy

on the sequence interval [i� j], optimal energy given that (i� j) form a pair, given that i and j
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reside in a multi-loop, and for multi-loop components with exactly one stem in the interval

[i� j], respectively. H(i� j) denotes the energy of a haipin-loop closed by (i� j), I(i� j� p� q)
the energy of an interior-loop closed by (i� j) and (p� q). The parameters a, b, and c contain

the penalties for closing a multi-loop, for adding a multi-loop component, and enlarging a

multi-loop by one unpaired base. We use the energy parameters as tabulated by the Turner

group [MSZT99]. After filling the matrices the MFE structure is found by backtracking in

the usual manner.

2.2 Minimum free energy κ� λ-neighbors

For a given RNA sequence S and two fixed reference structures s1 and s2, the MFE version

of the κ� λ - neighborhood algorithm computes energetically optimal structures s
κ�λ
opt ∈

Sκ�λ where Sκ�λ = {s | dBP(s1� s) = κ ∧ dBP(s� s2) = λ} is the κ� λ - neighborhood of

reference structure s1 and s2. We extend the recursions (1) such that for each entry of the

energy matrices F ,C,M and M̂ the optimal energy contribution of substructures s[i� j]
with dBP(s1[i� j]� s[i� j]) = κ and dBP(s2[i� j]� s[i� j]) = λ are computed. This leads to

two additional dimensions in the energy matrices denoted by F κ�λ,Cκ�λ,Mκ�λ and M̂κ�λ.

Since closing base pairs may lead to an increase of the base pair distance to both reference

structures s1 and s2, additional decomposition constraints have to be introduced in the

recurrences.

A hairpin loop closed by (i� j), for example, contributes to C
κ�λ
i�j only if the substructure

s[i� j] consisting of the single pair {(i� j)} only has distances κ and λ to the two substruc-

tures s1[i� j] and s2[i� j], respectively. Thus, we introduce the shorthand

�(i� j� κ� λ) =

�
H(i� j) if dBP(s1[i� j]� {(i� j)}) = κ� dBP(s2[i� j]� {(i� j)}) = λ

∞ else

(2)

For non-hairpin loops, we introduce five terms δx
1 − δx

5 , where the superscript x is either 1
or 2, denoting the reference structure.

δx
1 (i� j) = dBP(sx[i� j]� sx[i� j − 1]) (3)

δx
2 (i� j� u) = dBP(sx[i� j]� sx[i� u− 1] ∪ sx[u� j]) (4)

δx
3 (i� j� p� q) = dBP(sx[i� j]� {(i� j)} ∪ sx[p� q]) (5)

δx
4 (i� j� u) = dBP(sx[i� j]� {(i� j)} ∪ sx[i + 1� u] ∪ sx[u + 1� j − 1]) (6)

δx
5 (i� j� u) = dBP(sx[i� j]� sx[u� j]) (7)

Each of the δ in eqs. (3-7) covers a distinct case in the energy minimization recursions,

and denotes the minimal distance to the reference structure incurred when decomposing a

substructure into two parts (since base pairs in the reference structure crossing the decom-

position splitting positions j, u, p and q must be opened). For example δx
1 (i� j) equals 1,

if j is paired in the structure interval sx[i� j] of the reference structure sx and 0 otherwise.

Decompositions into more than one substructure lead to additional combinatorial possibil-

ities. They are taken into account by minimizing over (ω� ω̂) pairs, where the sum (ω + ω̂)
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reflects the residual of the base pair distance between the substructures and the references.

Thus, the recursions to compute E(sκ�λ
opt ) = F

κ�λ
1�n are:

F
κ�λ
i�j = min

�




F
κ−δ1

1
(i�j)�λ−δ2

1
(i�j)

i�j−1 �

min
i≤u<j

min
ω1+ω̂1=κ−δ1

2
(i�j�u)

ω2+ω̂2=λ−δ2

2
(i�j�u)

F
ω1�ω2

i�u−1 + C
ω̂1�ω̂2

u�j

C
κ�λ
i�j = min

�




�(i� j� κ� λ)�

min
i<p<q<j

�
C

κ−δ1

3
(i�j�p�q)�λ−δ2

3
(i�j�p�q)

p�q + I(i� j� p� q)
�

�

min
i<u<j

min
ω1+ω̂1=κ−δ1

4
(i�j�u)

ω2+ω̂2=λ−δ2

4
(i�j�u)

�
M

ω1�ω2

i+1�u + M̂
ω̂1�ω̂2

u+1�j−1 + a
�

M
κ�λ
i�j = min

�




M
κ−δ1

1
(i�j−1)�λ−δ2

1
(i�j)

i�j + c

min
i≤u<j

�
(u− i) · c + C

κ−δ1

5
(i�j�u)�λ−δ2

5
(i�j�u)

u�j + b
�

�

min
i≤u<j

min
ω1+ω̂1=κ−δ1

2
(i�j�u)

ω2+ω̂2=λ−δ2

2
(i�j�u)

�
M

ω1�ω2

i�u−1 + C
ω̂1�ω̂2

u�j + b
�

�

M̂
κ�λ
i�j = min

�
C

κ�λ
i�j + b

M̂
κ−δ1

1
(i�j)�λ−δ2

1
(i�j)

i�j−1 + c�
(8)

2.3 Time and memory complexity

Regarding the time complexity of the algorithm, a contribution ofO(n3), where n denotes

RNA sequence length is implicit due to the underlying MFE folding algorithm. The ad-

ditional degrees of freedom of the multi-loop decompositions in C
κ�λ
i�j and M

κ�λ
i�j increase

the complexity by a factor of κ · λ. The extension of the dynamic programming matrices

by two further dimensions κ and λ additionally requires quadratically more effort. If the

maximum distance values of κ and λ is limited to κ ≤ d1 and λ ≤ d2, the time complex-

ity becomes O(n3 · d2
1 · d2

2). Since the maximum number of base pairs on a sequence of
length n is ∼ n

2 , the maximum achievable base pair distance between any two structures

is bounded by n. Thus, the total asymptotic time complexity of the κ� λ - neighborhood

algorithm results in O(n7) for any distance boundaries d1 and d2.

A similar argument holds for the memory complexity which is O(n2 · d1 · d2) = O(n4).
Thus, the memory increase compared to regular MFE folding is d1 · d2 ≤ n2.
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2.4 Partition function of the κ� λ  neighborhood

A modification of algorithm (8) to compute the partition function

Qκ�λ =
�

sx∈Sκ�λ

e−E(sx)/kT (9)

for each κ� λ - neighborhood according to the algorithm of McCaskill et al. [McC90] is

straight forward. The energy contributions are Boltzmann weighted and all sums/minimi-

zations are replaced by products/sums. This can be done, as the recursions (8) perform

unique decompositions and therefore already constitute a partitioning.

Since clustering of the complete secondary structure space into κ� λ - neighborhoods is a

partitioning too,
�

κ�λ Qκ�λ = Q, where Q =
�

s e−E(s)/kT is the partition function of

the complete ensemble of all secondary structures.

The Boltzmann probabilities of a κ� λ - neighborhood in the complete ensemble and for a

structure sx ∈ Sκ�λ inside a κ� λ - neighborhood become

P (Sκ�λ) =
Qκ�λ

Q
and P (sx ∈ Sκ.λ) =

e−E(sx)/kT

Qκ�λ
(10)

Stochastic backtracking yields a Boltzmann weighted sample of representative structures.

2.5 Sparse matrix approach and Parallelization

Some properties of the κ� λ - neighborhood can be used to improve the runtime and re-

duce memory requirements. Due to the definition of the κ� λ - neighborhood of two struc-

tures s1 and s2, there exist combinations of κ� λ distance pairs which do not contribute

to any solution. For example, there is no κ� λ-neighbor with κ + λ < dBP(s1� s2). An
increase or decrease of the base pair distance of a structure s to one of the reference struc-

tures implicitly changes the base pair distance to the other reference. In particular, if

dBP(s1� s2) = even (resp. odd), then κ + λ = even (resp. odd). This checkerboard-like

pattern of the κ� λ - neighborhood roughly halves the number of entries in the extended

dimensions κ and λ actually needed for the calculations. Furthermore, the maximum dis-

tance dmax to any reference structure in any substructure s[i� j] of length m = j − i + 1
is constrained to dmax < m. These observations introduce sparsity in the dynamic pro-

gramming matrices. Hence, two-dimensional matrices F� C� M� M̂ with lists of triples,

containing energy E, distance κ and distance λ at each matrix entry can be used. By it-

erating over the list instead of all κ� λ combinations, impossible structure formations are

avoided.

Further runtime improvements can be obtained through parallelization by noting that all

entries of the matrices F , C,M and M̂ with j − i = const. can be computed concurrently

if the matrices are filled in diagonal order, see [FHS00].
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Figure 1: Runtimes of MFE calculation for the complete κ� λ - neighborhood . Timings are given for
naı̈ve approach (1st implementation) and the sparse matrix approach (SMA) using 1, 4 and 8 threads
on a dual quad-core Intel R� Xeon R� E5450 @3.00GHz with 32GB RAM. Runtimes are means of 15
random sequences. Reference structures used were the MFE structure and the open chain. With 8
processor cores, a sequence of 400 nt can be processed in about 5.8h.

3 Results

3.1 Implementation

The partition function as well as theMFE version of the κ� λ - neighborhood algorithmwas

implemented in ISO C and will be available as a stand-alone program RNA2Dfold in

one of the next releases of the Vienna RNA Package. A release candidate is available from

http://www.tbi.univie.ac.at/˜ronny/RNA/. The implementation provides

most of the command line options of RNAfold such as different dangling end models

and temperature. Given an RNA sequence S and two reference structures s1 and s2,

RNA2Dfold computes for each κ� λ - neighborhood the MFE structure s
κ�λ
opt and its free

energy, the probabilities P (Sκ�λ), P (sκ�λ
opt ∈ Sκ.λ), the probability of s

κ�λ
opt in the complete

ensemble and the Gibbs free energyΔGκ�λ. The maximum values d1 and d2 with κ ≤ d1

and λ ≤ d2 can be specified by the user.

For parallelization we used OpenMP which allows efficient use of modern multi-core sys-

tems while requiring only small changes to the serial version of the source code. The

performance gain from exploiting sparsity as well as parallelization is demonstrated in

Fig. 1. The resulting speedups for 4 and 8 cores were 2.0 and 2.9, respectively. On mod-

ern multi-core systems RNA2Dfold can easily compute the MFE structures and partition

functions for all κ� λ - neighborhoods for RNA sequences up to about 400 nt. This length

range covers functional RNAs such as riboswitches and viroids.
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3.2 2D Projection of the energy landscape

The probability densities and partition functions calculated by RNA2Dfold can be used

for several secondary structure space analysis. One of the possible applications of the κ� λ -

neighborhood algorithm is the prediction of metastable structure states and the detection of

bi-stable RNA switches. Typically, theMFE structure is used as the first reference structure

s1. A meta-stable state, suitable as second reference structure s2, can be obtained e.g. from

a first run of RNA2Dfold using the open chain as second reference, and selecting s2 from

the s
κ�λ
opt . We note that this provides an alternative to the paRNAss approach for detecting

RNA switches that avoids sampling errors. Computing the κ� λ - neighborhood of s1 and

s2 and plotting the MFE values, probability densities and/or the Gibbs free energy of the

partitioned landscape as a two dimensional height map reveals a qualitative picture of the

roughness of the landscape. In the examples of Fig. 2 both RNAs can be clearly recognized

as bi-stable switches. Molecules with more than 2 long-lived meta-stable states should

exhibit additional minima in the interior of the height map. Furthermore, the height map

yields a lower bound on the energy barrier between s1 and s2, and indicates the difficulty

of refolding from s1 to s2 and vice versa.

3.3 A heuristic for finding non direct refolding paths

Most existing approaches utilize heuristics that consider only direct (minimal length) re-

folding paths between two states [MH98, FHMS+01]. Since direct paths allow no detours,

potentially stabilizing base pairs which are not in either of the two ground states cannot

be formed. This can lead to intermediate structures with energetically unfavorable loop

motifs and thus unnecessarily high energy barriers. In contrast, a refolding path with guar-

anteed minimal barrier can be obtained from the barriers program [FHSW02]. Since

the approach is based of exhaustive enumeration of the energy landscape, it is limited to

short sequences, typically less than a 100 nt.

The κ� λ - neighborhood can be used as base for various heuristics estimating the refolding

path and energy barrier. Note however that taking the representatives s
κ�λ
opt from a series

of adjacent κ� λ-neighbors does usually not yield a continuous path of adjacent structures.

Nevertheless, the height map already provides a lower bound for the height of the transis-

tion state and therefore for the energy barrier too. Direct path heuristics perform poorly

when the two structures are far apart. Therefore, a natural extension is to construct an

intermediate structure sm, termed mesh-point, thus splitting the path construction problem

between the two reference structures s1 to s2 into two path constructions from s1 to sm

and from sm to s2. The problem is of course to find suitable mesh points, and the κ� λ -

neighborhoods turn out to be an excellent starting point for this. The Pathfinder al-

gorithm given below (3.1) connects such mesh points using the direct path heuristic from

[FHMS+01]. The method produces indirect paths, since the mesh points need not lie on a

shortest path between s1 and s2.

After computing the κ� λ - neighborhood of the start (s1) and target (s2) structure, we test
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Algorithm 3.1 Pseudo-code of the Pathfinder(sa, sb, iter) algorithm where sa is the start

structure, sb is the stop structure, iter is the maximal number of iterations

MeshpointHeap← ∅ /∗ initialize min-order mesh-point heap ∗/
bestpath← DirectPath�sa� sb) /∗ get best refolding path so far ∗/
whileMeshpoints available ∧ |MeshpointHeap| < m do

s ← Meshpoint structure /∗ sample a mesh point structure ∗/
path← DirectPath�sa� s) + DirectPath�s� sb)
if Barrier�path) < Barrier�bestpath) then
insert�MeshpointHeap� �s� path�Barrier�path)))

end if

end while

if iter > 0 then

for 0 . . . m do

�s� path) ← pop�MeshpointHeap)
path← Pathfinder�sa� s� iter − 1) + Pathfinder�s� sb� iter − 1)
if Barrier�path) < Barrier�bestpath) then
bestpath← path

end if

end for

else

�s� path) ← pop�MeshpointHeap)
bestpath← path

end if

return bestpath

as mesh-points all MFE structures s
κ�λ
opt where κ+λ ≤ γ with a constant γ. This constraint

limits the maximal deviation from a direct path and allows an adjustable exploration of the

underlying energy landscape. Clearly, it is possible to recursively subdivide the problem

further if required (see Pseudocode). With this simple approach the Pathfinder algo-

rithm is able to find refolding paths with energy barriers very close or identical to those of

an exhaustive search using the barriers program [FHSW02]. Results for an artificially

designed RNA switch of 45 nt length revealed a barrier height of 10.7 kcal/mol (see Fig.
2A) which is the same as found with a barrier tree analysis. In contrast to that, a direct

path generated according to [FHMS+01] predicts an energy barrier of 13.33 kcal/mol.
As mentioned before, the heightmap already provides a lower bound for the energy bar-

rier. Here, direct paths are bounded by at least 13.3 kcal/mol, while indirect paths are
bounded by 10.0 kcal/mol. Refolding between the aptamer- and non-aptamer fold of the
add-riboswitch [RLGM07] (Fig. 2B) also shows the same energy barrier of 6.77 kcal/mol
for both, Pathfinder and barrier tree analysis, while a direct path exhibits 7.28 kcal/mol.

4 Conclusion

We introduced a method for a unique partitioning of the RNA secondary structure space,

in which structures are lumped together according to their base pair distances to two ref-

erence structures. In effect, this provides a 2D projection of the high-dimensional folding

space. To overcome the high time complexity of O(n7) our implementation exploits the
sparseness of the dynamic programming matrices as well as OpenMP parallelization. The
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Figure 2: Gibbs free energy height map of all κ� λ - neighborhoods and projection of the re-
folding paths generated by barriers (red line) and the Pathfinder (blue dashed line)
without recursive refinement. Mesh-points are taken from the κ� λ - neighborhood of both
reference structures. A: MFE- and alternative structure of an artificial RNA switch with
sequence GGGCGCGGUUCGCCCUCCGCUAAAUGCGGAAGAUAAAUUGUGUCU and meta stable structure
conformations (((((.....)))))(((((.....)))))(((((.....))))) (MFE structure) and
((((((((((.....(((((.....))))).....)))))))))) (alternative structure). B: Aptamer-
and non-aptamer fold of an add-riboswitch [RLGM07]. In contrast to direct paths (straight diagonal
green line), the Pathfinder solution is as good as the (optimal) solution generated by barriers
in both cases. In B, identical refolding paths are obtained for Pathfinder and barriers anal-
ysis.

resulting program is fast enough to treat RNA molecules up to 400 nt which covers most

biologically interesting cases such as riboswitches and viroids.

The κ� λ - neighborhoods provide both a qualitative picture of the energy landscape, as

well as a convenient starting point for more detailed exploration. As an example we show

that it can be used to suggest excellent intermediate nodes for the construction of refolding

paths, resulting in a fast heuristic that often gives optimal results. Such heuristics are

needed e.g. for kinetic folding strategies like Kinwalker [GFW+08]. Furthermore, the

height maps could provide the starting point for methods that recognize RNA switches or

for coarse grained folding simulations.

Acknowledgments

This work has been funded, in part, by the Austrian GEN-AU projects “bioinformatics

integration network III” and “non coding RNA”.

Lorenz et al. 19



References

[CHS96] J. Cupal, I.L. Hofacker, and P.F. Stadler. Dynamic programming algorithm for the
density of states of RNA secondary structures. Computer Science and Biology,
96(96):184–186, 1996.

[FHMS�01] C. Flamm, I.L. Hofacker, S. Maurer-Stroh, F. Stadler, and M. Zehl. Design of multi-
stable RNA molecules. RNA, 7:254–265, 2001.

[FHS00] Martin Fekete, Ivo L. Hofacker, and Peter F. Stadler. Prediction of RNA base pairing
probabilities using massively parallel computers. J. Comp. Biol., 7:171–182, 2000.

[FHSW02] Christoph Flamm, Ivo L. Hofacker, Peter F. Stadler, and Michael T. Wolfinger. Barrier
Trees of Degenerate Landscapes. Z. Phys. Chem., 216:155–173, 2002.

[FMC07] E. Freyhult, V. Moulton, and P. Clote. Boltzmann probability of RNA structural neigh-
bors and riboswitch detection. Bioinformatics, 23(16):2054, 2007.

[GFW�08] M. Geis, C. Flamm, M.T. Wolfinger, A. Tanzer, I.L. Hofacker, M. Middendorf,
C. Mandl, P.F. Stadler, and C. Thurner. Folding kinetics of large RNAs. Journal
of Molecular Biology, 379(1):160–173, 2008.

[GHR99] R. Giegerich, D. Haase, and M. Rehmsmeier. Prediction and visualization of struc-
tural switches in RNA. In Pacific Symposium on Biocomputing. Pacific Symposium on
Biocomputing, page 126, 1999.

[HFS�94] I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M Tacker, and P. Schuster.
Fast Folding and Comparison of RNA Secondary Structures. Monatshefte f. Chemie,
125:167–188, 1994.

[IS00] H Isambert and E D Siggia. Modeling RNA folding paths with pseudoknots: applica-
tion to hepatitis delta virus ribozyme. Proc Natl Acad Sci U S A, 97(12):6515–20, Jun
2000.

[McC90] J. S. McCaskill. The equilibrium partition function and base pair binding probabilities
for RNA secondary structure. Biopolymers, 29(6-7):1105–1119, 1990.

[MH98] S.R. Morgan and P.G. Higgs. Barrier heights between ground states in a model of RNA
secondary structure. Journal of Physics A-Mathematical and General, 31(14):3153–
3170, 1998.

[MSZT99] D.H. Mathews, J. Sabina, M. Zuker, and D.H. Turner. Expanded sequence dependence
of thermodynamic parameters improves prediction of RNA secondary structure. Jour-
nal of Molecular Biology, 288(5):911–940, 1999.

[RLGM07] R. Rieder, K. Lang, D. Graber, and R. Micura. Ligand-induced folding of the adeno-
sine deaminase A-riboswitch and implications on riboswitch translational control.
Chembiochem, 8(8), 2007.

[WFHS99] S. Wuchty, W. Fontana, I. L. Hofacker, and P. Schuster. Complete suboptimal fold-
ing of RNA and the stability of secondary structures. Biopolymers, 49(2):145–165,
February 1999.

[Zuk89] M. Zuker. On finding all suboptimal foldings of an RNA molecule. Science,
244(4900):48–52, April 1989.

20 Lorenz et al.


